impa

Chaotic blow-up scenarios in models and DNS

Alexei A. Mailybaev

IMPA, Rio de Janeiro

Shell models

(Sabra) shell model of turbulence

Discrete sequence (geometric progression) of wavenumbers:

$$
\lambda=2: \quad k_{0}=1, \quad k_{1}=2, \quad k_{2}=4, \quad k_{3}=8, \quad k_{4}=16, \ldots
$$

One complex variable u_{n} describes velocity at the respective scale:

(3D) inviscid invariants:
$E=\frac{1}{2} \sum_{n}\left|u_{n}\right|^{2} \quad H=\sum_{n}(-)^{n} k_{n}\left|u_{n}\right|^{2}{ }_{\text {helicity }}$

Turbulent dynamics:

Turbulence: shell model vs. 3D Navier-Stokes

structure functions

$$
\left.S_{p}\left(k_{n}\right)=\left.\langle | u_{n}\right|^{p}\right\rangle \propto k_{n}^{-\zeta_{p}}
$$

anomalous scaling deviating from K41 prediction $\zeta_{p}=p / 3$

$$
\begin{aligned}
\text { Sabra }: \varsigma_{2} & =0.72, \varsigma_{3}=1, \\
\varsigma_{4} & =1.26, \varsigma_{5}=1.49 \\
N S: \varsigma_{2} & =0.7, \varsigma_{3}=1, \\
\varsigma_{4} & =1.27, \varsigma_{5}=1.53
\end{aligned}
$$

Model reproduces well the basic properties of the Navier-Stokes turbulence:
K41 theory, dissipative anomaly, intermittency, anomalous scaling

Finite-time blowup: inviscid shell model vs. 3D Euler

self-similar asymptotic solution:

$$
u_{n}(t)=-i u_{*} k_{n}^{-y_{0}} f\left[u_{*}\left(t_{*}-t\right) k_{n}^{1-y_{0}}\right]
$$

(Dombre \& Gilson, 1998)

$$
\begin{gathered}
u_{n} \propto k_{n}^{-y_{0}}, \quad t_{*}-t \propto k_{n}^{1-y_{0}} \\
y_{0}=0.281
\end{gathered}
$$

Self-similar blowup in inviscid Burgers equation: $\quad y_{0}=1 / 3$

Model reproduces self-similar blowup of inviscid Burgers equation (compressible flow)

Relation between blowup and turbulence?

Instantons in turbulence for a viscous shell model

Instantons are identified as coherent structures using local maximums of shell velocities

$$
v_{n}=\max u_{n}(t)
$$

We consider only the developed instantons: they start at some shell n_{0} and extend to the viscous range.

Developed instantons include 60-90\% of all maxima at a given shell.

Structure functions in terms of instantons

$$
\text { original definition: } \left.\quad S_{p}\left(k_{n}\right)=\left.\langle | u_{n}\right|^{p}\right\rangle \propto k_{n}^{-\varsigma_{p}}
$$

new definition: $\quad S_{p}^{\prime}\left(k_{n}\right)=\lim _{T \rightarrow \infty} \frac{1}{T k_{n}} \sum_{\text {all instantons }} v_{n}^{p-1}$
using the instanton lifetime as $t_{n} \approx\left(k_{n} v_{n}\right)^{-1}$

Same values of anomalous scaling exponents!
Intermittency of the instantons reproduces intermittency of the full system.

Self-similar statistics of instants

Proper instanton structure functions: $\quad R_{p, n_{0}}\left(k_{n}\right)=\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{\substack{\text { all instantons } \\ \text { created in shell } n_{0}}} v_{n}^{p} \propto \boldsymbol{k}_{n}^{-y p}$

$$
y \approx 0.22
$$

Instantons are statistically self-similar events with a single universal exponent
They can be seen as "dressed" blowup events.
The scaling exponent is modified due to interactions:

$$
y=0.22 \text { for instantons vs. } 0.28 \text { for blowup }
$$

Instants within the multi-fractal picture of Parisi-Frisch

Buergers equation
shell model

Self-similar event: shock

Statistically self-similar instantons
intermittency does not require events with different scaling exponents, contrary to the suggestion of Parisi (1990)

Models on logarithmic lattices
(with Ciro Campolina)

Proposed technique

Modify space, not equations!

Log model

Algebraic structure on a logarithmic lattice

Function: $\quad f(\mathbf{k}) \in \mathbb{C}, \quad \mathbf{k} \in \bigwedge^{n} \quad$ (Fourier space)
Sum: $\quad(f+g)(\mathbf{k})=f(\mathbf{k})+g(\mathbf{k})$ Scalar product: $(f, g):=\sum_{\mathbf{k} \in \AA^{n}} f(\mathbf{k}) \overline{g(\mathbf{k})}$
Derivative: $\partial_{j} f(\mathbf{k})=i k_{j} f(\mathbf{k})$

Product: $(f * g)(k)$
(P.1) (Reality condition) $(f * g)(-\mathbf{k})=\overline{(f * g)(\mathbf{k})}$;
(P.2) (Bilinearity) $(f+\gamma g) * h=f * h+\gamma(g * h)$, for any number $\gamma \in \mathbb{R}$;
(P.3) (Commutativity) $f * g=g * f$;
(P.4) (Associativity in average) $(f * g, h)=(f, g * h)$;
(P.5) (Leibniz rule) $\partial_{j}(f * g)=\partial_{j} f * g+f * \partial_{j} g$, for $j=1, \ldots, d$;
additionally one can ask for symmetries:
translation and scaling invariance, isotropy

Three types of lattices

$$
\mathbf{k}=\mathbf{p}+\mathbf{q}
$$

(b)

$$
\lambda=\frac{1+\sqrt{5}}{2} \approx 1.62
$$

golden mean
(c)

$\lambda=\frac{\sqrt[3]{9+\sqrt{69}}+\sqrt[3]{9-\sqrt{69}}}{\sqrt[3]{18}} \approx 1.325$
plastic number

Plastic number

The Benedict monk and architect Dom Hans van der Laan (1904-1991)

$$
\sigma=\frac{\sqrt[3]{9+\sqrt{69}}+\sqrt[3]{9-\sqrt{69}}}{\sqrt[3]{18}} \approx 1.325
$$

St. Benedictusberg Abbey, at Mamelis

Modeling on logarithmic lattices

$$
\text { Product: }(u * v)(\mathbf{k})=\sum_{\substack{\mathbf{p}, \mathbf{q} \in \wedge^{n} \\ \mathbf{k}=\mathbf{p}+\mathbf{q}}} u(\mathbf{p}) v(\mathbf{q})
$$

all possible product can be classified

Associativity issue:

$$
\begin{gathered}
(f * g) * h \neq f *(g * h) \\
(f * g, h)=(f, g * h)
\end{gathered}
$$

associative in average

We can construct an analogue of any PDE on a logarithmic lattice that has quadratic nonlinearities: take equations written in the same way.

It will automatically conserve linear, quadratic and cubic conservation laws.

Examples: Navier-Stokes and Euler equations, MHD, Boltmann equations etc.

Invariants:

$$
\partial_{t} u_{i}+u_{j} * \partial_{j} u_{i}=-\partial_{i} p, \quad \partial_{j} u_{j}=0
$$

(incompressible Euler equations)

- Energy: $E=\frac{1}{2}\left\langle u_{j}, u_{j}\right\rangle$
- Helicity: $H=\left\langle u_{j}, \omega_{j}\right\rangle$
- Kelvin's theorem: infinite number of invariants (cross correlation conservation)

1D Burgers equation

$$
\partial_{t} u+u * \partial_{x} u=\nu \partial_{x}^{2} u
$$

Desnyansky-Novikov
(dyadic) model
$\lambda=(1+\sqrt{5}) / 2$

Sabra model
(for some values of parameters)
Self-similar blowup
K41 solution (shock wave)

3D incompressible Euler equations

Open problem: can singularity

 form in finite time?$$
\partial_{t} u_{i}+u_{j} * \partial_{j} u_{i}=-\partial_{i} p, \quad \partial_{j} u_{j}=0
$$

- Adaptive time stepping RKF4(5): relative local error for $\omega_{\text {max }}$ was kept below 10^{-10}
- Adaptive number of nodes \mathbf{N} : error for enstrophy $\Omega=\frac{1}{2}\left\langle\omega_{j}, \omega_{j}\right\rangle$ below 10^{-20}
- 13180 total time steps

$$
\lambda=(1+\sqrt{5}) / 2
$$

$\omega_{\max } \sim\left(t_{b}-t\right)^{-1}$
$k_{\max } \sim\left(t_{b}-t\right)^{-\gamma}$
$\gamma=2.70$

Spatial range of $k \approx 10^{16}$
$E \propto k^{-\xi}$
$\xi=3-2 / \gamma=2.26$

3D incompressible Euler equations

$$
\tau=-2.8
$$

Traveling chaotic wave attractor in the properly renormalised system

$$
\tau=-\log \left(t_{b}-t\right)
$$

Maximum Lyapunov exponent:

$$
\lambda_{\max }=9.18
$$

CC \& AM, PRL 121, 064501 (2018).
Vasseur\&Vishik 2019: Euler blowup must be sensitive to initial conditions

Can the blowup be observed with DNS?

State-of-the-art DNS:

Max wave number $\leq 4 \times 10^{3}$

Such blowup cannot be observed with state-of-the-art DNS!

At DNS scales, the growth is not greater than double exponential - in accordance with KERR ‘13; HOU ‘09

Blowup in ideal 2D Boussinesq equations (buoyancy)

$$
\frac{\partial \mathbf{u}}{\partial t}+(\mathbf{u} \cdot \nabla) \mathbf{u}=-\frac{1}{\rho} \nabla p-\mathbf{g} \alpha \Delta T \quad \frac{\partial T}{\partial t}+\mathbf{u} \cdot \nabla T=0
$$

Difference in scaling laws is about 5\%

Conclusions

- Relation between blowup and intermittency for shell models of turbulence
intermittency is as in the Navier-Stokes turbulence blowup as in the inviscid Burgers equation
intermittency is controlled by a distribution
of statistically self-similar events (instantons),
having a single scaling exponent
- Blowup for 3D incompressible Euler equations on a logarithmic lattice
use exactly the same equation of motion
automatically preserved structure, symmetries, invariants
blowup is a chaotic wave with a core of about 6 decades
modern DNS capabilities may be by far insufficient to see it

Thank you!

alexei.impa.br

