Scanning Tunneling Microscopy STM, Scanning Tunneling Spectroscopy STS.

→ Principe - Effet tunnel, mécanique quantique $\Delta E.\Delta t \sim \hbar$ - G. Binnig, H. Rohrer, *Helv. Phys. Acta* 55 (1982) 726 – 1986 Nobel Prize in Physics

Soient deux électrodes métalliques, distantes de d (quelques Å), entre lesquelles est appliquée une tension V, alors il existe un courant tunnel I_{tunnel} donné par:

$$I_{tunnel} \propto V e^{(-2Kd)}$$

avec e.V << Φ , K = $\frac{\sqrt{2m_e\Phi}}{\hbar}$ où Φ travail de sortie des électrodes.

Une variation de 1 Å = 0.1 nm de la distance inter-électrodes d se traduit par un changement d'un ordre de grandeur de I_{tunnel} .

Ordres de grandeur: $I_{tunnel} \sim 1$ nA, V ~ 1 V, d $\sim 0.1 - 1$ nm

Exploitation de la dépendance exponentielle du courant tunnel I_{tunnel} avec la distance inter-électrodes d (pointe - surface) pour imager une surface à <u>l'échelle atomique</u>.

> Principe - Mise en œuvre de la microscopie tunnel.

.Système d'électrodes = système (**Pointe - Surface**),

.Dispositif de balayage (X, Y) de la pointe via céramiques piezoélectriques P.

Exemple : pour un tube en PZT (Pb(Ti,Zr)O₃) de dimensions (L, Φ_{max} , Φ_{min}) = (12.7, 6.35, 5.84 mm) : extensions de \approx 5 nm/V suivant les trois directions (X, Y, Z).

.Asservissement suivant Z (d) de la position de la pointe au cours du balayage - maintien du courant tunnel I_{tunnel} constant - mode Z : courant de consigne $I_{tunnel} \sim 1$ nA, $V_{tunnel} \sim 1$ V, d $\sim 1-10$ Å = 0.1-1 nm.

.Dispositif antivibratoire.

→ Image mode Z : dplt Z = f(X, Y) (asservisement actif, I = cste), → Image mode I: variation I = f(X, Y) (asservisement inactif).

Résolution verticale $\Delta r_z \ge 0.01 \text{ Å}$ (dépendance exponentielle), **Résolution latérale fonction de la qualité de la pointe** $\Delta r_{xy} \ge 1 \text{ Å} = 0.1 \text{ nm}.$

 \rightarrow *Résolution atomique possible.*

Principe - Intensité du courant tunnel - Interprétation des images.

$$I_{\text{tunnel}} = \int_{E_{\text{F}}}^{E_{\text{F}}+eV} \rho_{\text{surface}}(E+eV) \rho_{\text{pointe}}(R_{\text{pointe}},E)T(E,V)dE$$

$$\partial I_{\text{tunnel}} / \partial (eV_{\text{x}}) = \rho_{\text{surface}}(E+eV) \rho_{\text{pointe}}(R_{\text{pointe}},E)T(E,V)$$

.E_f niveau de Fermi, $E = E_f + eV_x$ avec $0 \le V_x \le V$,

.psurface densité locale des états électroniques de la surface,

 $.\rho_{pointe}$ densité locale des états électroniques de la pointe évaluée au centre de courbure de celle-ci R_{pointe} (pointe W),

.T(E,V) coefficient de transmission de la barrière (élément de matrice $|M|^2$) $\propto \exp(-2Kd)$, $K = \sqrt{2m_e \Phi} / \hbar$.

En mode Z, les images de microscopie par effet tunnel sont des représentations de la densité électronique locale au voisinage du niveau de Fermi à la position de la pointe.

Une modulation ΔV est superposée à la rampe de tension V appliquée entre pointe et surface et le signal $\Delta I/\Delta V$ est mesuré à l'aide d'une détection synchrone.

Fig. 4. – Relation entre la densité d'états électroniques de la surface analysée avec le signal $\Delta I / \Delta V$.

> Applications.

Étude, par imagerie directe, de structures de surface d'échantillons conducteurs et semi-conducteurs:

.Étude de surfaces métalliques: surfaces vicinales...

.Étude des structures atomique et électronique des reconstructions de surface de semi-conducteurs,

Si(111) Reconstruction (7x7) - document OMICRON VP GmbH

.Étude des étapes initiales de phénomènes d'adsorption, d'absorption, de réactions de surface, de catalyse...

Étude spectrométrique de la structure électronique de surface Scanning Tunneling Spectroscopy STS, .courbes $\Delta I/\Delta V = f(V)$, dlnI/dlnV = f(V)...

Epitaxial Graphene sur 6H-SiC(0001) Han Huang, Wei Chen, Shi Chen and Andrew Thye Shen Wee ACS Nano 2 (2008) 2513

Microscopie à force atomique.

Scanning Force Microscopy SFM, Magnetic Force Microscopy MFM,
Dynamic Force Microscopy DFM, Lateral Force Microscopy LFM,
Atomic Force Microscopy AFM, Electrostatic Force Microscopy EFM

Principe - G. Binnig, C.F. Quate, Ch. Gerber, Phys. Rev. Lett. 56, 930, (1986).

Imager une surface via la mesure des forces d'interaction qui s'exercent entre les atomes d'une surface et ceux d'une pointe sonde.

Céramiques piézoélectriques

Une pointe, fixée à l'extrémité libre d'un levier (cantilever) balaie (mouvements $X_{éch}$, Y_{ech}) une surface à courte distance.

Les interactions pointe - surface déforment le levier.

Ces déformations δz , mesurées par un capteur de déplacements (F = k. δz), constituent le signal d'entrée d'une boucle d'asservissement.

La régulation de la distance pointe surface (mouvement $Z_{\acute{e}ch.}$) donne accès au profil isoforce de la surface.

Dimensions pointe : L = 2 μ m, Ø = 100 Å, levier : 100 ≤ L ≤ 200 μ m, 10 ≤ ℓ ≤ 40 μ m, 0.3 ≤ e ≤ 2 μ m,

Un microscope à force atomique opère suivant trois régimes de fonctionnement principaux, à savoir le mode contact, le mode non contact et le mode de contact intermittent.

(1) Le mode contact correspond à des distances pointe - surface faibles de l'ordre de quelques Å, pour lesquelles les forces de contact sont répulsives (Forces de Born/Pauli),

(2) Le mode non contact correspond à des distances pointe surface importantes de l'ordre de quelques Å à quelques 100 Å, pour lesquelles les forces sont attractives (Van der Waals...),

(3) Le mode contact intermittent (Tapping modeTM) correspond à une combinaison des deux modes précédents.

Microscopie à force atomique.

> Applications.

Étude, par imagerie directe, de structures de surface d'échantillons conducteurs, semi-conducteurs et *isolants*.

Résolution verticale ≈ 0.1 Å, Résolution latérale ≈ 10 Å en *mode contact -* \mathbb{R}^{tn} -*atomique*, ≈ 1 Å en *mode vibrant -* \mathbb{R}^{tn} *atomique*.

Surface InAs(110) imagée par AFM en mode vibrant. Plan terminé As, présence de défauts ponctuels, image 20 nm x 20 nm. W. Allers, A. Schwarz, U.D. Scwharz, R. Wiesendanger, Institute of Applied Physics, University of Hamburg, Allemagne.

→ **Principe** - **Effet tunnel,** mécanique quantique $\Delta E\Delta t \sim \hbar$ - G. Binnig, H. Rohrer, *Helv. Phys. Acta* 55, (1982) 726.

> Principe - Mise en œuvre de la microscopie tunnel.

Principe - Intensité du courant tunnel - Interprétation des images.

> Applications.

Microscopie à force atomique.

Principe - G. Binnig, C.F. Quate, Ch. Gerber, *Phys. Rev. Lett.* **56**, 930, (1986).

> Modes de fonctionnement d'un microscope à force atomique.

> Applications.