Laboratoire de Chimie Moléculaire et Catalyse pour l'Energie (LCMCE)
LCMCE
logo_tutelle logo_tutelle 

Le Laboratoire de Chimie Moléculaire et Catalyse pour l'Energie (LCMCE) est spécialisé dans l’étude et la synthèse de composés moléculaires actifs, basés sur la chimie des métaux de transition, des éléments f et des éléments du groupe principal.

La réactivité de ces composés organiques et organométalliques est mise à profit dans l'activation de petites molécules, telles que H2, CO et CO2, et dans leur conversion catalytique en molécules valorisables.

Les recherches variées menées par le LCMCE sur les ions des métaux f, visent à exploiter leurs particularités chimiques sur les plans fondamentaux et appliqués dans les divers domaines de la chimie moléculaire (synthèse, structure, réactivité, activation de petites molécules, de la catalyse, des matériaux, du magnétisme et de l’optoélectronique). Le couplage des études expérimentales et théoriques permet de relier les propriétés physico-chimiques des complexes à la nature de l’interaction métal-ligand en soulignant le rôle des orbitales f.

 
#625 - Màj : 27/07/2020
Thèmes de recherche

Transformations catalytiques pour l’énergie

L’IRAMIS développe de nouveaux catalyseurs avec l'objectif de développer le stockage des énergies alternatives sous forme chimique, ou la conversion du CO2, la transformation de la biomasse,  et le recyclage des déchets polymériques, trois  sources de molécules de base pour l’industrie chimique, aujourd’hui issues de produits pétroliers.

Transformations catalytiques pour l’énergie
Domaines Techniques
Les laboratoires de l'IRAMIS maitrisent de nombreux procédés de synthèse chimique en phase gaz (production de nanoparticules) ou en solution (molécules, catalyseurs...), avec l'objectif de développer de nouveaux procédés chimiques (chimie verte, énergie, recyclage...), d'élaborer des nanomatériaux, ou encore pour obtenir des cristaux de céramiques de haute qualité  (supraconducteurs notamment).

Catalyse au LCMCE

Simulation numérique pour la catalyse au LCMCE / LCMCE numerical simulation for catalysis

Synthèse chimique et outils de caractérisation : molécules, nanomatériaux et cristaux /  Chemical synthesis and caracterisation tools: molecules, nanomaterials and crystals
Voir aussi
Faits marquants scientifiques
13 avril 2022
Les molécules possédant une liaison Si-H, ou hydrosilanes*, sont des composés essentiels dans l’industrie du silicium, mais leur production est difficile et énergivore.
12 juin 2020
Dans la production industrielle de méthanol (CH3OH), l'atome de carbone est usuellement issu du méthane (CH4), provenant pour l'essentiel de gisements de pétrole, gaz naturel et de schistes. Une nouvelle stratégie pour préparer le méthanol à partir de l'acide formique (HCOOH), lui-même issu du CO2, est présentée par une équipe du NIMBE/LCMCE.
11 septembre 2019
La réduction catalytique de composés organiques comportant des liaisons C=O suscite de nombreuses études en chimie fine pour former des molécules d’intérêt (éthers, alcools…), mais l’obtention sélective d’un produit de réaction est parfois difficile. Le choix du catalyseur et du réducteur joue ici un rôle essentiel.
12 février 2019
​​Des chercheurs du SCBM (Institut Joliot) en collaboration avec l'équipe LCMCE du NIMBE (CEA/CNRS) ont mis au point une méthode de marquage au carbone 14 de molécules organiques d’intérêt thérapeutique, basée sur l’échange dynamique de dioxyde de carbone.
16 décembre 2017
Caractérisés par la présence d’une liaison Si-H, les hydrosilanes sont des réducteurs chimiques très puissants. Ils permettent notamment de transférer en une seule étape un hydrure (H–) et un groupement chimique contenant Si, à un composé organique possédant une liaison double (C=C ou C=O) [1].
07 septembre 2015
Alors que 98 % des produits chimiques organiques sont issus du raffinage du pétrole et du gaz naturel, l’utilisation de déchets de la biomasse pour la production des plastiques, solvants, peintures… permettrait d’améliorer la contribution de l’industrie chimique au développement durable.
27 juin 2015
Les matériaux polymères ont envahi notre quotidien car ils allient un faible coût et une grande facilité de production à des propriétés polyvalentes. Issus essentiellement de la pétrochimie, ces plastiques posent néanmoins la question de la gestion des déchets qu’ils engendrent.
04 août 2014
La formation de méthanol (CH3OH) à partir du CO2 est une stratégie prometteuse pour la production d’un carburant à haute densité énergétique, à partir de ressources renouvelables et d’énergie décarbonée.
26 mai 2013
La découverte de nouveaux catalyseurs est un des axes majeur de la recherche chimie. Dans ce cadre, les études de réactivité chimique de composés spécifiques des métaux f (actinides et lanthanides) présentent un grand intérêt.
06 janvier 2013
Nouveaux systèmes : [U@Si20]6- et la série isoélectronique [An@Si20]n- (An=Np, Pu, Am, Cm)
En chimie, les "règles" du doublet, de l'octet et des 18 électrons permettent de concevoir des composés de grande stabilité chimique. Ces règles correspondent au principe de l'occupation complète des orbitales externes de chacun des atomes d'une molécule, soit respectivement s2, (s2, p6) et (s2, p6, d10).
16 mai 2012
Des chercheurs du CEA [1] viennent de mettre au point une nouvelle approche pour découvrir des réactions chimiques inédites.
07 février 2012
La synthèse de produits chimiques organiques repose à plus de 95% sur l’utilisation de matières fossiles, telles que les hydrocarbures ou le charbon, comme source de carbone. Alors que ces ressources sont destinées à s’amenuiser, le recyclage de déchets chimiques devient une priorité pour assurer une industrie durable.
18 septembre 2011
  Alors que nos ressources pétrolières deviennent insuffisantes et que les émissions de dioxyde de carbone (CO2) atteignent des valeurs record, le recyclage de ce déchet permettrait de produire des composés chimiques utiles, au lieu de tout faire reposer sur la pétrochimie.
22 avril 2010
C. Villiers, J.-P. Dognon, R. Pollet, P. Thuéry, M. Ephritikhine
  Fabriquer du plastique sans pétrole et à partir du CO2 ? Des recettes sont connues depuis longtemps, mais les détails des processus réactionnels restaient encore mystérieux.
15 janvier 2009
J.-P Dognon, C Clavaguéra, and P. Pyykko
J.-P Dognon  : CEA Saclay - IRAMIS/SCM (France) C Clavaguéra : Laboratoire des Mécanismes Reactionnels, Ecole Polytechnique, CNRS, 91128 Palaiseau (France) P. Pyykko : Department of Chemistry, University of Helsinki, Finland
Publications HAL

Dernières publications LCMCE


Toutes les publications LCMCE dans HAL-CEA

Thèses
3 sujets /NIMBE/LCMCE

Dernière mise à jour :


 

Catalyseurs innovants à atomes isolés pour l’hydrogénation et la déshydrogénation du CO2 et des LOHC

SL-DRF-23-0385

Domaine de recherche : Chimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire de Chimie Moléculaire et de Catalyse pour l’Energie (LCMCE)

Saclay

Contact :

Caroline GENRE

Thibault CANTAT

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Caroline GENRE
CEA - DRF/IRAMIS/NIMBE/LCMCE


Directeur de thèse :

Thibault CANTAT
CEA - DRF/IRAMIS/NIMBE/LCMCE

01 69 08 43 38

Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=cgenre

Labo : https://iramis.cea.fr/Pisp/thibault.cantat/index.php

Voir aussi : https://iramis.cea.fr/nimbe/LCMCE/

Les catalyseurs à atomes isolés (ou single-atom catalysts, SAC) sont des catalyseurs solides dont tous les atomes métalliques actifs sont isolés et stabilisés sur un support, ou par un alliage avec un autre métal. L’activité étant porté par des atomes métalliques isolés, leur sélectivité est excellente, et les qualités des SAC s’approchent de celles de catalyseurs homogènes tout en offrant les avantages de robustesse et d’aisance de manipulation des catalyseurs solides. Les SACs, qui permettent une forte économie en métaux catalytiques, sont de bons candidats pour la mise en place de transformations favorisant l’économie circulaire du carbone et le stockage d’énergie par le vecteur hydrogène. En particulier, ils peuvent jouer un rôle important pour l’hydrogénation du CO2 ainsi que pour les réactions d’hydrogénation et déshydrogénation de porteurs d’hydrogène liquides organiques (LOHC), qui sont un élément essentiel pour le transport et le stockage d’énergie par le vecteur hydrogène. Cependant ils restent assez peu décrits pour ces transformations, et les exemples existants impliquent le plus souvent des métaux nobles (Pd, Pt, Au).



L’objectif de cette thèse est double. D’une part, il s’agit de synthétiser et caractériser des catalyseurs à atomes isolés innovants à base de métaux non-nobles, (Ru, Fe, Mn, Co, Cu) capables de catalyser l’hydrogénation réversible de liaisons C=O dans le CO2 et le couplage déshydrogénant d’alcools avec l’eau et d’alcools entre eux. D’autre part, il s’agit d’explorer les possibilités des systèmes alcool + eau/acide carboxylique comme LOHC.



Le travail consistera à synthétiser, caractériser et tester l’activité catalytique de différents catalyseurs à atomes isolés. L’étudiant sera formé aux techniques de synthèse sous atosphère inerte, de catalyse en réacteurs sous pression, ainsi qu’à l’utilisation de diverses techniques d’analyse : SEM, HR-TEM, HAADF-TEM, EDX, XPS, XRDm



Synthèse d’hydroborane et borohydrure par hydrogénolyse pour le stockage de l’hydrogène

SL-DRF-23-0365

Domaine de recherche : Chimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire de Chimie Moléculaire et de Catalyse pour l’Energie (LCMCE)

Saclay

Contact :

Alexis MIFLEUR

Thibault CANTAT

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Alexis MIFLEUR
CEA - DRF/IRAMIS/NIMBE/LCMCE

01 69 08 57 43

Directeur de thèse :

Thibault CANTAT
CEA - DRF/IRAMIS/NIMBE/LCMCE

01 69 08 43 38

Page perso : https://iramis.cea.fr/Pisp/thibault.cantat/Alexis_Mifleur.php

Labo : https://iramis.cea.fr/nimbe/

Voir aussi : https://iramis.cea.fr/Pisp/thibault.cantat/index.php

L'hydrogène est un excellent support de stockage d'énergie, en particulier dans le cadre d’une transition énergétique qui s’appuierait sur des énergies renouvelables intermittentes. Se pose toutefois la problématique de son stockage et de son transport, plusieurs technologies sont actuellement explorées et le stockage de l’hydrogène dans des matériaux solides est une option qui présente plusieurs avantages. Les borohydrures, en particulier ceux de métaux alcalins sont des matériaux solides stables permettant de stocker une quantité importante d’hydrogène en proportion massique (19 wtH2% pour LiBH4, 10 wtH2% pour NaBH4). Cependant leur utilisation est encore limitée en raison de synthèse et de recyclage très énergivores.



Nous proposons lors de cette thèse de développer de nouvelles méthodologies afin de générer des hydrures de bore à partir d’hydrogène afin d’immobiliser ce dernier dans des matériaux solides pour des utilisations de stockage énergétique. La transformation des liaisons B-X (X : O, Cl) vers leurs équivalents B-H représente un véritable défi en raison d’une part de la forte affinité du bore avec l’oxygène mais également de l’hydricité importante des composés cibles qui en font des donneurs d’hydrure réactifs. Des travaux analogues ont été décrits au LCMCE ainsi que par d’autres groupes pour la synthèse d’hydrosilanes et s’appuient sur des catalyseurs à base de métaux de transition mais aussi d’organo-catalyseurs à base de bore.



Ce projet doctoral permettra au doctorant de développer des compétences pointues en catalyse homogène, caractérisation de complexes moléculaires, et manipulation de gaz.
Utilisation de gaz issus du CO2 pour la synthèse de molécules à haute valeur ajoutée

SL-DRF-23-0324

Domaine de recherche : Chimie
Laboratoire d'accueil :

Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie (NIMBE)

Laboratoire de Chimie Moléculaire et de Catalyse pour l’Energie (LCMCE)

Saclay

Contact :

Emmanuel NICOLAS

Thibault CANTAT

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Emmanuel NICOLAS
CEA - DRF/IRAMIS/NIMBE/LCMCE

01 69 08 26 38

Directeur de thèse :

Thibault CANTAT
CEA - DRF/IRAMIS/NIMBE/LCMCE

01 69 08 43 38

Page perso : http://iramis.cea.fr/nimbe/Phocea/Membres/Annuaire/index.php?uid=enicolas

Labo : http://iramis.cea.fr/nimbe/lcmce/

Voir aussi : https://iramis.cea.fr/Pisp/thibault.cantat/

La synthèse industrielle de produits chimiques repose actuellement sur des voies d’oxydation de composés fossiles. Dans le contexte actuelle de transition énergétique et de réduction de la dépendance aux produits pétroliers, de nouvelles voies de sources de carbone doivent être utilisées pour permettre de maintenir la production de ces composés indispensables à nos sociétés. Le CO2 est un bon candidat, mais est peu réactif. Sa conversion en CO, couplé à la production d’H2 par électrolyse, permet la formation de syngas (mélange CO:H2) qui est un gaz réactif permettant la synthèse de nombreux produits chimiques, entre autres grâce au procédé Fisher-Tropsch.



Nous proposons dans ce projet de thèse de concevoir de nouveaux catalyseurs permettant la synthèse d’alkylamines par réaction de Fisher-Tropsch sur des amines, en utilisant des syngas issus de sources renouvelables. Le ou la doctorant(e) cherchera de nouveaux catalyseurs, les optimisera, en les testant dans la réaction de Fisher-Tropsch sur amines. L’objectif sera d’avoir un catalyseur à la fois efficace, sélectif, et peu sensible à des contaminants tels que O2 ou H2O. Une fois ce système optimisé, le catalyseur sera testé dans des dispositifs à concevoir et construire, permettant l’utilisation de syngas réels fournis par d’autres groupes au CEA, formés par gaséification de biomasse par exemple.
Stages
Images
Synthèse, structure et propriétés magnétiques de complexes hétéropolynucléaires de type CuIIUIV et CuII2UIV
Synthèse, structure et propriétés magnétiques de complexes hétéropolynucléaires de type CuIIUIV et CuII2UIV
Synthèse, structure et propriétés magnétiques de complexes hétéropolynucléaires de type CuIIUIV et CuII2UIV
Complexes mixtes d\'ions uranyle et de métaux alcalins avec des homooxacalix[n]arènes (n = 4, 6, 8)
Complexes mixtes d\'ions uranyle et de métaux alcalins avec des homooxacalix[n]arènes (n = 4, 6, 8)
Complexes mixtes d\'ions uranyle et de métaux alcalins avec des homooxacalix[n]arènes (n = 4, 6, 8)
Complexes mixtes d\'ions uranyle et de métaux alcalins avec des homooxacalix[n]arènes (n = 4, 6, 8)
Dimérisation des alcynes terminaux catalysée par le  cation [U(NEt2)3]+
Dimérisation des alcynes terminaux catalysée par le  cation [U(NEt2)3]+
Nouvelle chimie de l\'ion [UO2]2+ en milieu anhydre
Nouvelle chimie de l\'ion [UO2]2+ en milieu anhydre
Nouvelle chimie de l\'ion [UO2]2+ en milieu anhydre
Nouvelle chimie de l\'ion [UO2]2+ en milieu anhydre
Complexes dithiolènes de l\'uranium
Complexes dithiolènes de l\'uranium
Complexes dithiolènes de l\'uranium
Complexes dithiolènes de l\'uranium
Complexes dithiolènes de l\'uranium
Utilisation de l\'ion uranyle dans la synthèse de cages nanométriques et de métallamacrocycles
Utilisation de l\'ion uranyle dans la synthèse de cages nanométriques et de métallamacrocycles
Utilisation de l\'ion uranyle dans la synthèse de cages nanométriques et de métallamacrocycles
Utilisation de l\'ion uranyle dans la synthèse de cages nanométriques et de métallamacrocycles
Utilisation de l\'ion uranyle dans la synthèse de cages nanométriques et de métallamacrocycles
Différenciation des ions lanthanides(III) et uranium(III) par les amines aromatiques
Différenciation des ions lanthanides(III) et uranium(III) par les amines aromatiques
Différenciation des ions lanthanides(III) et uranium(III) par les amines aromatiques
Facteurs favorisant la sélectivité de la complexation des ions lanthanides et actinides trivalents par les amines aromatiques
Facteurs favorisant la sélectivité de la complexation des ions lanthanides et actinides trivalents par les amines aromatiques
Facteurs favorisant la sélectivité de la complexation des ions lanthanides et actinides trivalents par les amines aromatiques
Différenciation des ions lanthanides(III) et uranium(III) par des ligands anioniques
Différenciation des ions lanthanides(III) et uranium(III) par des ligands anioniques
Différenciation des ions lanthanides(III) et uranium(III) par des ligands anioniques
Différenciation des ions lanthanides(III) et uranium(III) par des ligands anioniques
Les formiates de silicium : de nouveaux mimes pour améliorer l’efficacité énergétique des hydrures de silicium
Nouveau principe à 32 électrons : le cas de la famille de composés organométalliques An@C28 (An = Th, Pa, U, Pu)
Nouveau principe à 32 électrons : le cas de la famille de composés organométalliques An@C28 (An = Th, Pa, U, Pu)
Nouveau principe à 32 électrons : le cas de la famille de composés organométalliques An@C28 (An = Th, Pa, U, Pu)
Fabriquer du plastique sans pétrole et à partir du CO2 ?
Fabriquer du plastique sans pétrole et à partir du CO2 ?
Fabriquer du plastique sans pétrole et à partir du CO2 ?
Fabriquer du plastique sans pétrole et à partir du CO2 ?
Transformations catalytiques pour l’énergie
Transformations catalytiques pour l’énergie
 Chimie de coordination des éléments f (uranium, thorium et lanthanides)
 Chimie de coordination des éléments f (uranium, thorium et lanthanides)
 Chimie de coordination des éléments f (uranium, thorium et lanthanides)
Complexes cyanure des éléments f
Complexes cyanure des éléments f
Synthesis and reactivity of U(IV) and U(V) bis(metallacycle) complexes
Synthesis and reactivity of U(IV) and U(V) bis(metallacycle) complexes
Matériaux pour l’\'électronique organique
Recycler le CO2
Recycler le CO2
Recycler le CO2
Recyclage du CO2
Recycler des déchets chimiques, en substitut de la pétrochimie
Speed-dating en chimie organique
Speed-dating en chimie organique
32 électrons : d\'une règle à un principe chimique !
32 électrons : d\'une règle à un principe chimique !
32 électrons : d\'une règle à un principe chimique !
Nucleophilic carbene complexes of Uranium(IV) and (VI)
Nucleophilic carbene complexes of Uranium(IV) and (VI)
New developments in the sandwich complexes of the f-elements
New developments in the sandwich complexes of the f-elements
New developments in the sandwich complexes of the f-elements
Des sandwichs d’actinides réactifs et à géométrie variable
Des sandwichs d’actinides réactifs et à géométrie variable
Des sandwichs d’actinides réactifs et à géométrie variable
Des sandwichs d’actinides réactifs et à géométrie variable
Des sandwichs d’actinides réactifs et à géométrie variable
Brevet: Procédé de préparation de composés formamides
Brevet : Procédé de préparation d\'amines méthylées
Brevet : Procédé de préparation de composés azotés
L’acide formique, un relai efficace pour la production du méthanol à partir du CO2
L’acide formique, un relai efficace pour la production du méthanol à partir du CO2
L’acide formique, un relai efficace pour la production du méthanol à partir du CO2
Laboratoire de Chimie Moléculaire et Catalyse pour l\'Energie (LCMCE)
Brevet : Procédé de préparation de formamidines
Nouveau procédé pour le recyclage chimique de déchets plastiques
Une nouvelle stratégie pour récupérer des composés aromatiques à partir de déchets de bois
Une nouvelle stratégie pour récupérer des composés aromatiques à partir de déchets de bois
Brevet : Procédé de préparation de composés aromatiques à partir de la lignine
Chimie de coordination
Brevet :  Procédé de dépolymérisation de matériaux polymères oxygénés.
Brevet :  Utilisation de formiates de bore pour la réduction de fonctions organiques insaturées
Transformation de la biomasse : dépolymérisation de la lignine / Biomass conversion: lignin depolymerization
Chimie organométallique et mécanismes / Organometallic chemistry and mechanisms
Chimie organométallique et mécanismes / Organometallic chemistry and mechanisms
Chimie organométallique et mécanismes / Organometallic chemistry and mechanisms
Brevet : Utilisation de formiates silylés comme équivalents d\'hydrosalines
Du CO2 et du cuivre pour le radiomarquage de composés pharmaceutiques / CO2 and copper to radiolabel pharmaceutical compounds
Du CO2 et du cuivre pour le radiomarquage de composés pharmaceutiques / CO2 and copper to radiolabel pharmaceutical compounds
Du CO2 et du cuivre pour le radiomarquage de composés pharmaceutiques / CO2 and copper to radiolabel pharmaceutical compounds
Brevet : Procédé de préparation d’alkylamines / Method for preparing alkylamines
Brevet : Procédé de préparation de méthoxyboranes et de production de méthanol / Method for preparing methoxyboranes and for producing methanol
L’ion uranyle [UO2]2+ : un catalyseur efficace pour la réduction de doubles liaisons C=O
Procédé de synthèse du méthanol, renouvelable en carbone et silicium
Brevet : Procédé de synthèse de composés organiques marqués au carbone
Brevet : Procédé de dépolymérisation de matériaux polymères oxygénés par catalyse nucléophile
Brevet : Procédé de préparation de composés oxyboranes
Nouveau procédé de production des hydrosilanes (réducteurs doux) par hydrogénation catalytique
Brevet : Procédé de préparation d\'acide acrylique a partir de β-propiolactone
Nouvelles technologies de l\'énergie @ NIMBE
Catalyse pour la transformation du CO2 / Catalysis for CO₂ conversion
Catalyse pour la transformation du CO2 / Catalysis for CO₂ conversion

 

Retour en haut