Laboratoire Edifices Nanométriques (LEDNA)
logo_tutelle logo_tutelle 

Responsable : Mathieu Pinault

Le LEDNA (Laboratoire Edifices Nanométriques) comprend 18 permanents et une douzaine de doctorants, post-doctorants et CDD.

Axée sur la recherche fondamentale en nanosciences, son expertise porte sur le développement, selon une approche bottom-up, de méthodes de synthèse et d’élaboration de nano-objets ou matériaux nanostructurés originaux. L'objectif est de répondre à des applications à fort impact sociétal dans le domaine de l’énergie, de l’environnement, de la santé et des matériaux composites fonctionnels.

Le LEDNA a pour principal objectif scientifique d'étudier les phénomènes physico-chimiques à mettre en œuvre pour concevoir des procédés de synthèse performants  (rendement, efficacité...) en phase gazeuse ou en phase liquide et  d'analyser  leurs propriétés physique, chimique et mécanique intrinsèques résultant de leur faible taille, ou à l'issue de leur  mis en forme dans des matériaux ou des dispositifs , en vue d'applications.

 

Ces recherches sont organisées autour de 5 thématiques :

Le LEDNA mène également des travaux transverses de fonctionnalisation de surface et de mise en forme des nano-objets. Il s’intéresse aux impacts sociétaux de ces nano-objets en étudiant leur toxicité, en collaboration avec des biologistes.

Pour mener ces études, le LEDNA réalise des développements instrumentaux :

  • lentilles aérodynamique pour générer des jets de nanoparticules pour la synthèse et l'analyse (au laboratoire et sur synchrotron)
  • de dispositifs de synthèse dédiés aux analyses in situ (au laboratoire et sur synchrotron)
  • de techniques d'analyse en ligne des procédés (spectrométrie de masse, LIBS...)

et dispose d'équipements de caractérisation performants adaptés à l'étude de nanoobjets : MEB-FEG, Spectroscopie Raman,  Spectroscopie de corrélation de photons... et de mesures des propriétés chimiques, physiques ou mécaniques : mesures électriques, électrochimiques...

Et se déplace sur les grands instruments (SOLEIL, ESRF...)  : dépôt de projets et collaborations sur temps de faisceau interne.

Une des spécificités de l’équipe LEDNA est l’équilibre entre études académiques et appliquées : pour les systèmes ayant atteint un niveau de maturité permettant de proposer une valorisation industrielle, le LEDNA se préoccupe, par des travaux de R&D conjoints, de transposer les procédés de synthèse et les dispositifs élaborés au laboratoire à l'échelle supérieure pré-industrielle (prototypes, TRL 2 à 5). Pour cela, le LEDNA s’appuie sur les partenariats existants (Sté Nawatechnologies, Sté Ethera, RTE-France...) ou en construction, et collabore avec de nombreuses équipes de recherche nationales (ICMO et LPS d'Orsay, CEA-LITEN, ICGM Montpellier, LNIO UTT-Troyes...) ou internationales (NTU Singapour, Karlsruhe-KIT, Université de Birmingham...).


 
#946 - Màj : 31/05/2023
Thèmes de recherche

Biologie et santé / Biology and health @ NIMBE

Plusieurs laboratoires du NIMBE ont une activité de recherche en lien avec la biologie ou la santé : Le LICSEN développe des technologies innovantes permettant d'obtenir des surfaces et nanostructures fonctionnalisées qui ont de multiples applications pour la biologie et les soins de santé : biocapteurs, implants, administration de médicaments, surfaces bactéricides...

 Biologie et santé / Biology and health @ NIMBE
 Matériaux, nanomatériaux, matériaux pour l'électronique, l'énergie et matériaux du patrimoine @ NIMBE

Matériaux, nanomatériaux, matériaux pour l'électronique, l'énergie et matériaux du patrimoine @ NIMBE

Les recherches fondamentales sur les matériaux permettent de développer des méthodes pour élaborer des matériaux complètement nouveaux aux propriétés originales. Ces recherches permettent d'adapter les matériaux pour obtenir les meilleures performances dans la réaliation de dispositifs électroniques ou optiques.

Synthèse et analyse en phase gazeuse de nano-objets / Synthesis analysis in gas phase of nano-objects

La plupart des synthèses chimiques sont réalisées en milieu liquide. Pour l'élaboration de nanoparticules et les nanomatériaux, de multiples méthodes de synthèse en phase gaz se révèlent particulièremetn utiles et performantes .

Synthèse et analyse en phase gazeuse  de nano-objets / Synthesis analysis in gas phase of nano-objects
Nano-chimie, nano-objets / Nano-chemistry, nano-objects

Nano-chimie, nano-objets / Nano-chemistry, nano-objects

Le développement des nanotechnologies s'appuie de plus en plus sur la logique d'assemblage spontané (auto-assemblage) ou non, des briques élémentaires que sont les nanoparticules.

Économie circulaire - environnement @ NIMBE

Plusieurs thématiques de recherche du NIMBE concourent à mieux contrôler notre environnement (analyse, méthodes) et assurer la meilleure gestion possible de nos déchets : Recyclage  (LICSEN) La maitrise de nos ressources en éléments chimiques de haute valeur, la nécessité de ne plus rejeter de carbone fossile dans l'atmosphère imposent aujourd'hui une transition énergétique et économique majeure, où le recyclage de nos matières premières (terres rares, plastiques, CO2.

 Économie circulaire - environnement @ NIMBE

Matériaux nanocomposites nanostructurés (cristallisés et matière molle) : de leur élaboration, à leurs propriétés.

L'incorporation de nano-objets ou la nanostructuration (à une échelle < 100 nm) au sein d'un matériau (solide cristallisé ou matière molle) permettent d'élaborer des "nanomatériaux" aux propriétés physico-chimiques nouvelles (réactivité chimique, propriétés mécanique ou électrique, biologique...).

Matériaux nanocomposites nanostructurés (cristallisés et matière molle) : de leur élaboration, à leurs propriétés.
Capteurs chimiques et biochimiques, diagnostic médical / Chemical and biochemical sensors, medical diagnosis

Capteurs chimiques et biochimiques, diagnostic médical / Chemical and biochemical sensors, medical diagnosis

De nombreuses méthodes sont développées par les équipes du NIMBE (LEDNA, LICSEN, LIONS, LSDRM) pour développer des capteurs chimiques ou biochimiques sensibles, sélectifs et efficaces.

Chimie environnementale et dépollution / Environmental chemistry and depollution

Les nanotechnologies offrent de nombreuses méthodes innovantes pour le piégeage de nombreux éléments polluants, chimiques, biologiques ou encore des métaux lourds.  Des méthodes de dépollution à l'aide de filtres à base de matériaux nanoporeux ou de fibres de carbone fonctionnalisées sont ainsi développées au LICSEN.

Chimie environnementale et dépollution / Environmental chemistry and depollution
Domaines Techniques
Spectrométrie de masse
La spectrométrie de masse est une technique instrumentale d’analyse reposant sur la séparation, l’identification et la quantification des éléments constitutifs d’un échantillon en fonction de leur masse. Ainsi les atomes, molécules ou aggrégats sont extraits sous forme d'ions, puis triés par un système dispersif : secteur de champ électrique ou magnétique, filtre quadripolaire ou temps de vol.

Analyse chimique en ligne au LEDNA

Si les surfaces possèdent intrinsèquement des propriétés intéressantes (propriétés optiques ou magnétiques, interface électronique, catalyse, fonction biologique, ...), des fonctions spécifiques peuvent être ajoutées par nanostructuration, ou en déposant un revêtement, ou encore par l'adsorption ou le greffage de molécules aux propriétés spécifiques.

Dépôt de films minces à partir de la voie liquide

Dépôt en phase vapeur (PVD) couplé à un jet de nanoparticules, pour la synthèse de revêtements nanocomposites

Imprégnation et polissage

Mesures électrochimiques et électriques

Fonctionnalisation de surface / surface functionnalisation
Rayons X
Les rayons X, rayonnement électromagnétique au delà de l'ultra-violet lointain, couvrent une gamme de longueur d'onde autour du dixième de nanomètre. Cette distance est de l'ordre de la distance entre atomes dans la matière condensée. Ainsi les rayons X peuvent interagir avec ces atomes (diffraction) ou les électrons (diffusion).

Diffraction des rayons X : "D2 Phaser Brucker" au LEDNA

Plusieurs types de microscopies électroniques sont disponibles à l'IRAMIS : - Microscopie à transmission (TEM : Transmission Electron Microscope), qui permet d'atteindre les plus hautes résolutions par diffusion/difffraction d'un faisceau d'électrons à travers un échantillon ultra-mince - Microscopie MEB et MEB-FEG (SPAM et SIS2M), ou microscopie à balayage, pour laquelle un faisceau d'électrons balaye la surface  de l'échantillon permettant d'obtenir une image de sa surface.

Microscopies électroniques au LEDNA

Microscopies électroniques TEM, MEB et LEEM/PEEM
Voir aussi
Faits marquants scientifiques
19 février 2024
Face à la nécessaire transition énergétique pour éviter l'émission massive de CO2 liée à l'usage des produits pétroliers, la filière hydrogène-énergie verte est souvent mise en avant. Par ailleurs, les besoins de la chimie nécessitent aussi une source d'hydrogène non issue de produits carbonés fossiles.
29 juin 2023
Du fait de leurs propriétés, les nanoparticules de dioxyde de titane sont largement utilisées dans les produits de consommation, notamment comme additif alimentaire, dans les cosmétiques ou comme pigment. Jusqu’à présent, elles étaient considérées comme chimiquement stable et insoluble.
29 septembre 2022
Face au défi mondial de la transition énergétique et de l’indépendance énergétique, d'intenses recherches académiques et industrielles sont poursuivies sur différents dispositifs de stockage d'énergie, dont les batteries et les super-condensateurs, pour atteindre une production d'électricité décarbonée.
08 juin 2022
Du fait de leurs propriétés optiques dans le domaine visible, les nanoparticules d’or (Au-NPs) ont de nombreuses applications dans multiples domaines et plusieurs entreprises produisent et commercialisent aujourd'hui des Au-NPs, en particulier aux USA et en Asie.
07 janvier 2019
Une large collaboration de chercheurs a mis au point une nouvelle méthode permettant d’améliorer la capacité de stockage et de réduire le coût de production des batteries lithium-ion. La technologie proposée est basée sur l’irradiation des matériaux, de façon similaire à ce qui se fait par exemple dans les industries de traitement des aliments, des médicaments et des eaux usées.
08 octobre 2018
Les nanomatériaux manufacturés sont largement utilisés pour de nombreuses applications. Certains d’entre eux peuvent être considérés comme dangereux pour la santé car ils pourraient provoquer des effets inflammatoires, respiratoires, cardiovasculaires ou neurologiques.
10 juin 2017
La demande de dispositifs de stockage d'électricité performants pour l’électronique nomade ou l’automobile est en croissance rapide et nécessite une amélioration des performances des batteries (capacité, durée de vie, sécurité).
18 mai 2016
Le soleil apparait à ce jour comme la source d’énergie à la fois inépuisable et gratuite qu'il faut cependant réussir à capter efficacement. Les différentes générations de cellules photovoltaïques ont permis une amélioration progressive des coûts et/ou des rendements [1].
03 février 2016
La recherche de biomarqueurs volatils en vue d’un diagnostic non-invasif de pathologies telles que le cancer ou de maladies infectieuses comme la tuberculose, est un enjeu médical majeur.
23 septembre 2014
Une équipe de recherche du CEA Iramis, du Synchrotron SOLEIL, de l’Institut Lavoisier de Versailles (UVSQ / CNRS) et de l’Institut de physique de Rennes (CNRS/Université Rennes 1) a mis au point une méthode de "lentille aérodynamique" qui permet d’observer des nanoparticules libres, sans interférences avec un substrat. Il est ainsi possible de caractériser spécifiquement la surface des nanoparticules.
01 juillet 2014
Après avoir mis au point une méthode de marquage isotopique qui rend possible une détection extrêmement sensible des nanotubes de carbone au sein d’organismes vivants, des chercheurs du CEA et du CNRS ont étudié le devenir de ces nanotubes sur une période d’un an chez l’animal.
02 juin 2013
L'utilisation de silicium à l'anode des accumulateurs Li-ion permet de fortement augmenter leur capacité. Cependant ce matériau se révèle fragile et les accumulateurs résistent mal aux cycles charge-décharge répétés. D'où l'idée d'utiliser du silicium sous forme de particules nanométriques, encapsulées dans une coquille de carbone.
06 mars 2012
Le contrôle de l’interaction lumière-matière à l’échelle nanométrique nécessite le développement de nouvelles instrumentations (microscopies à sonde locale) et de nouveaux matériaux (plasmonique hybride).
24 septembre 2011
Contact CEA : Pascal Boulanger
Une dizaine d'année après leurs premières synthèses en laboratoire, les tapis de nanotubes de carbone alignés sont envisagés dans de nombreux domaines d’applications (membranes de filtration, composants électroniques passifs et actifs, matériaux composites,…) combinant propriétés individuelles des nanotubes et nano-structuration spécifique.
13 janvier 2010
Des équipes de l'iBiTec-S, en collaboration avec une équipe de l'IRAMIS, ont mis au point une méthode de marquage au carbone 14 de nanotubes de carbone permettant de suivre et d'étudier leur devenir in vivo.  
Publications HAL

Dernières publications LEDNA


Toutes les publications LEDNA dans HAL-CEA

Thèses
5 sujets /NIMBE/LEDNA

Dernière mise à jour :


 

Matériaux poreux intégrés dans des dispositifs pour l’analyse glycomique en milieu hospitalier.

SL-DRF-24-0442

Domaine de recherche : Chimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Edifices Nanométriques (LEDNA)

Saclay

Contact :

Marc MALEVAL

Martine Mayne

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Marc MALEVAL
CEA - DRF/IRAMIS/NIMBE/LEDNA

0169084933

Directeur de thèse :

Martine Mayne
CEA - DRF/IRAMIS/NIMBE

01 69 08 48 47

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=mmaleval

Labo : https://iramis.cea.fr/NIMBE/LEDNA/

La glycomique consiste à identifier les oligosaccharides (OS) présents dans un fluide biologique en tant que source de biomarqueurs en vue de diagnostiquer diverses pathologies (cancers, maladie d’Alzheimer, etc.). Pour étudier ces OS, la préparation d’échantillon comporte 2 phases clés, le clivage enzymatique (coupure de la liaison entre les OS et les protéines) suivi d’une purification et extraction (séparation des OS et des protéines). Cependant, les matériaux actuellement utilisés dans les protocoles imposent de nombreuses étapes manuelles et chronophages, incompatibles avec une analyse à haut débit.

Dans ce contexte, le LEDNA, laboratoire spécialisée dans le domaine des matériaux a récemment développé un procédé sol-gel de fabrication de Monolithes à Porosité Hiérarchisée (HPMs) dans des dispositifs miniaturisés. Ces matériaux ont permis d’obtenir une preuve de concept démontrant leur intérêt pour la seconde étape de l’analyse glycomique, i.e. la purification et l’extraction des oligosaccharides. Le LEDNA souhaite désormais améliorer la première étape correspondant à la coupure enzymatique devenue limitante dans le processus d’analyse glycomique. La fonctionnalisation de matériaux poreux, notamment d’HPMs avec de l’enzyme rendrait ainsi possible une préparation d’échantillon simple en à peine quelques heures avec une unique étape.

L’objectif de cette thèse est donc de montrer que l’utilisation de matériaux poreux présentant une fonction double, catalytique et de filtration, appliqués à la préparation d’échantillons pour l’analyse glycomique constitue un moyen pertinent pour simplifier et accélérer l’analyse glycomique, ainsi que de les employer dans des études en lien avec le milieu hospitalier afin d’identifier de nouveaux biomarqueurs de pathologies.

Le projet de recherche consistera à élaborer un dispositif intégrant des matériaux poreux présentant une fonction catalytique et de filtration. Pour ce faire, plusieurs aspects seront traités, allant de la synthèse et de la mise en forme de ces matériaux jusqu’à leur caractérisation de leurs propriétés texturales et physico-chimique. Un travail important sera porté sur l’immobilisation de l’enzyme. Le(s) prototype(s) les plus prometteurs seront évaluées dans un protocole d’analyse glycomique en vérifiant l’obtention de profils oligosaccharidiques de biofluides humain (plasma, lait). Les caractérisations physico-chimiques seront l’occasion de pratiquer des techniques variées (MEB, MET, etc.) ou encore la caractérisation des paramètres de porosité (adsorption d’azote, porosimètre Hg). L’analyse des oligosaccharides sera réalisée par spectrométrie de masse à haute résolution (essentiellement MALDI-TOF).

Pour ce projet de thèse pluridisciplinaire, nous recherchons un(e) étudiant(e) chimiste ou physico-chimiste, intéressé(e) par la chimie des matériaux et motivé(e) par les applications de la recherche fondamentale dans le domaine des nouvelles technologies pour la santé. La thèse sera effectuée dans deux laboratoires, le LEDNA pour la partie matériaux et le LI-MS pour l’utilisation des matériaux en analyse glycomique. L’activité de recherche sera menée dans le centre de recherche de Saclay (91).
Electrodes poreuses à base de nanodiamants pour la production photoélectrocatalytique de carburants solaires

SL-DRF-24-0426

Domaine de recherche : Chimie physique et électrochimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Edifices Nanométriques (LEDNA)

Saclay

Contact :

Jean-Charles ARNAULT

Hugues GIRARD

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Jean-Charles ARNAULT
CEA - DRF/IRAMIS/NIMBE/LEDNA

01 68 08 71 02

Directeur de thèse :

Hugues GIRARD
CEA - DRF/IRAMIS/NIMBE/LEDNA

0169084760

Page perso : https://iramis.cea.fr/nimbe/Phocea/Membres/Annuaire/index.php?uid=jarnault

Labo : https://iramis.cea.fr/nimbe/ledna/

Parmi les semi-conducteurs à l'échelle nanométrique, les nanodiamants (ND) n'ont pas encore été réellement pris en compte pour les réactions photoélectrocatalytiques dans le domaine de l'énergie. Cela s'explique par la confusion avec le diamant monocristallin qui présente une large bande interdite (5,5 eV) ce qui nécessite une illumination UV profonde pour initier une photoréactivité. À l'échelle nanométrique, les ND contiennent des défauts natifs (carbone sp2, impuretés chimiques telles que l'azote) qui peuvent créer des états énergétiques dans la bande interdite du diamant, ce qui réduit l'énergie lumineuse nécessaire pour amorcer la séparation des charges. En outre, la structure électronique du diamant peut être fortement modifiée (sur plusieurs eV) en jouant sur ses terminaisons de surface (oxydées, hydrogénées, aminées), ce qui peut ouvrir la voie à des alignements de bandes optimisés avec les espèces à réduire ou à oxyder. En combinant ces atouts, le ND devient alors compétitif avec d'autres semi-conducteurs pour des photoréactions. L'objectif de ce doctorat est d'étudier la capacité des nanodiamants à réduire le CO2 par photoélectrocatalyse. Pour atteindre cet objectif, des électrodes seront fabriquées à partir de nanodiamants avec différents chimies de surface (oxydés, hydrogénés et aminés), soit en utilisant une approche conventionnelle de type encre, soit une approche plus innovante qui résulte en un matériau poreux comprenant des nanodiamants et une matrice déposée par PVD. Les performances (photo)électrocatalytiques sous illumination visible de ces électrodes à base de nanodiamants pour la réduction du CO2 seront alors étudiées en termes de taux de production et de sélectivité, en présence ou non d'un co-catalyseur moléculaire macrocyclique à base de métaux de transition.
Exploration de la réactivité de catalyseurs à base d’oxyde par radiolyse

SL-DRF-24-0239

Domaine de recherche : Matière ultra-divisée, physico-chimie des matériaux
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Edifices Nanométriques (LEDNA)

Saclay

Contact :

Nathalie HERLIN

Sophie LE CAER

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Nathalie HERLIN
CEA - DRF/IRAMIS/NIMBE/LEDNA

0169083684

Directeur de thèse :

Sophie LE CAER
CNRS - DRF/IRAMIS/NIMBE/LIONS

01 69 08 15 58

Page perso : https://iramis.cea.fr/Pisp/sophie.le-caer/

Labo : https://iramis.cea.fr/nimbe/LIONS

Voir aussi : https://iramis.cea.fr/nimbe/LEDNA

Dans le contexte de la recherche de procédés moins polluants et plus économes en énergie que les procédés actuels, il est intéressant de produire des molécules à fort enjeu telles que par exemple C2H4 en développant des voies de synthèses alternatives au vapocraquage, majoritairement employé, mais coûteux en énergie et à base de ressources fossiles. Les procédés tels que la photocatalyse, qui repose sur l’utilisation de l’énergie lumineuse, paraissent alors séduisants pour générer ces molécules d’intérêt. Dans ce cadre, nous avons déjà montré que l’utilisation de photocatalyseurs à base de TiO2 décoré par des particules de cuivre permettait la production d’éthylène à partir d’une solution aqueuse d’acide propionique, le tout avec une sélectivité (C2H4/autres produits carbonés) allant jusqu’à 85%.

Cependant, les cinétiques de photocatalyse peuvent être lentes et il peut être long d’identifier les meilleurs catalyseurs ou les meilleurs couples « catalyseurs/réactifs » pour une réaction donnée. Ainsi, dans le but de déterminer si la radiolyse, qui repose sur l’utilisation du rayonnement pour ioniser la matière, peut être une méthode efficace de criblage de catalyseurs, des premières expériences ont déjà été réalisées sur les couples catalyseurs (TiO2 ou CuTiO2)/réactifs (acide propionique plus ou moins concentré), préalablement étudiés en photocatalyse. Les premiers résultats obtenus par radiolyse sont encourageants. Dans ces expériences, seule la production de dihydrogène a été mesurée. Une différence significative a été observée dans cette production selon les systèmes : elle est importante lors de la radiolyse d’acide propionique avec des nanoparticules de TiO2, et sensiblement plus faible en présence des nanoparticules CuTiO2, ce qui suggère un chemin réactionnel différent dans ce dernier cas, en accord avec les observations réalisées lors des expériences de photocatalyse.

Le but de ce travail de thèse consistera à approfondir ces premiers résultats en synthétisant des nanoparticules (catalyseurs), en préparant des mélanges réactifs/catalyseurs puis en les irradiant et en mesurant les différents gaz produits par micro-chromatographie en phase gazeuse, en se concentrant d’abord sur l’éthylène. Un soin particulier sera accordé à la détermination d’espèces formées, notamment transitoires, afin de proposer in fine des mécanismes de réaction rendant compte des différences observées pour les différents couples réactifs/catalyseurs. Des comparaisons avec des résultats obtenus par photocatalyse seront également effectuées.
Synthèse de nanoparticules de diamant à façon pour la production d’hydrogène par photocatalyse

SL-DRF-24-0432

Domaine de recherche : Matière ultra-divisée, physico-chimie des matériaux
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Edifices Nanométriques (LEDNA)

Saclay

Contact :

Hugues GIRARD

Jean-Charles ARNAULT

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Hugues GIRARD
CEA - DRF/IRAMIS/NIMBE/LEDNA

0169084760

Directeur de thèse :

Jean-Charles ARNAULT
CEA - DRF/IRAMIS/NIMBE/LEDNA

01 68 08 71 02

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=hgirard

Labo : https://iramis.cea.fr/NIMBE/LEDNA/

Nos résultats récents montrent que le nanodiamant peut agir comme un photocatalyseur, permettant la production d’hydrogène sous illumination solaire [1]. Malgré sa large bande interdite, sa structure de bande est adaptable selon sa nature et sa chimie de surface [2]. De plus, l’incorporation contrôlée de dopants ou de carbone sp2 conduit à générer des états supplémentaires dans la bande interdite qui augmentent l’absorption de la lumière visible comme le montre une étude récente associant notre groupe [3]. Les performances photocatalytiques des nanodiamants sont très dépendantes de leur taille, de leur forme et de leur concentration en impuretés chimiques. Il donc est essentiel de mettre au point une méthode de synthèse de nanodiamants "à façon" dans laquelle ces différents paramètres pourraient être finement contrôlés, afin de disposer d’une filière de nanodiamants "contrôlés" qui fait actuellement défaut.

Ce sujet de thèse vise à développer la synthèse de nanodiamants par une approche bottom-up utilisant un template sacrificiel (billes ou fibres de silice) sur lequel des germes de diamant < 10 nm seront fixés par interaction électrostatique. La croissance des nanoparticules de diamant à partir de ces germes sera réalisée en exposant ces objets à un plasma de croissance de dépôt chimique en phase vapeur activé par micro-ondes (MPCVD), ce qui permettra de contrôler très finement (i) l’incorporation d’impuretés dans le matériau (ii) sa qualité cristalline (rapport sp2/sp3) (iii) sa taille. Ce dispositif de croissance, qui existe au CEA NIMBE, est utilisé pour la synthèse de cœur-coquilles de diamant dopé au bore [4]. Dans la seconde partie de la thèse, un procédé innovant (demande de brevet en cours) sera mis en œuvre pour réaliser la croissance MPCVD des nanoparticules de diamant en faisant circuler les templates sacrificiels dans un flux gazeux. Au cours de cette thèse, plusieurs types de nanodiamants seront synthétisés : des nanoparticules intrinsèques (sans dopage intentionnel) et des nanoparticules dopées au bore ou à l’azote.

Après croissance, les nanoparticules seront collectées après dissolution du template. Leur structure cristalline, leur morphologie et leur chimie de surface seront étudiées au CEA NIMBE. Une analyse fine de la structure cristallographique et des défauts structuraux sera réalisée par microscopie électronique en transmission à haute résolution.

Les nanodiamants seront ensuite modifiés en surface pour leur conférer une stabilité colloïdale dans l’eau. Leurs performances photocatalytiques pour la production d’hydrogène seront mesurées en collaboration avec l’ICPEES de Strasbourg.

Références
[1] Patent, Procédé de production de dihydrogène utilisant des nanodiamants comme photocatalyseurs, CEA/CNRS, N° FR/40698, juillet 2022.
[2] Miliaieva et al., Nanoscale Adv. 2023.
[3] Buchner et al., Nanoscale (2022)
[4] Henni et al., Diam. Relat. mater. (under review)
Caractérisation in situ et en temps réel de nanomatériaux par spectroscopie de plasma

SL-DRF-24-0388

Domaine de recherche : Physique atomique et moléculaire
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire Edifices Nanométriques (LEDNA)

Saclay

Contact :

Marc BRIANT

Yann LECONTE

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Marc BRIANT
CEA - DRF/IRAMIS/NIMBE

01 69 08 53 05

Directeur de thèse :

Yann LECONTE
CEA - DRF/IRAMIS/NIMBE/LEEL

0169086496

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=mbriant

Labo : https://iramis.cea.fr/nimbe/ledna/

L'objectif de cette thèse est de développer un dispositif expérimental permettant de réaliser l'analyse élémentaire in situ et en temps réel de nanoparticules lors de leur synthèse (par pyrolyse laser ou pyrolyse par flamme). La spectrométrie d'émission optique de plasma induit par laser (Laser-Induced Breakdown Spectroscopy: LIBS) sera utilisée pour identifier les différents éléments présents et de déterminer leur stœchiométrie.

Les expériences préliminaires menées au LEDNA ont montré la faisabilité d'un tel projet et en particulier l'acquisition d'un spectre LIBS d'une nanoparticule unique. Néanmoins le dispositif expérimental doit être développé et amélioré afin d'obtenir un meilleur rapport signal sur bruit, de diminuer la limite de détection, de tenir compte des différents effets sur le spectre (effet de taille des nanoparticules, de composition ou de structure complexe), d'identifier et de quantifier automatiquement les éléments présents.

En parallèle, d'autres informations pourront être recherchées (via d'autres techniques optiques) comme la densité de nanoparticules, la distribution de taille ou de forme.
Stages
Développement de la croissance de nanotubes alignés pour des études in-situ par microscopie électronique à transmission (MET)
Development of aligned nanotube growth for in-situ transmission electron microscopy (TEM) studies

Spécialité

Génie des procédés

Niveau d'étude

Bac+5

Formation

Ingenieur/Master

Unité d'accueil

Candidature avant le

31/03/2024

Durée

6 mois

Poursuite possible en thèse

non

Contact

CHARON Emeline
+33 1 69 08 63 16

Résumé/Summary
L'objectif du stage est d'ajuster les configurations et conditions expérimentales de synthèse de nanotubes de carbone (NTC) au regard des contraintes imposées par l’environnement d'un microscope électronique à transmission (E-TEM) de manière à démontrer la faisabilité de la croissance dans ces conditions. L’approche envisagée est l’implémentation de notre procédé de dépôt chimique en phase vapeur assisté par un aérosol (AACCVD) sur le microscope.
The objective of the internship is to adjust the configurations and experimental conditions for the synthesis of carbon nanotubes (CNT) with respect to the constraints imposed by the environment of a transmission electron microscope (TEM) in order to demonstrate the feasibility of growth under these conditions. The envisaged approach is the implementation of our aerosol assisted chemical vapor deposition (AACCVD) process on the microscope.
Sujet détaillé/Full description
Les tapis de nanotubes de carbone verticalement alignés (VACNT) sont des matériaux aux propriétés intéressantes pour de nombreuses applications. Une méthode de choix et industriellement transférée pour la synthèse de VACNT de haute qualité est le dépôt chimique en phase vapeur assisté par un aérosol (AACCVD). Cette méthode a été jusqu’alors développée à pression atmosphérique et à haute température (800 à 850°C) [1,2] et récemment elle a été ajustée à la croissance sur aluminium qui impose des températures plus basses de l’ordre de 600°C [3,4]. Les résultats récents mettent en évidence une croissance de nanotubes alignés et denses. Toutefois, une limitation de la hauteur des tapis de VACNT se traduisant par une diminution de la vitesse de croissance en fonction de la durée de synthèse a été observée [3,5,6].

Dans ce contexte, l’objectif principal est d’approfondir notre compréhension de la croissance des VACNT spécifiquement à basse température et d’identifier les mécanismes mis en jeu de manière à aboutir à un meilleur contrôle du procédé de synthèse opéré à basse température. Pour cela, l’étude in situ, pendant la formation des nanotubes, permettant d’analyser la nature et la structure des nanoparticules catalytiques, ainsi que la formation potentielle de carbone désordonné influençant la limitation en longueur des CNT, s’avère très importante. Cette étude sera réalisée à l’échelle locale en utilisant un microscope électronique en transmission environnemental (E-TEM NANOMAX de l’Equipex TEMPOS) de manière à pouvoir analyser les nanoparticules catalytiques et le carbone en cours de formation autour des particules individuelles.
Le sujet de stage proposé s’inscrit dans ce contexte et fait l’objet d’une collaboration entre le NIMBE-LEDNA basé au CEA-Saclay et l’équipe SEEDs du département Matériaux du C2N. Il consistera, dans un premier temps, à ajuster les configurations et conditions expérimentales de synthèse des NTC au regard des contraintes imposées par l’environnement E-TEM de manière à démontrer la faisabilité de la croissance dans ces conditions. L’approche envisagée est l’implémentation de notre procédé AACCVD sur le microscope en l’adaptant de manière à pouvoir alimenter la zone de croissance avec des pressions contrôlées de vapeurs carbonées et catalytiques et permettre ainsi une synthèse des NTC à très basse pression (<1mbar). Des bâtis de tests seront utilisés pour réaliser les essais avant l’implémentation sur l’E-TEM et les premières observations. L’approche envisagée à long terme est en effet l’implémentation de notre procédé AACCVD sur l’E-TEM pour étudier in-situ la formation des NTC à basse température en mettant en œuvre une méthode CVD en une seule étape, ce qui, à notre connaissance, n’a jamais été réalisé.

[1] M. Pinault et al. (2005), Carbon 43, 2968–76.
[2] C. Castro et al. (2013), Carbon 61, 585–94.
[3] F. Nassoy et al. (2019) Nanomaterial 9, 1590.
[4] A. Combrisson et al. (2022) Nanomaterial 12, 2338.
[5] R. Xiang et al. (2008), J. Phys. Chem. C 112, 4892–6.
[6] E. Einarsson et al. (2008), Carbon 46, 923–30.

Durée souhaitée : 6 mois
Début : Dès que possible
Profil : Ingénieur 3ème année ou master 2 sciences des matériaux ou instrumentation ou génie des procédés ou chimie. Des compétences dans le domaine des nanosciences et nanotechnologies ainsi que dans le développement instrumental seront bienvenues.

Les candidatures doivent être adressées par mail aux responsables du projet et doivent comporter :
- une lettre de motivation
- un CV
Mots clés/Keywords
Science des matériaux, nanomatériaux, instrumentation, chimie
Compétences/Skills
CCVD, MEB, spectrométrie Raman, bâti de tests, E-TEM
Logiciels
Pack office
Développement et étude de matériaux composites à base de nanotubes de carbone pour application aux réservoirs de fluides cryogéniques
Development and study of composite materials based on carbon nanotubes for application to cryogenic fluid reservoirs

Spécialité

CHIMIE

Niveau d'étude

Bac+5

Formation

Ingenieur/Master

Unité d'accueil

Candidature avant le

04/04/2024

Durée

6 mois

Poursuite possible en thèse

non

Contact

CHARON Emeline
+33 1 69 08 63 16

Résumé/Summary
Le sujet de ce stage s’insère dans un projet de thèse dont l’objectif est de trouver le meilleur moyen d’intégrer des nanotubes de carbone dans des matériaux composites stratifiés, capables de ponter les microfissures de la matrice de ces composites, afin de limiter les fuites de carburant des réservoirs cryogéniques de lanceur.
The subject of this internship is part of a thesis project aimed at finding the best way of integrating carbon nanotubes into laminated composite materials, capable of bridging microcracks in the matrix of these composites, in order to limit fuel leaks from launch vehicle cryogenic tanks.
Sujet détaillé/Full description
L'émergence de nouvelles technologies de lanceurs "bas cout" motive la recherche et le développement de nouvelles architectures de matériaux à la fois légères et résistantes aux sollicitations thermomécaniques et chimiques. En particulier, le développement de nouvelles structures composites peut jouer un rôle très important en terme de gain de masse. Parmi les différents axes déjà initiés, l’allègement du réservoir cryogénique peut améliorer significativement les performances d’un étage propulsif.

Dans ce domaine, les études font état du développement de matériaux composites à matrices organiques variées (thermodurcissables ou thermoplastiques) intégrant des renforts de nature différentes : fibres de verre, fibres de kevlar ou fibres de carbone, noirs de carbone, graphène, nanoparticules de silice, et même plus récemment des nanotubes de carbone (NTC). Ces derniers, de par leurs propriétés physiques et mécaniques exceptionnelles ainsi que leur légèreté, pourraient apporter des avantages notables aux matériaux composites potentiellement utilisables pour la réalisation de réservoirs cryogéniques. Toutefois, l'état de l'art révèle un manque d'étude de ces nanomatériaux en environnement cryogénique. En effet, à notre connaissance les matériaux composites intégrant des NTC ont été étudiés en environnement azote liquide permettant ainsi de qualifier leur comportement à basse température en termes d'endommagement, mais aucune étude ne traite de la compatibilité de ces matériaux dans des environnements d'intérêt tels que l'oxygène liquide.

Dans ce contexte, une étude préliminaire réalisée entre le CEA et le CNES a permis d’élaborer des premières briques élémentaires composites innovantes intégrant des NTC. Cela a débouché sur la sélection de la matrice cyanate ester (appelée CE) et à des 1ers essais sous atmosphère d’oxygène gazeux pur (Gox), permettant de déterminer la température d’auto-inflammation du matériau. Les résultats de ces essais démontrent un effet bénéfique des NTC [1].

Le sujet de ce stage s’insère dans un projet de thèse dont l’objectif est de trouver le meilleur moyen d’intégrer des nanotubes de carbone dans des matériaux composites stratifiés, capables de ponter les microfissures de la matrice de ces composites, afin de limiter les fuites de carburant des réservoirs cryogéniques de lanceur. Connaissant les sollicitations mécaniques et thermiques, il s'agira de démontrer l'efficacité des NTC vis-à-vis de la tolérance à l'endommagement du matériau. La tolérance aux dommages est directement liée aux performances de résistance et d'étanchéité.
Pour ce faire, trois voies d’intégration des nanotubes de carbone sont envisagées :
1-Croissance des nanotubes de carbone (NTCs) directement sur fibres de carbone par CCVD [2],
2-Transfert d’un tapis de nanotubes de carbone alignés sur tissu de fibre de carbone pré-imprégnés de CE,
et 3-Dispersion aléatoire de nanotubes de carbone dans la matrice.

L’approche consistera à ajuster les paramètres de synthèse (durée, injection, atmosphère réactive…[3]) dans le but de maitriser les caractéristiques des NTC formés (alignement, longueur…). Une attention particulière sera notamment portée sur le contrôle de la longueur, du diamètre et de la densité notamment par analyse en microscopie électronique (MEB et MET) ainsi que la qualité structurale des NTC par spectrométrie Raman.

[1] J Bouillonnec, D Champonnois, K Mathis, M Pinault, M Mayne-L’Hermite, et D Miot. EUCASS proceeding 2022, 14
[2] M Delmas, M Pinault, S Patel, D Porterat, C Reynaud, M Mayne-L’Hermite. Nanotechnology 2012, 23
[3] C Castro, M Pinault, D Porterat, C Reynaud, M Mayne-L’Hermite. Carbon 2013, 61
The emergence of new "low-cost" launcher technologies is driving research and development into new material architectures that are both lightweight and resistant to thermomechanical and chemical stresses. In particular, the development of new composite structures can play a very important role in terms of weight savings. Among the various approaches already investigated, the lightening of the cryogenic tank can significantly improve the performance of a propulsion stage.

In this field, studies are reporting the development of composite materials with a variety of organic matrices (thermosetting or thermoplastic) incorporating reinforcements of different kinds: glass fibers, Kevlar or carbon fibers, carbon blacks, graphene, silica nanoparticles, and even more recently carbon nanotubes (CNT). The latter, with their exceptional physical and mechanical properties, as well as their light weight, could bring significant advantages to composite materials that could potentially be used to make cryogenic tanks. However, the state of the art reveals a lack of study of these nanomaterials in cryogenic environments. Indeed, to our knowledge, composite materials incorporating CNTs have been studied in liquid nitrogen environments, enabling us to qualify their low-temperature behavior in terms of damage, but there are no studies dealing with the compatibility of these materials in environments of interest such as liquid oxygen.

In this context, a preliminary study carried out by CEA and CNES has led to the development of the first innovative composite building blocks incorporating CNTs. This led to the selection of a cyanate ester matrix (known as CE) and initial tests under a pure oxygen gas atmosphere (Gox), to determine the material's auto-ignition temperature. The results of these tests demonstrated the beneficial effect of CNT [1].

The subject of this internship is part of a thesis project aimed at finding the best way of integrating carbon nanotubes into laminated composite materials, capable of bridging microcracks in the matrix of these composites, in order to limit fuel leaks from launcher cryogenic tanks. Knowing the mechanical and thermal stresses involved, the aim is to demonstrate the effectiveness of CNTs in terms of material damage tolerance. Damage tolerance is directly linked to strength and sealing performance.

To achieve this, three ways of integrating carbon nanotubes are proposed:
1-Growth of carbon nanotubes (CNTs) directly on carbon fibers by CCVD [2],
2-Transfer of a mat of aligned carbon nanotubes on carbon fiber fabric pre-impregnated with CE,
and 3-Random dispersion of carbon nanotubes in the matrix.

The approach will involve adjusting the synthesis parameters (time, injection, reactive atmosphere...[3]) with the aim of controlling the characteristics of the CNTs formed (alignment, length...). Particular attention will be paid to the control of length, diameter and density, notably by electron microscopy (SEM and TEM), and to the structural quality of the CNTs by Raman spectrometry.
Mots clés/Keywords
Chimie, instrumentation, nanosciences, nanotechnologies
Compétences/Skills
CCVD, MEB, MET, Spectroscopie Raman
CCVD, SEM, TEM, Raman spectroscopy
Dispositifs de mesure pour la qualité de l’air
Dispositifs de mesure pour la qualité de l’air

Spécialité

CHIMIE

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

31/05/2024

Durée

6 mois

Poursuite possible en thèse

oui

Contact

MUGHERLI Laurent
+33 1 69 08 94 27

Résumé/Summary
Pour détecter des polluants dans l’air, nous développons des dispositifs de mesure compacts, performants et légers. Ces dispositifs sondent la réactivité chimique des polluants gazeux grâce à des microbilles colorées [voir : Mugherli et al., Lab-on-a-Chip 2020 ; Guittet et al., Journal of Sol-gel Science and Technology 2023].
To detect pollutants in the air, we are developing compact, high-performance, lightweight measuring devices. These devices probe the chemical reactivity of gaseous pollutants using colored microbeads [see: Mugherli et al, Lab-on-a-Chip 2020; Guittet et al, Journal of Sol-gel Science and Technology 2023].
Sujet détaillé/Full description
Contexte :
Pour détecter des polluants dans l’air, nous développons des dispositifs de mesure compacts, performants et légers. Ces dispositifs sondent la réactivité chimique des polluants gazeux grâce à des microbilles colorées [Mugherli et al., Lab-on-a-Chip 2020 ; Guittet et al., Journal of Sol-gel Science and Technology 2023].

Objectif principal :
Ce projet vise à fabriquer des dispositifs de mesure et à les valider, en lien avec un chercheur post-doctorant.

Missions principales :
Trois actions principales seront à conduire :
(i) Fabriquer des matériaux
(ii) Fabriquer des dispositifs de mesures intégrant ces matériaux.
(iii) Evaluer ces dispositifs en présence de polluants, notamment sur banc.
Context :
To detect pollutants in the air, we are developing compact, high-performance, lightweight measuring devices. These devices probe the chemical reactivity of gaseous pollutants using colored microbeads [Mugherli et al., Lab-on-a-Chip 2020; Guittet et al., Journal of Sol-gel Science and Technology 2023].

Main objective:
This project aims to fabricate measurement devices and validate them, in conjunction with a post-doctoral researcher.

Main tasks:
Three main actions will be carried out:
(i) Manufacture materials
(ii) Manufacture measurement devices incorporating these materials.
(iii) Evaluate these devices in the presence of pollutants, notably on a bench.
Mots clés/Keywords
Capteurs, Détection optique, Environnement, Qualité de l'air
Sensors, Optical detection, Environment, Air quality
Compétences/Skills
Aptitudes R&D : Chimie, Impression 3D, Optique, Spectroscopie Aptitudes Professionnelles : Autonomie, Efficacité, Créativité, Communication, Rédaction Intérêts : Environnement, Qualité de l’air
R&D skills: Chemistry, 3D Printing, Optics, Spectroscopy Professional skills: Autonomy, Efficiency, Creativity, Communication, Writing Interests: Environment, Air quality
Matériaux colorés pour la qualité de l’air
Colored materials for air quality

Spécialité

CHIMIE

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

31/05/2024

Durée

6 mois

Poursuite possible en thèse

oui

Contact

MUGHERLI Laurent
+33 1 69 08 94 27

Résumé/Summary
Pour détecter des polluants dans l’air, nous développons des dispositifs de mesure compacts, performants et légers. Ces dispositifs sondent la réactivité chimique des polluants gazeux grâce à des microbilles colorées [Voir : Mugherli et al., Lab-on-a-Chip 2020 ; Guittet et al., Journal of Sol-gel Science and Technology 2023].
To detect pollutants in the air, we are developing compact, high-performance, lightweight measuring devices. These devices probe the chemical reactivity of gaseous pollutants using colored microbeads See: [Mugherli et al., Lab-on-a-Chip 2020; Guittet et al., Journal of Sol-gel Science and Technology 2023].
Sujet détaillé/Full description
Contexte :
Pour détecter des polluants dans l’air, nous développons des dispositifs de mesure compacts, performants et légers. Ces dispositifs sondent la réactivité chimique des polluants gazeux grâce à des microbilles colorées [Voir : Mugherli et al., Lab-on-a-Chip 2020 ; Guittet et al., Journal of Sol-gel Science and Technology 2023].

Objectif principal :
Ce projet vise à fabriquer des matériaux de différentes couleurs, et à évaluer leurs capacités de détection.

Missions principales :
Deux actions principales seront à conduire au cours du stage :
(i) Fabriquer des matériaux par procédé Sol-Gel.
(ii) Evaluer la réactivité de ces matériaux vis-à-vis de polluants.
Background :
To detect pollutants in the air, we are developing compact, high-performance, lightweight measuring devices. These devices probe the chemical reactivity of gaseous pollutants using colored microbeads [See: Mugherli et al., Lab-on-a-Chip 2020; Guittet et al., Journal of Sol-gel Science and Technology 2023].

Main objective :
The aim of this project is to manufacture materials in different colors, and to evaluate their detection capabilities.

Main tasks :
Two main actions will be carried out during the internship:
(i) Manufacture materials using the Sol-Gel process.
(ii) Evaluate the reactivity of these materials towards pollutants.
Mots clés/Keywords
Matériaux, Physico-chimie, Environnement, Qualité de l'air
Materials, Physical chemistry, Environment, Air quality
Compétences/Skills
Aptitudes R&D : Chimie, Physico-chimie, Optique, Spectroscopie Aptitudes professionnelles : Autonomie, Efficacité, Créativité, Communication, Rédaction Intérêts : Environnement, Qualité de l’air.
R&D skills: Chemistry, Physical chemistry, Optics, Spectroscopy Professional skills: Autonomy, Efficiency, Creativity, Communication, Interests: Environment, Air quality.
Matériaux formatés pour la qualité de l’air

Spécialité

CHIMIE

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

31/05/2024

Durée

6 mois

Poursuite possible en thèse

oui

Contact

MUGHERLI Laurent
+33 1 69 08 94 27

Résumé/Summary
Pour détecter des polluants dans l’air, nous développons des dispositifs de mesure compacts, performants et légers. Ces dispositifs sondent la réactivité chimique des polluants gazeux grâce à des microbilles colorées [Voir : Mugherli et al., Lab-on-a-Chip 2020 ; Guittet et al., Journal of Sol-gel Science and Technology 2023].
To detect pollutants in the air, we develop compact, high-performance, lightweight measuring devices. These devices probe the chemical reactivity of gaseous pollutants using colored microbeads [See : Mugherli et al, Lab-on-a-Chip 2020; Guittet et al, Journal of Sol-gel Science and Technology 2023].
Sujet détaillé/Full description
Contexte :
Pour détecter des polluants dans l’air, nous développons des dispositifs de mesure compacts, performants et légers. Ces dispositifs sondent la réactivité chimique des polluants gazeux grâce à des microbilles colorées [voir : Mugherli et al., Lab-on-a-Chip 2020 ; Guittet et al., Journal of Sol-gel Science and Technology 2023].

Objectif principal :
Ce projet vise à fabriquer des matériaux de différents formats, et notamment avec des procédés microfluidiques. Les actions seront réalisées en lien avec un doctorant.

Missions principales :
Deux actions principales seront à conduire :
(i) Fabriquer des matériaux par procédé Sol-Gel.
(ii) Caractériser la structure et la fonction de ces matériaux.
Context :
To detect pollutants in the air, we are developing compact, high-performance, lightweight measuring devices. These devices probe the chemical reactivity of gaseous pollutants using colored microbeads [see: Mugherli et al, Lab-on-a-Chip 2020; Guittet et al, Journal of Sol-gel Science and Technology 2023].

Main objective:
This project aims to fabricate materials of various formats, and in particular with microfluidic processes. Actions will be carried out in conjunction with a PhD student.

Main tasks:
Two main actions will be carried out:
(i) Fabricate materials using Sol-Gel processes.
(ii) Characterize the structure and function of these materials.
Mots clés/Keywords
Matériaux, Détection optique, Environnement, Qualité de l'air
Materials, Optical detection, Environment, Air quality
Compétences/Skills
Aptitudes R&D : Chimie, Microfluidique, Optique Aptitudes professionnelles : Autonomie, Efficacité, Créativité, Communication, Rédaction Intérêts : Environnement, Qualité de l’air
R&D skills: Chemistry, Microfluidics, Optics Professional skills: Autonomy, Efficiency, Creativity, Communication, Writing Interests: Environment, Air quality
Synthèse par CVD de nanoparticules de diamant à façon
CVD synthesis of tailored nanodiamonds

Spécialité

Chimie des matériaux

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

30/04/2024

Durée

6 mois

Poursuite possible en thèse

oui

Contact

GIRARD Hugues
+33 1 69 08 47 60

Résumé/Summary
Sujet détaillé/Full description
Les nanoparticules de diamant possèdent des propriétés chimiques, électroniques, thermiques et optiques exceptionnelles. Ces nanoparticules sont activement étudiées pour la nanomédecine, les applications énergétiques, les technologies quantiques et les lubrifiants et composites avancés [1-3]. Pour la plupart de ces applications, la qualité cristalline du noyau de diamant est essentielle et les particules les plus étudiées sont broyées à partir de diamant en vrac. Néanmoins, ces particules présentent une grande dispersion de taille, des anisotropies de forme et des concentrations variables d'impuretés chimiques. Ces aspects affectent fortement leurs propriétés. Il est donc nécessaire de développer une méthode de synthèse pour produire des nanodiamants hautement cristallins avec un contrôle précis de leur taille, de leur morphologie et des impuretés chimiques.

Ce stage de M2 vise à développer une synthèse "bottom-up" basée sur des supports sacrificiels (billes ou fibres de silice) sur lesquels des graines de diamant nanométriques seront attachées via des interactions électrostatiques. La croissance du diamant sera réalisée par l'exposition des gabarits ensemencés à un plasma CVD assisté par micro-ondes (MPCVD). Ce dispositif de croissance est déjà utilisé au CEA NIMBE pour la synthèse de coques de diamant [4]. Les paramètres de croissance seront ajustés pour sélectionner la taille, la forme et la concentration des impuretés chimiques (azote, bore) dans les nanodiamants. Après la croissance CVD, les nanoparticules seront collectées par dissolution des supports. Leur structure cristalline, leur morphologie et leur chimie de surface seront caractérisées au CEA NIMBE par microscopie électronique à balayage (MEB), diffraction des rayons X (DRX) et spectroscopies Raman, infrarouge (FTIR) et photoélectrons (XPS). Une collaboration externe permettra d'étudier la qualité cristalline du diamant et d'identifier les défauts structurels dans les nanodiamants cultivés par CVD par microscopie électronique à transmission à haute résolution (HR-TEM).

Plusieurs types de nanodiamants seront cultivés : d'abord des particules intrinsèques (sans dopage intentionnel), puis des particules dopées au bore. Les deux types de particules seront ensuite modifiés en surface pour obtenir une stabilité colloïdale dans l'eau.

Références :
[1] N. Nunn, M. Torelli, G. McGuire, O. Shenderova, Current Opinion in Solid State and Materials Science, 21 (2017) 1-9. [2] Y. Wu, F. Jelezko, M. Plenio,T. Weil, Angew. Chem. Int. Ed. 55 (2016) 6586–6598.
[3] H. Wang, Y. Cui, Energy Applications 1 (2019) 13-18.
[4] A. Venerosy et al., Diam. Relat. Mater. 89 (2018) 122-131.
Diamond nanoparticles behave outstanding chemical, electronic, thermal and optical properties. Such nanoparticles are actively investigated for nanomedecine, energy applications, quantum technologies and advanced lubricants and composites [1-3]. For the major part of these applications, the crystalline quality of the diamond core is essential and the most studied particles are milled from bulk diamond. Nevertheless, these particles exhibit a wide size dispersion, shape anisotropies and variable concentrations of chemical impurities. These aspects strongly affect their properties. It is thus required to develop a synthesis method to grow highly crystalline nanodiamonds with an accurate control of their size, morphology and chemical impurities.

This M2 intership aims to develop a bottom-up synthesis based on sacrificial templates (silica beads or fibers) on which nanometric diamond seeds will be attached via electrostatic interactions. Diamond growth will be achieved by an exposure of the seeded templates to a micro-wave assisted CVD plasma (MPCVD). The growth set-up is already in use at CEA NIMBE for diamond core-shells synthesis [4]. Growth parameters will be adjusted to select the size, the shape and the concentration of chemical impurities (nitrogen, boron) in nanodiamonds. After CVD growth, nanoparticles will be collected by dissolution of the templates. Their crystalline structure, morphology and surface chemistry will be characterized at CEA NIMBE by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman, infra-red (FTIR) and photoelectrons (XPS) spectroscopies. An external collaboration will allow an investigation of the diamond crystalline quality and the identification of structural defects in CVD grown nanodiamonds by high-resolution transmission electron microscopy (HR-TEM).

Several kinds of nanodiamonds will be grown : first, intrinsic particles (without intentional doping), then boron doped particles. Both types of particles will be then surface modified to get a colloidal stability in water.

References:
[1] N. Nunn, M. Torelli, G. McGuire, O. Shenderova, Current Opinion in Solid State and Materials Science, 21 (2017) 1-9. [2] Y. Wu, F. Jelezko, M. Plenio,T. Weil, Angew. Chem. Int. Ed. 55 (2016) 6586–6598.
[3] H. Wang, Y. Cui, Energy Applications 1 (2019) 13-18.
[4] A. Venerosy et al., Diam. Relat. Mater. 89 (2018) 122-131.
Mots clés/Keywords
Nanomatériaux, synthèse CVD
Nanomaterials, CVD synthesis
Compétences/Skills
MPCVD, MEB, TEM, DRX, Raman, FTIR, DLS, XPS
MPCVD, MEB, TEM, DRX, Raman, FTIR, DLS, XPS
Images
Brevet : Procédé d\'hydrodésulfurisation sélective en prodondeur d\'une charge d\'hydrocarbures à l\'aide d\'un nanocatalyseur non supporté obtenu par pyrolyse au laser
Etude des effets toxicologiques des nano-objets
Nanocomposites à base de nanoparticules fonctionnalisées
Nanocomposites à base de nanoparticules fonctionnalisées
Nanocomposites à base de nanoparticules fonctionnalisées
Nanocomposites à base de nanoparticules fonctionnalisées
Nanocomposites à base de nanoparticules fonctionnalisées
Étude en phase gaz du mécanisme de formation de nanoparticules
Brevet : Dispersion de matériaux composites, notamment pour des piles à combustible
Brevet : Dispositif de mesure de la concentration en hydrogène dans un mélange gazeux
Brevet : Film de détection d\'une espèce chimique, capteur chimique et procédé de fabrication de ceux-ci
Brevet : Procédé de synthèse de nanoparticules de ticon, tion et tio par pyrolyse laser
Brevet : Synthèse par pyrolyse laser de nanocristaux de silicium
Brevet : Système et procédé de production de poudres nanométriques ou sub-micrométriques en flux continu sous l\'action d\'une pyrolyse laser
Brevet : Synthèse de nanoparticules par pyrolyse laser
Brevet : Croissance de Nanotubes de carbone sur des substrats de carbone  ou métalliques
Brevet : Traitement de surface de nanoparticules de silicium
Synthèse de nanotubes marqués au carbone 14 pour des études de biodistribution
Synthèse de nanotubes marqués au carbone 14 pour des études de biodistribution
Synthèse de nanotubes marqués au carbone 14 pour des études de biodistribution
Capteurs Chimiques
Synthèse de nanoparticules par pyrolyse laser
Nanocomposites pour la biodétection
Brevet : Détecteurs nanoporeux de composés aromatiques monocycliques et autres polluants
Laboratoire Edifices Nanométriques (LEDNA)
Des tapis de nanotubes alignés, en grande surface !
Des tapis de nanotubes alignés, en grande surface !
Des tapis de nanotubes alignés, en grande surface !
Des tapis de nanotubes alignés, en grande surface !
Des tapis de nanotubes alignés, en grande surface !
Nano-chimie, nano-objets / Nano-chemistry, nano-objects
Nano-chimie, nano-objets / Nano-chemistry, nano-objects
Etude des mécanismes de croissance de nanotubes de carbone alignés
Imagerie photochimique du champ proche optique de nanocubes d’or
Brevet : Détecteur multifonctionnel de composés gazeux et ses applications
Brevet : Dispositif de synthèse d\'un matériau composite nanostructure et procédé associé.
Brevet : Capteurs chimiques a base de nanotubes de carbone, procédé de préparation et utilisations
Brevet: Procédé et dispositif de génération d\'impulsion attosecondes isolées
Brevet : Utilisation de nanoparticules à cœœur métallique et double enrobage organique en tant que catalyseurs et nanoparticules utiles comme catalyseurs
\
\
\
\
Brevet : Dispositif pour la synthese de nanoparticules de type coeur-coquille par pyrolyse laser et procede associe.
La biodistribution des nanotubes de carbone dans l’organisme
Nanoparticules d\'or pour la plasmonique et la nanomédecine
Spectroscopie de photoélectrons X sur des nanoparticules libres
Spectroscopie de photoélectrons X sur des nanoparticules libres
Detection of pathogen bacteria
Detection of pathogen bacteria
Formaldehyde sensor
Formaldehyde sensor
Nitrogen trichloride sensor
Le terbium pour une méthode optique de diagnostic de la tuberculose
Le terbium pour une méthode optique de diagnostic de la tuberculose
Le terbium pour une méthode optique de diagnostic de la tuberculose
Fonctionnalisation de surface / surface functionnalisation
Equipe \
Dopage à l’azote dans des cellules PV : du matériau actif au dispositif
Dopage à l’azote dans des cellules PV : du matériau actif au dispositif
Dopage à l’azote dans des cellules PV : du matériau actif au dispositif
Dopage à l’azote dans des cellules PV : du matériau actif au dispositif
Brevet : Procédé de génération d\'un jet de nanoparticules
Brevet:  Procédé de synthèse de nanocomposites a base de TiO2 et de nanostructures carbonées
Brevet : Matrice nanoporeuse et son utilisation / Nanoporous matrix and use thereof
Brevet :  Matériau de détection de composés du phénol et ses applications
Brevet : Dispositif de caractérisation de particules dans un jet de particules sous vide
Amélioration des performances de batteries Li-ion par irradiation des électrodes
Amélioration des performances de batteries Li-ion par irradiation des électrodes
Amélioration des performances de batteries Li-ion par irradiation des électrodes
Amélioration des performances de batteries Li-ion par irradiation des électrodes
Les bonnes performances d\'électrodes pour accumulateurs Li-ion à base de nanoparticules d\'oxyde métallique dopé azote élaborées par pyrolyse laser.
Les bonnes performances d\'électrodes pour accumulateurs Li-ion à base de nanoparticules d\'oxyde métallique dopé azote élaborées par pyrolyse laser.
Les bonnes performances d\'électrodes pour accumulateurs Li-ion à base de nanoparticules d\'oxyde métallique dopé azote élaborées par pyrolyse laser.
Synthèse et analyse en phase gazeuse  de nano-objets / Synthesis analysis in gas phase of nano-objects
Chimie des (nano-)matériaux pour l’énergie / Chemistry of (nano-)materials for energy
Chimie des (nano-)matériaux pour l’énergie / Chemistry of (nano-)materials for energy
Chimie environnementale et dépollution / Environmental chemistry and depollution
Chimie environnementale et dépollution / Environmental chemistry and depollution
Matériaux nanoporeux obtenus par procédés sol-gel /  Nanoporous materials obtained by sol-gel processes
Matériaux nanoporeux obtenus par procédés sol-gel /  Nanoporous materials obtained by sol-gel processes
Dépôt en phase vapeur (PVD) couplé à un jet de nanoparticules, pour la synthèse de revêtements nanocomposites
Dépôt en phase vapeur (PVD) couplé à un jet de nanoparticules, pour la synthèse de revêtements nanocomposites
Dépôt en phase vapeur (PVD) couplé à un jet de nanoparticules, pour la synthèse de revêtements nanocomposites
Élaboration de fibres de carbone à partir de NTC verticalement alignés
Etude de la formation de couches minces nanocomposites fonctionnelles par couplage PVD avec un jet de nanoparticules
Capteurs chimiques et biochimiques, diagnostic médical / Chemical and biochemical sensors, medical diagnosis
Études de réactivité environnementale : analyse physico-chimique en phase gazeuse  de nanoparticules isolées
Analyse chimique en ligne au LEDNA
Analyses thermogravimétriques au LEDNA
Analyses thermogravimétriques au LEDNA
Analyses thermogravimétriques au LEDNA
CVD pour la synthèse de nanotubes de carbone verticalement alignés et de graphène
CVD pour la synthèse de nanotubes de carbone verticalement alignés et de graphène
CVD pour la synthèse de nanotubes de carbone verticalement alignés et de graphène
CVD pour la synthèse de nanotubes de carbone verticalement alignés et de graphène
CVD pour la synthèse de nanotubes de carbone verticalement alignés et de graphène
Diffraction des rayons X : \
Nanofabrication : Mélange et dispersion de nanoparticules ou de nanotubes de carbone
Matériaux nanocomposites nanostructurés (cristallisés et matière molle) : de leur élaboration, à leurs propriétés.
Matériaux nanocomposites nanostructurés (cristallisés et matière molle) : de leur élaboration, à leurs propriétés.
Nanotubes de carbone verticalement alignés pour électrodes de supercondensateurs
Microscopies électroniques au LEDNA
Microscopies électroniques au LEDNA
Recuit 2200°c sous atmosphère inerte /  Poste de pesée fractionnement
Recuit 2200°c sous atmosphère inerte /  Poste de pesée fractionnement
Spectroscopie / spectrométrie infra-rouge et Raman (LEDNA)
Nanoparticules par pyrolyse laser
Nanoparticules par pyrolyse laser
Nanoparticules par pyrolyse laser
Nanoparticules par pyrolyse laser
Nanoparticules par pyrolyse laser
Nanoparticules par pyrolyse laser
Nanoparticules par pyrolyse laser
Synthèse de nanotubes de carbone par CVD
Synthèse de nanotubes de carbone par CVD
Etude par analyse in situ de la formation de graphène par CVD
Nano-composites : propriété mécanique et thermique de nanotubes de carbone dans une matrice polymère
La forme des nanomatériaux : une caractéristique déterminante dans le blocage de l’autophagie, un mécanisme sous-jacent de la toxicité
La forme des nanomatériaux : une caractéristique déterminante dans le blocage de l’autophagie, un mécanisme sous-jacent de la toxicité
La forme des nanomatériaux : une caractéristique déterminante dans le blocage de l’autophagie, un mécanisme sous-jacent de la toxicité
Brevet : Procédé de fabrication de nanotubes de carbone verticalement alignés, et condensateurs électrochimiques utilisant ces nanotubes comme électrodes
Brevet : Procédé de préparation d\'une électrode comprenant un support en aluminium, des nanotubes de carbone alignés et un polymère organique électro-conducteur, la dite électrode et ses utilisations
Brevet : Procédé de préparation de matériaux hybrides cœur-coquille
Brevet : Dispositif pour la synthèse de nanoparticules de type cœur-coquille par pyrolyse laser et procédé associé.
Brevet : Dispositif de dépot de particules de taille nanométrique sur un substrat
Brevet : Préparation de nouveaux capteurs et filtres d\'aldéhydes et/ ou de cétones
Brevet : Procédé de préparation d\'un matériau composite, matériau ainsi obtenu et ses utilisations
Brevet : Procédé de synthèse de nanoparticules silicium-germanium de type cœur-coquille par pyrolyse laser, procédé de fabrication d\'une électrode pour batterie au lithium et électrode associée
Brevet : Couvercle anti-odeur
Brevet : Procédé de croissance de nanotubes de carbone en surface et dans le volume d\'un substrat carboné poreux et utilisation pour préparer une électrode
Brevet : Procédé de préparation de matériau sol-gel silicaté nanoporeux monolithique
Brevet : Dispositif microfluidique comportant une microgoutte présentant une matrice sol-gel
Brevet : Traitement d\'un film mince par plasma d\'hydrogène et polarisation pour en améliorer la qualité cristalline
Synthèse à façon de nanoparticules d\'or hybrides et leurs multiples applications
La radiolyse pour l\'étude rapide du vieillissement d\'électrolytes de batteries lithium–ion
Procédé pour caractériser des particules biologiques sous forme d\'aérosol par spectrométrie de plasma induit par laser et système associé
Synthèse de billes composites revêtues d\'oxyde de manganèse lamellaire et utilisation de telles billes pour éliminer des éléments toxiques contenus dans des fluides
Procédé de revêtement de matériaux textiles
Dispositif de synthèse colinéaire de nanoparticules par pyrolyse laser, système et procédé associés
 Système de caractérisation de particules se présentant sous la forme d\'un aérosol dans un gaz ambiant et procédé associé
Synthèse par électrochimie de films minces d’oxydes nanostructurés
Synthèse de Nanodiamants
Capteurs chimiques pour l’environnement à base d’oxydes poreux / Environmental chemical sensors based on porous oxides
Solubilisation des nanoparticules de TiO2 par un sidérophore bactérien
 Biologie et santé / Biology and health @ NIMBE
 Matériaux, nanomatériaux, matériaux pour l\'électronique, l\'énergie et matériaux du patrimoine @ NIMBE
 Économie circulaire - environnement @ NIMBE
Des nanodiamants oxydés pour la production d’hydrogène à partir d’eau et de la lumière du soleil

 

Retour en haut