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Shell models



(Sabra) shell model of turbulence

Discrete sequence (geometric progression) of wavenumbers:

A=2: k=1, k=2, k,=4, k, =8, k, =16,...

One complex variable un describes velocity at the respective scale:
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Turbulence: shell model vs. 3D Navier-Stokes

typical temporal behavior structure functions

1.8 | | I | I | | |

S, (k) =(u, |") o k,*

anomalous scaling deviating
from K41 prediction (p = p/3

Sabra: g, =0.72, ¢, =1,
g, =126, ¢, =1.49

NS:c,=07, ¢, =1,
g, =127, ¢, =1.53

Model reproduces well the basic properties of the Navier-Stokes turbulence:

K41 theory, dissipative anomaly, intermittency, anomalous scaling



Finite-time blowup: inviscid shell model vs. 3D Euler

0.5 — ' self-similar asymptotic solution:

0.41 - u (t) = —ink " fTu(t. — )k ]
(Dombre & Gilson, 1998)
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v, = 0.281

Self-similar blowup in
inviscid Burgers equation:  y, =1/3

Model reproduces self-similar blowup of inviscid Burgers equation (compressible flow)



Relation between blowup and turbulence?
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Instantons in turbulence for a viscous shell model

Simulations for 34 shells, Re ~ 1011

Instantons are identified
as coherent structures
using local maximums of
shell velocities

v, =maxu,(t)
t

We consider only the developed instantons: they start at some shell no and
extend to the viscous range.

Developed instantons include 60-90% of all maxima at a given shell.



Structure functions in terms of instantons
original definition:  § (k,) = <| u, |P> x k°”

new definition: S’ (k)= lim L yPl
p n

n
T— .
T k n allinstantons

using the instanton lifetime as ¢, = (k,v,)”

Same values of anomalous scaling exponents!

Intermittency of the instantons reproduces intermittency of the full system.



Self-similar statistics of instants
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Instantons are statistically self-similar events with a single universal exponent

They can be seen as “dressed’ blowup events.
The scaling exponent is modified due to interactions:
y = 0.22 for instantons vs. 0.28 for blowup
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Instants within the multi-fractal picture of Parisi-Frisch

-

\_

Intermittency:
bifractal picture defined
by scaling of single shock
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Intermittency:

multi-fractal picture defined

~

by distribution of instantons
W,

intermittency does not require events with different scaling
exponents, contrary to the suggestion of Parisi (1990)

Navier-Stokes
equations

[

|-




Models on logarithmic lattices
(with Ciro Campolina)



Proposed technique

Modify space, not equations!

Periodic domain
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Algebraic structure on a logarithmic lattice

Function:  f(k) €e C, k e A*  (Fourier space)

Sum: (f+9)k) = f(k)+ g(k) Scalar product: (f,g) := Z f(k)g(k)
Derivative: 0, f(k) = ik; f(k)

Product: (f * g)(k)

(P.1) (Reality condition) (f = g)(—=k) = (f * g)(k);
(P.2) (Bilinearity) (f +vg) * h = f * h+ v(g * h), for any number v € R;
(P.3) (Commutativity) f g = g* f;

(P.4) (Associativity in average) (f x g, h) = (f,g* h);

(P.5) (Leibniz rule)”(?j(f xg)=0;fxg+ [ ng, for j =1,....,d;

k=p+q

additionally one can ask for symmetries:
translation and scaling invariance, isotropy
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The Benedict monk and architect
Dom Hans van der Laan (1904—1991)

Plastic number

_ V94 V69 + V9 - V69

V18

. - :...' _-;
A vk

~ 1.325

St. Benedictusberg Abbey, at Mamelis
(Vaals, Netherlands)



Modeling on logarithmic lattices

(" ) Associativity issue:
Product: (ux*v)(k) = Z u(p)v(q)
= (f*g)*h# fx(gxh)
. k=p+q y (f*g7h):(fag*h)
all possible product can be classified associative in average

We can construct an analogue of any PDE on a logarithmic lattice
that has quadratic nonlinearities: take equations written in the same way.

It will automatically conserve linear, quadratic and cubic conservation laws.

Examples: Navier-Stokes and Euler equations, MHD, Boltmann equations etc.

f Invariants: \

Oru; + Uj * ajuz- = —&L-p, 8j’u,j =0,

 Energy: E = %(uj,u;)
(incompressible Euler equations)  Helicity: H = (u;,w;)

e Kelvin’s theorem: infinite
number of invariants (cross
\ correlation conservation) J




1D Burgers equation

Ou + u * Ozu = vO2u

Desnyansky-Novikov
(dyadic) model

Self-similar blowup

K41 solution (shock wave)

A= (14++5)/2

Sabra model

(for some values of parameters)



3D incompressible Euler equations

Open problem: can singularity * Adaptive time stepping RKF4(5): relative local
form in finite time? error for Wmax Was kept below 101V

* Adaptive number of nodes N: error for
enstrophy Q = l(w;,w;) below 1020

* 13180 total time steps
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3D incompressible Euler equations

(ty —t)|w|
[ . .
0.1 1 10
T =-2.8
Traveling chaotic wave attractor
In the properly renormalised system 1016
T = — log(tb — t)
1012 N
& 10° 4 '
Maximum Lyapunov exponent: /
Amax = 9.18 1074

CC & AM, PRL 121, 064501 (2018).

Vasseur&Vishik 2019: Euler blowup
must be sensitive to initial conditions



Can the blowup be observed with DNS?

State-of-the-art DNS:

Max wave number < 4 x 10° [ Size of attractor: ~ 1()° j

.t | T =I-1.9 | ot | T :I3.O |
H = |
0.1 0.3 1 3 10
10%2 | 1102} -
S O10% - - 10°% | -
10* DN . 104 | _
-’. ~ 103
1 ﬁ | | | 1 ] | |
1 10% 108 1012 1016 1 10% 108 1012 1016
k1

Such blowup cannot be observed with state-of-the-art DNS!

How about experiments?
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At DNS scales, the growth is not greater than

double exponential — in accordance with
KERR ‘13; HOU ‘09



How robust is the chaotic blowup?
Blowup in ideal 2D Boussinesqg equations (buoyancy)
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Difference in scaling laws is about 5%



Conclusions

* Relation between blowup and intermittency for shell models of turbulence

intermittency is as in the Navier-Stokes turbulence
blowup as in the inviscid Burgers equation

iIntermittency is controlled by a distribution
of statistically self-similar events (instantons),
having a single scaling exponent

* Blowup for 3D incompressible Euler equations on a logarithmic lattice

use exactly the same equation of motion
automatically preserved structure, symmetries, invariants
blowup is a chaotic wave with a core of about 6 decades

modern DNS capabilities may be by far insufficient to see it

References: PRE 86, 025301(R); PRE 87, 053011; PRL 121, 064501
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