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Shell models



(Sabra) shell model of turbulence
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Turbulence: shell model vs. 3D Navier-Stokes

typical temporal behavior
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structure functions

anomalous scaling deviating  
from K41 prediction ζp = p/3

Model reproduces well the basic properties of the Navier-Stokes turbulence: 

K41 theory, dissipative anomaly, intermittency, anomalous scaling



Finite-time blowup: inviscid shell model vs. 3D Euler

Model reproduces self-similar blowup of inviscid Burgers equation (compressible flow)

2245

For a generic initial condition, with a finite norm 00 ( )ω ω= , the inviscid solution of the Sabra 
model blows up in finite time, i.e. t( ) →ω ∞ as the solution approaches the blowup time t tb→ −. 
The local analysis presented in this section follows the construction of [12], where the reader 
can see the derivations in more detail; see also further developments in [30–32]. For this pur-
pose, we introduce the rescaled shell variables vn  and time τ as
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According to the definition (4.3), new variables conserve the sum v const.n
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transformation is well defined at times before the blowup and leads to the following equa-
tions [12, 32]
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and A d log d/ω τ= . This expression for A can be written using equations (4.3) and (5.1)–(5.4) 
as
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Equation (5.3) is translation-invariant with respect to the shell number n , i.e. it does not 
change under the transformation v vn n j+!  for any j (except in the region near the boundary 
condition). It was shown numerically [32], that equation (5.3) of the Sabra model has a stable 
traveling wave solution, which can be written as

v V n ae ,n
i n( ) ( )τ τ= −θ (5.6)

Figure 3. (a) Renormalized variables ( )τvn  forming a traveling wave for large τ; the 
shell number = …n 1, 2,  increases from the left to the right. The initial conditions are 
= =v v 11 2  (with zeros for other variables) at τ = 0. (b) Corresponding dynamics of 

the original variables u n (t) developing into a self-similar blowup. (c) Physical space 
representation u (x, t) of the solution u n (t) at blowup time.
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Relation between blowup and turbulence?
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Instantons in turbulence for a viscous shell model

)(max tuv ntn =

Simulations for 34 shells, Re ∼ 1011

Instantons are identified  
as coherent structures  
using local maximums of  
shell velocities  

We consider only the developed instantons: they start at some shell n0 and  
extend to the viscous range.

Developed instantons include 60-90% of all maxima at a given shell. 



Structure functions in terms of instantons
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FIG. 3. (Color online) Solid black lines present the velocity
moments Sp(kn) = ⟨|un|p⟩ for p = 1, . . . ,6. Black circles determine
the functions S ′

p(kn) from Eq. (19); for a better comparison of slopes,
the graphs are shifted in the vertical direction and only even n are
shown. Red crosses show similar functions S ′

p(kn) computed for the
local maxima vn corresponding to stable instantons only. Three types
of structure functions determine equal slopes in the inertial range
given by the scaling exponents − ζp .

the Sabra model with c = − 0.5. These results are based on
direct numerical simulation of Eq. (1) with 40 shells, viscosity
ν = 10− 14, and the constant forcing at the first two shells,
f0 = 1 + i and f1 = f0/2. One can clearly distinguish the
forcing range corresponding roughly to the shells n ! 5, the
viscous range of shells n " 32, and the linear part in between
indicating the inertial range.

The phenomenological theory developed by Kolmogorov
(K41 [1,2]) predicts the linear dependence ζp = p/3 for the
scaling exponents. However, the exact scaling exponents ζp

depend nonlinearly on p. This deviation from the K41 theory
is called the anomaly. The scaling exponents are presented in
Fig. 4. The two exact values of scaling exponents are known.
The first one is ζ0 = 0 since |un|0 = 1. The second exact
exponent is ζ3 = 1, which is a necessary condition for the
dissipation anomaly; see, e.g., [11]. The scaling exponents of
the 3D Navier-Stokes turbulence are close to the ones given
by the Sabra model [2,11].

In this section, we establish a link between the anomalous
turbulent statistics and the blowup phenomenon for the Sabra
shell model. The blowup analysis of the inviscid model is
relevant in the inertial range, where viscosity is insignificant.
However, there is an essential difference related to initial
conditions. For the blowup considered in Sec. III, finiteness
of the norm (6) requires decay of initial shell speeds faster
than k− 1

n . This condition is violated in the inertial range of
developed turbulence, which is characterized by the power-law
decay (18) with ζ1 ≈ 0.39. We will see that this difference
leads to the transformation of the blowup with universal self-
similar asymptotic form to coherent structures with universal
self-similar statistics.

Identification of these coherent structures in the turbulent
regime is strongly facilitated, if we consider local maxima
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FIG. 4. (Color online) Anomalous scaling exponents ζp com-
puted for the velocity moments Sp (black line) and for the functions
S ′

p (circles and crosses correspond to the sums over all maxima and
over maxima from stable instantons, respectively). The red (gray)
line ζp = p/3 corresponds to the phenomenological K41 theory. The
dotted line shows the upper bound (28) based on the instanton scaling.

vn = maxt |un(t)| of shell speed amplitudes. An extra subscript
is necessary to index all the local maxima in shell n, but we
will drop it for the sake of simplicity of notations. The new
“structure” functions are defined as

S ′
p(kn) = 1

T kn

∑
vp− 1

n , (19)

where the sum is taken over all local maxima vn observed
for the speed amplitude |un(t)| during a large time interval
0 ! t ! T . By a simple dimensional consideration, one finds
that each local maximum vn has the characteristic time #tn ∼
(knvn)− 1 determining the time interval, where |un(t)| ∼ vn. For
the velocity moment ⟨|un|p⟩ = T − 1

∫ T

0 |un|pdt , this yields the
contribution of order

T − 1vp
n #tn = (T kn)− 1vp− 1

n , (20)

leading naturally to Eq. (19). Hence, the functions S ′
p are

expected to scale in the same way as Sp in the inertial range,
i.e.,

S ′
p(kn) ∝ k

− ζp

n , (21)

with the same scaling exponents as in Eq. (18). This hypothesis
perfectly agrees with the numerical simulations as shown in
Figs. 3 and 4.

The blowup in the inviscid shell model can be identified as
the correlated sequence of maxima, which follow in increasing
order of n and t ; see Fig. 1. Analogous correlated structures
(called the instantons) are observed in the inertial range of shell
models [17,18,26]; see Fig. 5. Following [25], we identify the
instanton as a sequence of local maxima vn = maxt |un(t)|
at times tn following in increasing order tn0 ! tn0+1 ! · · · !
tn1 . In this definition, no maxima of |un(t)| or |un+1(t)| are
allowed in the interval tn < t < tn+1. Each instanton is created

053011-4

Intermittency of the instantons reproduces intermittency of the full system.



Self-similar statistics of instants
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Instantons are statistically self-similar events with a single universal exponent
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instantons is that they restore the blowup self-similarity in a
statistical sense in the inertial range. To observe this property,
let us consider the functions

R(n0)
p (kn) = 1

T

∑

(n0)

vp
n , n ! n0, (25)

where the sum is taken over the local maxima belonging to
stable instantons created in fixed shell n0. These functions can
be viewed as effective velocity moments for the instantons
born in a specific shell, and their graphs obtained numerically
are shown in Fig. 7(a) in logarithmic coordinates. One can
clearly see that the functions R(n0)

p obey the power-law scaling
with exponents (slopes) independent of the initial shell number
n0.

The next observation is that the slopes of the graphs in
Fig. 7(a) are proportional to p. This is shown in Fig. 7(b), where
the functions (1/p) log2 R(n0)

p are plotted versus a number of
shells n − n0 traversed by the instanton. All curves (after the
vertical shift) collapse onto a single straight line of slope −y
with y ≈ 0.22. This implies the relation

R(n0)
p (kn) = c(n0)

p λ−py"n ∝ k
−py
"n , "n= n− n0 ! 0, (26)

with the universal value of scaling exponent y in the inertial
range. The scaling exponent y ≈ 0.22 is different but close to
the scaling exponent y0 ≈ 0.281 of the blowup; see Fig. 2(a).

The scaling rule in Eq. (26) suggests the universal self-
similarity of instanton statistics. Let us consider the proba-
bility density functions (PDFs) determining the probability
Pn0,n(v)dv to sample a local maximum v = maxt |un(t)| be-
longing to the instanton created in shell n0. The self-similarity
for PDFs implies that the renormalized function

Pn0 (v) = λ−y"nPn0,n(λ−y"nv) (27)

does not depend on n in the inertial range. This hypothesis
fully agrees with the numerical results as one can see in

0 5 10 15 20
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

 n − n
0

lo
g 2 R

p(n
0)   +

 c
on

st
(a)

0 5 10 15 20
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

 n − n
0

(1
/p

) 
lo

g 2 R
p(n

0)   +
 c

on
st

(b)

FIG. 7. (Color online) (a) The functions R(n0)
p (kn) in logarithmic

coordinates demonstrating power-law scaling of instantons. Curves
of the same color correspond to the instantons created in shells
n0 = 13, . . . ,23. Different colors indicate different values of
p = 1, . . . ,6 from top to bottom. (b) Graphs of the left figure collapse
onto a single straight line when divided by p. The slope −y is shown
by the dotted line.
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FIG. 8. (Color online) Renormalized PDFs Pn0 (v) of instantons
found numerically for n0 = 17 and n = 17, . . . ,29 (thin black curves)
and for n0 = 20 and n = 20, . . . ,29 (thin blue curves). Collapse of the
graphs with fixed n0 onto a single curve confirms the self-similarity
of PDFs in the inertial range. Bold dotted curves show the PDFs
determined by the large deviation principle.

Fig. 8(a), where the functions (27) for different n collapse onto
a single curve for fixed n0 = 17 or 20. The functions Pn0 (v)
for different n0 are related by the large deviation principle, as
we will show in the next section.

We conclude that the instantons created in a given shell
possess self-similar statistics. These instantons can be viewed
as the blowup phenomena, which propagate to the viscous
range interacting with each other. Interaction is an important
factor which leads to a small but finite difference between
the scaling exponent of the instanton y ≈ 0.22 and the scaling
exponent of the blowup y0 ≈ 0.28. Similar results are obtained
for the Sabra model with the parameters c = −0.4 and −0.6.
The corresponding values of scaling exponents y are shown in
Fig. 2(a).

VI. LARGE DEVIATION PRINCIPLE
FOR INSTANTON DISTRIBUTIONS

According to Eqs. (19), (25), and (26), an average contribu-
tion of a single instanton to the function S ′

p(kn) is proportional
to k−1−(p−1)y

n . This yields an upper bound for the scaling
exponents in Eq. (21) as

ζp " 1 + (p − 1)y. (28)

The dotted line in Fig. 4 represents the right-hand side of
Eq. (28). Since the graph of ζp is a concave function [2],
we conclude that the instanton scaling exponent y does not
determine any part of the ζp graph. In particular, y ≈ 0.22
is larger than the slope of the ζp graph for large p (the
numerical data provides the slope dζp/dp decreasing below
0.19). Therefore, the instanton scaling does not determine the
scaling of high-order velocity moments, as was conjectured

053011-6

They can be seen as “dressed" blowup events.  
The scaling exponent is modified due to interactions:  

y = 0.22 for instantons vs. 0.28 for blowup

no anomaly!



Instants within the multi-fractal picture of Parisi-Frisch

Buergers  
equation

Self-similar event: 
shock

Intermittency: 
bifractal picture defined  

by scaling of single shock

shell  
model

Statistically self-similar  
instantons

Intermittency: 
multi-fractal picture defined  
by distribution of instantons

intermittency does not require events with different scaling  
exponents, contrary to the suggestion of Parisi (1990)

Navier-Stokes  
equations ?



Models on logarithmic lattices 
(with Ciro Campolina)



Modify space, not equations!
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Algebraic structure on a logarithmic lattice

Sum:                                                         Scalar product:

Derivative:    

Product: (f ⇤ g)(k)

@jf(k) = ikjf(k)

of those operations is the product (convolution sum) between functions. By tracking their
essential properties, this will allow to formulate, in the next sections, simplified models struc-
turally identical to the original fluid dynamical equations, sharing most of their underlying
attributes, e.g., symmetries and conserved quantities.

Let ⇤n be an irreducible logarithmic lattice with spacing � and consider k 2 ⇤n, which
we interpret as a wave vector in Fourier space. Let us consider complex valued functions
f(k) 2 C of the wave vector k. All of them are supposed to satisfy the reality condition

f(�k) = f(k) (7)

where the bar denotes complex conjugation. This condition is motivated by the same prop-
erty of the Fourier transform of a real valued function. Thus, f is analogous to the Fourier
transform of a real function. Such functions on the lattice may be interpreted in the follow-
ing way. Consider a real function F : Rn ! R on the Euclidean space and fix a lattice point
k 2 ⇤n. By considering its Fourier transform

F̂ (k0) =

Z

Rn

F (x)e�ik0·xdx, k0 2 Rn,

one may associate the discrete value f(k) on the logarithmic lattice with the integral of F̂
over the box B = [k1,�k1)⇥ · · ·⇥ [kn,�kn), that is

f(k) '
Z

B
F̂ (k0)dk0, k 2 ⇤n.

Given two functions f and g defined on the lattice, we consider their inner product

(f, g) :=
X

k2⇤n

f(k)g(k). (8)

This definition mimics the standard functional product
Z

F (x)G(x)dx =

Z
F̂ (k)Ĝ(k)dk

for real functions defined on the whole Euclidean space, which is the average of the product
FG. Just like the standard functional product of real functions, expression (8) is also real
valued. Indeed, using the reality condition (7) one may rewrite equation (8) as

(f, g) = 2 Re

0

BB@
X

k2⇤n

kn>0

f(k)g(k)

1

CCA .

Since we are working with Fourier-space representation, the spatial derivative @j in the
j-th direction is given by the Fourier factor,

@jf(k) = ikjf(k), (9)
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F̂ (k)Ĝ(k)dk

for real functions defined on the whole Euclidean space, which is the average of the product
FG. Just like the standard functional product of real functions, expression (8) is also real
valued. Indeed, using the reality condition (7) one may rewrite equation (8) as

(f, g) = 2 Re

0

BB@
X

k2⇤n

kn>0

f(k)g(k)

1

CCA .

Since we are working with Fourier-space representation, the spatial derivative @j in the
j-th direction is given by the Fourier factor,

@jf(k) = ikjf(k), (9)

6

(f + g)(k) = f(k) + g(k)

triadsadditionally one can ask for symmetries: 
translation and scaling invariance, isotropy



Three types of lattices

� = 2 � =
1 +

p
5

2
⇡ 1.62

golden mean

(a)

i 1 2 3
pi 2 -1 1/2
qi -1 2 1/2

(b)

i 1 2 3 4 5 6
pi �b ��a �b�a ���a ��b �a�b

qi ��a �b ���a �b�a �a�b ��b

(c)

i 1 2 3 4 5 6 7 8 9 10 11 12
pi �3 �� �2 ���1 ��3 ��2 �5 ��4 � ���4 ��5 ��1

qi �� �3 ���1 �2 ��2 ��3 ��4 �5 ���4 � ��1 ��5

Table 1: Triads at the unity 1 = pi+qi for di↵erent spacing factors: (a) � = 2; (b) � satisfies
1 = �b � �a for integers 0  a < b, e.g., the golden mean � = (1 +

p
5)/2 for a = 1 and

b = 2; (c) � = �, the plastic number (3).

T (⇤) = T (⇤1) [ T (⇤2). The subsets ⇤1 and ⇤2 are not coupled by triads, giving rise to two
disconnected lattices. We are interested in a twofold task: i) to determine which spacings
� generate irreducible lattices and ii) to classify all triad interactions T (⇤) of such lattices.
Because of the scale-invariance of ⇤, every triad interaction at k 2 ⇤ is the scaling by k of a
triad at the unity

T (⇤; k) = {(k, kp, kq); (1, p, q) 2 T (⇤; 1)}. (2)

This reduces the problem of triad classification to the determination of the triads at k = 1.
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of �. If, for example, � = 2, then there are three possible types of triads given in Tab.
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mean, which satisfies the relation 1 = �2��. All triads are obtained from permutations and
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respect to their triad interactions, given by the following theorem.
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Plastic number

(a)

i 1 2 3
pi 2 -1 1/2
qi -1 2 1/2

(b)

i 1 2 3 4 5 6
pi �b ��a �b�a ���a ��b �a�b

qi ��a �b ���a �b�a �a�b ��b

(c)

i 1 2 3 4 5 6 7 8 9 10 11 12
pi �3 �� �2 ���1 ��3 ��2 �5 ��4 � ���4 ��5 ��1

qi �� �3 ���1 �2 ��2 ��3 ��4 �5 ���4 � ��1 ��5
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p
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b = 2; (c) � = �, the plastic number (3).
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The Benedict monk and architect 
Dom Hans van der Laan (1904—1991)

St. Benedictusberg Abbey, at Mamelis 
(Vaals, Netherlands)



Modeling on logarithmic lattices

which shows that f ⇤ g is an absolutely summable function.
Let ⇤ be a product on the space of absolutely summable functions. The product is a

bilinear operator ⇤ : `1 ⇥ `1 ! `1. Its action on two `1 functions is given by

(f ⇤ g)(k) =
X

p,q2⇤

ckpqf(p)g(q)

where ckpq 2 C are complex coe�cients independent of f and g. The reality condition (P.1)

and parity (which is, in general, a particular case of isotropy (P.6), k 7! �k) impose that
the coe�cients are actually real. The Leibniz rule (P.8) restricts the sum to triads k = p+q.
From Theorem 1, there is only a finite number N of triads k = pj + qj, for j = 1, . . . , N .
As a consequence, the coe�cients can be rewritten as ckpjqj = ckj . Isotropy (P.6), which in
one-dimensional space reduces to parity, demands the coe�cients to be independent on the
sign of k, while scaling invariance (P.5) shows that they have no dependence on k, so we can
write them as ckj = cj. Hence, the product can be rewritten in the general form (18). All
possible real coe�cients c = (c1, . . . , cN) span the linear space RN , while the properties of the
product (P.1)-(P.8) form a group G acting on those coe�cients. For the product to satisfy
these properties, the proper coe�cients c should be invariant under all transformations of
G, i.e., Tc = c, for all T 2 G, which translates into finding the reducible representations of G
acting on RN whose G-invariant spaces have a common coe�cient in the product. Since G is a
finite group acting on a finite-dimensional space, this problem can be solved by enumeration.
For the lattices (i) and (iii) of Theorem 1, the representation is irreducible, so we have only
one prefactor c on the product (12), while in the case (ii) we have two G-invariant subspaces,
leading to two distinct coe�cients c and d in the product (13).

Since all products couple triads, a direct consequence of the non-asscoativity of the
logarithmic lattice expressed in the Theorem 4 is the lack of associativity of the products.

Theorem 6. The products described in Theorem 5 are not associative:

(f ⇤ g) ⇤ h 6= f ⇤ (g ⇤ h). (19)

Recall that the associativity condition is valid in average. However, since the products
are not associative, we cannot extend the definition of product average to more than three
factors. We reinforce also the choice of focusing on irreducible lattices. Because a product
always couple triads, in a reducible lattice such product decouples the dynamics into two
noninteracting lattices.

Topics we still need to address in this section: i) generalization to higher dimensions; ii)
sublattices; iii) lattice with origin.

References
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Associativity issue:

where i is the imaginary unit. Clearly, higher order derivatives are powers of the Fourier fac-
tors. This notion of di↵erentiability on the lattice retains some important calculus identities,
like integration by parts

(@jf, g) = �(f, @jg), j = 1, . . . , n, (10)

which follows from the fact that the inner product (8) couples f(k) and g(k) = g(�k).
We next define the product of two functions on the logarithmic lattice, which in Fourier

space is understood as a convolution sum. A product on the logarithmic lattice ⇤n,
represented by ⇤, is a binary operation between functions defined on ⇤n, satisfying, for any
functions f, g, h with (7), any number � 2 R and vector ⇠⇠⇠ 2 Rn and any transformation
R 2 Oh of the group of cube symmetries Oh (Cf. [5, Sec. 93] – this group includes all
transformations (k1, . . . , kn) 7! (±k↵1 , . . . ,±k↵n), where ↵ is a permutation of (1, . . . , n)),
the following properties:

(P.1) (Reality condition) (f ⇤ g)(�k) = (f ⇤ g)(k);

(P.2) (Commutativity) f ⇤ g = g ⇤ f ;

(P.3) (Bilinearity) (f + �g) ⇤ h = f ⇤ h+ �(g ⇤ h);

(P.4) (Translation invariance) ⌧⇠⇠⇠(f ⇤ g) = ⌧⇠⇠⇠f ⇤ ⌧⇠⇠⇠g, where ⌧⇠⇠⇠f(kkk) := e�ikkk·⇠⇠⇠f(kkk) is the trans-
lation of f by ⇠⇠⇠;

(P.5) (Scaling invariance) ��(f ⇤ g) = ��f ⇤ ��g, where ��f(k) = f(�k) is the rescaling of f
by �;

(P.6) (Isotropy) TR(f ⇤ g) = TRf ⇤ TRg, where TRf(k) = f(Rk) is the rotation/reflection of
f by R;

(P.7) (Associativity in average) (f ⇤ g, h) = (f, g ⇤ h);

(P.8) (Leibniz rule) @j(f ⇤ g) = @jf ⇤ g + f ⇤ @jg, j = 1, . . . , n.

The required properties for the product are chosen in order to mimic a common (point-
wise) product of real functions on the real line, or, equivalently, a convolution operation
in Fourier space. The reality condition (P.1) is a closure property. Commutativity (P.2),
bilinearity (P.3), translation invariance (P.4) and parity (P.6) are natural properties of the
pointwise product, such as scaling invariance (P.5), although this last property in our case
is restricted to the logarithmic lattice, and therefore given in discrete form k 7! �k. The
Leibniz rule (P.8) is responsible for the coupling of triads. As we shall see below, since the
logarithmic lattice is nowhere associative, see Theorem 4, we cannot demand the product
to be associative. Nevertheless, we require the weaker property of associativity in average
(P.7).

7

We can construct an analogue of any PDE on a logarithmic lattice  
that has quadratic nonlinearities: take equations written in the same way. 

It will automatically conserve linear, quadratic and cubic conservation laws.

Examples: Navier-Stokes and Euler equations, MHD, Boltmann equations etc.

(incompressible Euler equations)
• Energy:


• Helicity:


• Kelvin’s theorem: infinite 
number of invariants (cross 
correlation conservation)

Invariants:

Product:

all possible product can be classified associative in average



1D Burgers equation

Desnyansky-Novikov 
(dyadic) model

Sabra model

Self-similar blowup

K41 solution (shock wave)

(for some values of parameters)



3D incompressible Euler equations

Open problem: can singularity 
form in finite time?

• Adaptive time stepping RKF4(5): relative local 
error for …….      was kept below


• Adaptive number of nodes N: error for 
enstrophy                          below


• 13180 total time steps

Spatial range of                    



3D incompressible Euler equations

Traveling chaotic wave attractor  
in the properly renormalised system

Vasseur&Vishik 2019: Euler blowup  
must be sensitive to initial conditions

CC & AM, PRL 121, 064501 (2018).

 0.1                1                 10

Maximum Lyapunov exponent:



Can the blowup be observed with DNS?

Max wave number Size of attractor: 
State-of-the-art DNS: 

Such blowup cannot be observed with state-of-the-art DNS!

How about experiments?



At DNS scales, the growth is not greater than 
double exponential — in accordance with 
KERR ‘13; HOU ‘09



How robust is the chaotic blowup?

Difference in scaling laws is about 5%

Blowup in ideal 2D Boussinesq equations (buoyancy)

golden mean plastic number

0.01              0.1                 1



• Blowup for 3D incompressible Euler equations on a logarithmic lattice

Conclusions

use exactly the same equation of motion

automatically preserved structure, symmetries, invariants

modern DNS capabilities may be by far insufficient to see it 

blowup is a chaotic wave with a core of about 6 decades

• Relation between blowup and intermittency for shell models of turbulence

intermittency is as in the Navier-Stokes turbulence

blowup as in the inviscid Burgers equation

intermittency is controlled by a distribution 

of statistically self-similar events (instantons), 

having a single scaling exponent

References: PRE 86, 025301(R); PRE 87, 053011; PRL 121, 064501



Thank you!
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