Les objectifs de l'équipe "NFMQ", au travers de l'activité de ses groupes de recherche, sont de comprendre les propriétés électroniques et magnétiques de matériaux aux propriétés remarquables ou non conventionnelles, où les effets quantiques jouent un rôle majeur. Parmi ces systèmes, on trouve :
Ces recherches fondamentales peuvent être le terreau de futures applications dans les domaines du stockage et transport de l’énergie, de stockage et lecture de l’information, la production de champs magnétiques intenses et dispositifs de lévitation, l’élaboration de nouveaux types de capteurs (photosensibles, thermosensibles, magnétosensibles, etc.) et dispositifs médicaux (IRM, hyperthermie magnétique).
L'équipe "NFMQ" se positionne dans ce contexte et se propose d’utiliser les techniques de diffusion des neutrons pour participer à l’effort de recherche, fondamentale comme plus appliquée, dans ces domaines. Il s’articule autour de 4 groupes de recherche, "Magnétisme multi-échelle", "Magnétisme quantique", "Systèmes d’électrons fortement corrélés", et "Matériaux fonctionnels".
Voir la page : Thématiques NFMQ : magnétisme, transitions de phase - Etudes par diffusion de neutrons
Autres pages décrivants les thèmatiques de recherche :
New frontiers in quantum materials - NFMQ
The objectives of the team "New frontiers in quantum materials - NFMQ" are to understand the electronic and magnetic properties of materials with remarkable or unconventional properties, where quantum effects play a major role. Among these systems are
This fundamental research can be the breeding ground for future applications in the fields of energy storage and transport, storage and reading of information, the production of intense magnetic fields and levitation devices, the development of new types of sensors. (photosensitive, thermosensitive, magnetosensitive, etc.) and medical devices (MRI, magnetic hyperthermia).
See the page : "NFMQ themes : magnetism, phase transitions - Neutron scattering studies"
Other pages describing the research topics:
Unconventional superconductivity: neutron spectroscopy and theory
In the last two decades, new superconducting (SC) compounds, exhibiting surprisingly high critical temperatures (Tc), have been discovered. In contrast to conventional superconductors, the SC order parameter is not isotropic, neither in cuprates nor in Fe-based systems. This ignited a search for new SC pairing mechanisms based on the existence of rather strong electronic interactions.
Physique de la matière condensée, étude par l’interaction rayonnement matière
Les grandes installations de l’IRAMIS, telles que les spectromètres de diffusion, de diffraction et les stations d’imagerie de neutrons du LLB, sont particulièrement adaptées à l’étude des propriétés physiques de la matière condensée.
0 sujet /LLB/NFMQ |
Dernière mise à jour :