SPHYNX
Systèmes Physiques Hors-équilibres hYdrodynamiques éNergie et compleXité

Welcome / Bienvenue au SPHYNX

out-of-equilibrium Systems and Physics - HYdrodynamics -  eNergy and compleXity

 

drapeau français

The SPHYNX team / L'équipe SPHYNX

 

Our current research subjects focus on the following domains:


 

SPHYNX, created in January 2012, consists of 18 permanent researchers, engineers and technicians from CEA and CNRS. Our active research efforts encompass a wealth of multidisciplinary characters; theoretical, numerical and experimental, to studyphysical systems that are far from equilibrium.

Statistical physics of equilibrium systems provides today a well-established framework for classical thermodynamics. However, most 'real world' systems found in condensed matter, biology, natural or industrial macrocosms are out-of-equilibrium, either because of the presence of external forcing or because they cannot relax back to equilibrium. These systems are often non-linear, disordered and/or complex and present emerging properties of their own.

The goal of SPHYNX is to gather researchers working on different objects but using common tools, those of the statistical physics to tackle the same challenge, that of complexity.

 

Contact: Daniel Bonamy (Responsable du SPHYNX)

 
#214 - Màj : 18/12/2022
Thèmes de recherche

Statistical physics in mechanics

Understanding the relations between materials microstructure and their mechanical properties is of outmost importance in  geophysics and for industrial design. Concerning material failure, the competition between stress enhancement in the vicinity of cracks and disorder in the material microstructure makes it rather complex to predict. However, the tools of out-of-equilibrium statistical physics provide the proper framework to describe crack growth.

Statistical physics in mechanics
Physique statistique et systèmes complexes

Physique statistique et systèmes complexes

Un système complexe est constitué d'un grand nombre d'entités en interaction, dont on ne peut prévoir le comportement ou l'évolution par un calcul simple (ex : étude des transitions de phase, turbulence dans un liquide, milieu granulaire, vols d'étourneaux...

Conversion de l'énergie

Le développement des nouvelles technologies pour l'énergie implique de maitriser les processus de conversion entre ses différentes formes (solaire, thermique, chimique, électrique, mécanique, ...),  ainsi que les procédés de stockage  : L'énergie solaire peut être directement transformée en énergie électrique via les processus photovoltaïques et stockée dans des accumulateurs.

Conversion de l'énergie
Voir aussi
Voir aussi
2012 SPHYNX Publications : 2012   Publications
2013 SPHYNX Publications : 2013   Publications
2014 SPHYNX Publications : 2014   Publications
2015 SPHYNX Publications : 2015   Publications
IMAFMP Publications : IMAFMP   Publications
Matière Active - Matière Granulaire / Active matter - Granular matter : Matière active : Modélisation d’expériences in vivo Classes d’universalité Interactions non décomposables en paires Equations continues Nouveaux modèles Renormalisation non perturbative Criticalité auto-organisée Voisinages non métriques Matière granulaire : Interaction particules-fluide en rotation. Méca. Stat.
Physique de systèmes (modèles) biologiques : L’immense complexité du vivant a pu faire croire que les méthodes de la physique ne pouvaient être utiles pour le comprendre.
SPHYNX Publication List 2007-2011 : 2008 - 2011   Publications
SPHYNX Publications : 2016   Publications
Faits marquants scientifiques
22 novembre 2022
En lui décernant le prix Irène Joliot-Curie 2022, l’Académie des sciences nomme Bérengère Dubrulle, Directrice de recherche CNRS au Service de physique de l'état condensé (SPEC, CEA/CNRS/Univ. Paris-Saclay - UMR 3680) "Femme scientifique de l’année". Voir le communiqué du ministère de la Recherche - Plaquette de l'Académie des Sciences.  
03 août 2022
Une collaboration de chercheurs du SPEC et du LMFL explorent l’origine de l’irréversibilité de la turbulence grâce à un nouveau dispositif expérimental à grande échelle : Giant Von Kármán - GVK, unique par ses dimensions.
03 juillet 2022
La matière active est composée d'entités individuelles convertissant de l'énergie en travail, ce qui entraine leur mise en mouvement, et leur permet de s'organiser spontanément du fait de leurs interactions mutuelles. De nombreux systèmes vivants peuvent être vus sous cet angle, mais aussi, de plus en plus, des ensembles de microparticules actives synthétiques ou extraites de cellules.
11 mars 2022
​Une collaboration menée par le LSCE (CEA-CNRS-UVSQ), avec l'Iramis (SPEC/SPHYNX), applique pour la première fois une technique d'apprentissage automatique utilisée en linguistique à des bulletins météorologiques quotidiens couvrant 70 années. La voie est désormais ouverte à des analyses climatologiques hors d'atteinte pour les experts humains ! 
16 novembre 2021
In a recent paper published in PNAS, Hugues Chaté (IRAMIS/SPEC), Xia-qing Shi and the group of Tian Hui Zhang (Soochow University)  show that subcritical active matter exhibits novel collective self-organized dynamics. They used “Quincke rollers”, i.e. colloidal spheres at the bottom of a cell filled with conducting fluid submitted to a vertical electric field.
28 février 2021
La plupart des fluides qui nous entourent -atmosphère, océans, rivières- sont turbulents et caractérisés par des mouvements tourbillonnaires et fluctuants sur une large gamme d’échelles spatiale et temporelle.
19 février 2021
Une équipe réunissant des chercheurs du SPEC, de l’IPhT et de l’ENS-Paris a montré l’absence de transition de Gardner dans un verre moléculaire archétypique – le glycerol - jusqu’à une température de 10 K.
08 juillet 2020
Contacts SPEC : Dana Stanescu, Helene Magnan, Jean-Baptiste Moussy, Cindy Rountree, Antoine Barbier
Les matériaux ferroélectriques ont connu un essor considérable en raison de leurs applications potentielles dans des domaines comme la spintronique ou la conversion de l’énergie solaire1–3. Au SPEC nous avons étudié le rôle des interfaces, du substrat et des couches d’oxyde supérieures sur les propriétés ferroélectriques des hétérostructures à base des couches minces de BaTiO34.
12 juin 2020
Des chercheurs de SPEC/SPHYNX, du CNRS-Université de la Sorbonne/PHENIX et du LLB/MMB publient une étude complète sur des suspensions colloïdales modèles dans un liquide ionique.
13 décembre 2019
La ténacité d’un matériau définit sa résistance à rupture. Si on sait la mesurer expérimentalement de manière précise, on ne sait pas, à l’heure actuelle, prévoir sa valeur à partir de la structure atomistique du matériau considéré, même dans les cas les plus simples.
17 décembre 2018
Dans un article publié le 28 décembre 2018 dans PNAS [1], le groupe d’Hugues Chaté (IRAMIS/SPEC), en collaboration avec celui de Hepeng Zhang à l’Université Jiao Tong de Shanghai, a réussi à modéliser quantitativement la structure et la dynamique des défauts topologiques d’un cristal liquide actif fait de bactéries.
05 novembre 2018
Collaboration SPEC - Université de Cambridge
In a recent article published in Phys. Rev. X [1], a collaboration between C. Nardini (SPEC) and Cambridge University studied phase separation phenomena in active colloidal fluids. It was shown that microphase separation, or phase separation between a vapour-like phase and a seemingly boiling liquid, should be generically expected. The analysis provides the basic framework to control these new phases of matter in future experiments.
21 août 2018
La convection thermique est à l'origine des écoulements turbulents au sein des atmosphères planétaires, des océans, des étoiles et des planètes. En astrophysique, un des objectifs est de déterminer les lois régissant le transport convectif de chaleur, afin de les inclure dans les modèles d'évolution stellaire.
19 mai 2018
Dans un article publié le 17 Mai 2018, dans la revue Cell, l'équipe dirigée par Guillaume Duménil à l'Institut Pasteur, en collaboration avec le groupe d’Hugues Chaté (IRAMIS/SPEC) et celui de Raphaël Voituriez (UPMC), décrypte une étape clé de l’infection causée par le méningocoque, un pathogène humain responsable de méningites chez les nourrissons et les jeunes adultes.
12 avril 2018
Pour l'ensemble des activités humaines, les pertes thermiques représentent 20 à 50 % de la consommation totale d'énergie. Récupérer sous forme d'électricité une fraction de cette chaleur résiduelle aujourd'hui perdue, améliorerait grandement notre efficacité énergétique.
28 mars 2018
Les séismes majeurs sont imprévisibles et pourtant l'analyse statistique des évènements précurseurs et des répliques au choc principal suivent des lois statistiques aujourd'hui bien établies, mais dont l'origine reste encore très mal comprise. En physique statistique, les mêmes lois peuvent s'appliquer à des systèmes en apparence très différents.
02 septembre 2017
Dans une expérience de laboratoire, les chercheurs de l’Iramis/SPEC ont observé qu'un écoulement très turbulent pouvait présenter une dynamique chaotique entre plusieurs régimes d'écoulements métastables.
07 juillet 2017
​En s'appuyant sur une expérience de laboratoire, des chercheurs de l'Iramis et du LSCE proposent un jeu de trois équations "simples" pour représenter un écoulement très turbulent. Ces équations conduisent à un comportement extrêmement chaotique qu'on pourrait qualifier de "super-effet papillon".
14 mai 2017
Les mouvements de convexion des plasmas ou liquides conducteurs au cœur des étoiles et de certaines planètes sont à l'origine de l'émergence spontanée d'un champ magnétique par effet dynamo.
23 janvier 2017
An international team published in Nature, the discovery and interpretation of a surprising form of biological collective motion:  They observed that millions of motile cells in dense bacterial suspensions can self-organize into highly robust collective oscillatory motion, while individuals move in an erratic manner.
23 janvier 2017
Une équipe du Service de Physique de l'État Condensé (IRAMIS/SPEC – UMR 3680 CEA-CNRS) est coordinatrice du projet européen H2020 – FET Proactive* MAGENTA, qui est lancé le 23 janvier 2017, pour une durée de 4 ans (2017-2020).
12 août 2016
L'énergie mécanique injectée dans un fluide visqueux se dissipe sous forme de chaleur par l'effet de la viscosité. Cette conversion est extrêmement complexe, et s’opère via des mouvements tourbillonnants sur une large gamme d’échelles. Les physiciens pensent que ce processus est bien décrit par les équations de Navier-Stokes.
01 juin 2016
Les verres forment l’essentiel de nos matériaux du quotidien, et prennent une place croissante dans les technologies modernes (fibres optiques, etc…).
02 octobre 2015
Pour relever le défi de l’accès à une énergie propre et durable il faut mener des efforts de recherche technologique mais aussi poser – ou réexaminer – des questions fondamentales sur la conversion d'énergie, toujours accompagnée de dissipation et d’une production d’entropie.
04 septembre 2015
Les comportements d'imitation constituent la clé de voute de très nombreux phénomènes collectifs observés dans les groupes animaux.
20 février 2015
La turbulence dans un fluide est un phénomène familier, qui se caractérise par la présence de tourbillons de toutes tailles et un comportement désordonné et imprédictible.
14 novembre 2014
L’effondrement de structures molles est un phénomène omniprésent dans notre quotidien : la mousse d’un cappuccino soutient son poids, mais se brise irréversiblement sous les coups de cuillère impitoyables du chercheur en mal de caféine ; une pile de sable résiste au vent mais s’effondre lorsque l’on marche dessus.
09 avril 2014
Collaboration entre l'IRAMIS/SPEC du CEA et le Centre de Recherches sur la Cognition Animale (UMR 5169, UPS - CNRS)
  En collaboration avec des biologistes et physiciens du Centre de Recherches sur la Cognition Animale de Toulouse, l'équipe de Hugues Chaté (IRAMIS/SPEC/SPHYNX) a construit puis étudié un modèle permettant de simuler numériquement la dynamique collective d'un banc de poissons.
19 août 2013
Une fracture sous l'effet d'une contrainte peut se propager de façon continue ou intermittente, et il est technologiquement très utile de pouvoir prédire dans quel régime se produira la propagation d'une éventuelle fissure. Par une approche statistique, une description globale des deux régimes a pu être obtenue, ainsi que le diagramme de phase précisant leurs conditions d'apparition.
16 juillet 2013
La possibilité d’utiliser la chaleur issue de processus industriels comme source d’énergie d’appoint en complément de l’énergie d’origine fossile est une alternative  de plus en plus envisagée. La  récupération de cette énergie thermique peut être obtenue par voie thermoélectrique (effet Seebeck).
Publications HAL

Dernières publications SPHYNX


Toutes les publications SPHYNX dans HAL-CEA

Thèses
5 sujets /SPEC/SPHYNX

Dernière mise à jour :


 

Contrôle de la conversion de l'énergie thermoélectrique par la chimie de coordination des ions de métaux de transition dans les liquides ioniques

SL-DRF-23-0400

Domaine de recherche : Chimie physique et électrochimie
Laboratoire d'accueil :

Service de Physique de l’Etat Condensé (SPEC)

Systèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes (SPHYNX)

Saclay

Contact :

Sawako NAKAMAE

Veronika Zinovyeva

Date souhaitée pour le début de la thèse : 01-10-2022

Contact :

Sawako NAKAMAE
CEA - DRF/IRAMIS/SPEC/SPHYNX

0169087538

Directeur de thèse :

Veronika Zinovyeva
Université Paris Saclay - Laboratoire de Physique des 2 infinis Irène Joliot-Curie, CNRS-UMR 9012


Page perso : https://iramis.cea.fr/Pisp/sawako.nakamae/

Labo : https://iramis.cea.fr/spec/sphynx/

La thermoélectricité, la capacité d'un matériau à convertir la chaleur en énergie électrique, est connue dans les liquides depuis plusieurs décennies. Contrairement aux solides, ce processus de conversion dans les liquides prend plusieurs formes, notamment les réactions thermo-galvaniques entre les ions redox et les électrodes, la thermodiffusion d'espèces chargées et la formation d'une double couche électrique aux électrodes qui varie en fonction de la température. Les valeurs observées du coefficient Seebeck (Se = - DV/DT, le rapport entre la tension induite (DV) et la différence de température appliquée (DT)) sont généralement supérieures à 1 mV/K, un ordre de grandeur plus élevé que celles trouvées dans les semi-conducteurs solides. Le premier exemple fonctionnel d'un générateur thermoélectrique (TE) à base de liquide a été rapporté en 1986 en utilisant des sels redox de ferro/ferricyanure dans l'eau. Cependant, dû à la faible conductivité électrique des liquides l’efficacité de conversion était très faible, ce qui empêchait leur utilisation dans des applications de récupération de la chaleur perdue à basse température.



Les perspectives des générateurs TE-liquides se sont améliorés au cours de la dernière décennie avec le développement des liquides ioniques (LI). Les LI sont des sels fondus qui sont liquides en dessous de 100 °C. Par rapport aux liquides classiques, ils présentent de nombreuses caractéristiques favorables telles que des points d'ébullition élevés, une faible pression de vapeur, une conductivité ionique élevée, une faible conductivité thermique et aussi des valeurs de Se plus élevées. Plus récemment, une étude expérimentale menée par l’IJCLab et le SPEC a révélé que la complexation de couples redox de métaux de transition dans des liquides ioniques peut conduire à une hausse de leur coefficient Se significative de -1,6 à -5,7 mV/K, l'une des valeurs les plus élevées rapportées dans les cellules thermoélectriques à base de LI. Une compréhension électrochimique et physicochimique, et un contrôle précis de la spéciation des ions métalliques présentent sont nécessaire pour la conception rationnelle de la future technologie thermo-électrochimique.



Basé sur ces récentes découvertes, nous proposons une étude systématique de la chimie de coordination des ions redox de métaux de transition dans les liquides ioniques et les mélanges combinant des technique électrochimique et thermoélectrique. L’objectif à long terme associé à cette étude est de démontrer le potentiel d'application des cellules thermo-électrochimiques liquides basées sur des matériaux abordables, abondants et sans danger pour l'environnement pour la récupération d'énergie thermique comme outil d'efficacité énergétique.
Conversion de l'énergie thermoélectrique en ferrofluides pour un capteur de chaleur solaire hybride

SL-DRF-23-0399

Domaine de recherche : Matière molle et fluides complexes
Laboratoire d'accueil :

Service de Physique de l’Etat Condensé (SPEC)

Systèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes (SPHYNX)

Saclay

Contact :

Sawako NAKAMAE

Date souhaitée pour le début de la thèse : 01-10-2021

Contact :

Sawako NAKAMAE
CEA - DRF/IRAMIS/SPEC/SPHYNX

0169087538

Directeur de thèse :

Sawako NAKAMAE
CEA - DRF/IRAMIS/SPEC/SPHYNX

0169087538

Page perso : http://iramis.cea.fr/spec/Phocea/Pisp/index.php?nom=sawako.nakamae

Labo : http://iramis.cea.fr/spec/SPHYNX/

Voir aussi : https://www.magenta-h2020.eu

Les matériaux thermoélectriques (TE) capables de convertir la chaleur en électricité sont considérés comme une solution possible pour récupérer la chaleur fatale provenant du flux de déchets industriels, de moteurs, d’appareils électroniques ménagers ou de la chaleur corporelle. Depuis plusieurs années, au sein du laboratoire SPHYNX nous explorons les effets thermoélectriques dans les nanofluides ioniques, où des nanoparticules chargées électriquement servent à la fois de porteurs de chaleur et d'électricité. Contrairement aux matériaux solides, plusieurs effets TE interdépendants se produisent dans ces fluides, en donnant des valeurs du coefficient thermoélectrique généralement supérieures d'un ordre de grandeur à celles des semiconducteurs solides. De plus, les liquides thermoélectriques sont constitués de matières premières abondantes, et ils font l'objet d'une attention particulière en tant que futurs matériaux TE peu coûteux et écologiques. Alors que les origines précises des phénomènes thermoélectriques dans ces fluides sont encore débattues, nos résultats expérimentaux indiquent que les natures physico-chimiques d’interface particule-liquide y jouent un rôle décisif.



L'objectif du projet de doctorat est double. Premièrement, nous étudierons les mécanismes thermodynamiques sous-jacents à la production du potentiel thermoélectrique dans les nanofluides par mesures systématiques du coefficient Seebeck et le courant électrique produits. Les résultats seront comparés à leur propriétés thermo-diffusives étudiées par ailleurs dans le cadre d'actions de collaboration. Deuxièmement, le projet vise à développer des dispositifs de capteurs solaires hybrides de niveau « preuve de concept », capables de co-générer de la chaleur et de l'électricité. Ce dernier fait partie d'un projet en cours, SolTE-Hybrid (financement PALM-Valorisation) qui a démarré en septembre 2020.



Le projet de recherche proposé est principalement expérimental, impliquant des mesures thermoélectriques, thermiques et électrochimiques ; la mise en place d'un système d'acquisition de données automatisé et l'analyse des données obtenues. Des notions de thermodynamique, de physique des fluides et de physique de l'ingénierie (des dispositifs), ainsi que des connaissances pratiques sur la manipulation des dispositifs de laboratoire sont souhaitées. Des connaissances de base en optique et en électrochimie sont un plus mais pas obligatoires. Pour les étudiants motivés, des simulations numériques utilisant des logiciels CFD commerciaux peuvent également être envisagées.
Comportement en corrosion sous contrainte de verre mesostructure par un processus de démixtion

SL-DRF-23-0356

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Service de Physique de l’Etat Condensé (SPEC)

Systèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes (SPHYNX)

Saclay

Contact :

Laure CHOMAT

Cindy ROUNTREE

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Laure CHOMAT
CEA - DRF/IRAMIS/SPEC/SPHYNX

01.69.08.79.32

Directeur de thèse :

Cindy ROUNTREE
CEA - DRF/IRAMIS/SPEC/SPHYNX

+33 1 69 08 26 55

Page perso : https://iramis.cea.fr/Pisp/cindy.rountree/

Labo : https://iramis.cea.fr/spec/SPHYNX/

Voir aussi : https://iramis.cea.fr/spec/index.php

Le verre est un matériau largement utilisé du fait de ses nombreux avantages : transparence, dureté, faible dilatation thermique, température du point de fusion élevée, relative inertie chimique, etc... Il présente néanmoins une faiblesse majeure : sa fragilité. Des sollicitations relativement modérées peuvent amener sa rupture brutale, sans précurseur annonciateur. Le verre est également sensible au phénomène de corrosion sous contrainte : sous l’influence de certaines conditions environnementales (humidité relative, température, etc…), des sollicitations apparemment anodines (bien plus faibles que celles amenant sa rupture brutale) peuvent conduire à la propagation de fissures à faible vitesse comme observée lors de la fissuration lente des parebrises de voiture. Cette corrosion sous contrainte, dépend aussi de paramètres intrinsèques du verre : composition chimique, microstructure, etc...



Le phénomène de séparation de phase dans les verres conduit à une méso-structuration du matériau pouvant améliorer les propriétés mécaniques telles que la résistance à l’écrasement . Il est également à l’origine des vitrocéramiques, constitués de microcristaux dispersés dans une matrice vitreuse, développées en vue de tirer parti des avantages des deux constituants : céramique et verre. Leur emploi est actuellement répandu, par exemple pour des applications de thermométrie optique, des ustensiles de cuisine, des matériaux dentaires, etc… Cependant, le comportement en corrosion sous contrainte de ce type de matériau reste encore peu étudié.



L’objectif de cette thèse s’inscrit dans la compréhension du lien entre la méso-structure des vitrocéramiques et leur comportement en corrosion sous contraintes. Il s’agira dans un premier temps d’acquérir des données relatives à la rupture de verres démixés en utilisant un dispositif dédié où les conditions environnementales sont contrôlées. Plusieurs compositions de verres présentant une séparation de phase seront étudiées, et dans la mesure du possible, en association avec leur pendant non-démixé (même composition chimique mais recuit thermique différent). La vitesse de fissuration et sa variation avec la contrainte appliquée seront mesurés pour chaque échantillon afin d’obtenir les courbes caractéristiques de résistance à la corrosion sous contraintes. En parallèle, la composition et la méso-structure des échantillons seront étudiées en mettant en œuvre différentes techniques : AFM, SEM, Raman, etc. Une caractérisation post-mortem de la surface de rupture des échantillons sera également menée via de la microscopie à champ proche (AFM, …) et analysée avec différents outils statistiques (modélisation stochastique, analyse fractale).



Ce stage se déroulera au seins du laboratoire SPHYNX du Service de Physique de l’Etat Condensé qui est une unité mixte CEA / CNRS (UMR 3680 CEA-CNRS). Les chercheurs y étudient la physique de la matière condensée, de la physique la plus fondamentale aux applications industrielles. Le stagiaire/doctorant retenu aura l’opportunité de mettre en œuvre des méthodes avancées de caractérisation des matériaux et de leur surface, de l'échelle macroscopique à l'échelle nanométrique. Les approches s'appuieront sur des plateformes expérimentales et des outils théoriques développés en interne. Le candidat aura l’occasion de manipuler les outils théoriques et expérimentaux utilisés dans le domaine de la science des matériaux, de la mécanique et de la physique statistique. Enfin, le caractère à la fois très fondamental et apliqué de cette recherche permettra au candidat de trouver à l’issue de cette expérience des débouchés dans le monde académique (thèse) et dans l’industrie.

Controlling phase separation in active systems

SL-DRF-23-0341

Domaine de recherche : Physique théorique
Laboratoire d'accueil :

Service de Physique de l’Etat Condensé (SPEC)

Systèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes (SPHYNX)

Saclay

Contact :

Cesare Nardini

Date souhaitée pour le début de la thèse : 01-09-2023

Contact :

Cesare Nardini
CEA - DRF/IRAMIS/SPEC/SPHYNX


Directeur de thèse :

Cesare Nardini
CEA - DRF/IRAMIS/SPEC/SPHYNX


Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=cnardini

Labo : https://iramis.cea.fr/SPEC/SPHYNX/

Voir aussi : https://scholar.google.com/citations?user=F5AitakAAAAJ&hl=en

Examples of active systems, formed of units that are able to extract energy from the environment and dissipate it to self-propel, are found everywhere in nature: flocks of birds, animal swarms, suspensions of bacteria or tissues are all biological active systems. Scientists are able to build synthetic active systems using catalytic colloidal particles or micro-robots.

Active systems have theoretically fascinating properties, a fact that drove a very intense research activity lately. Future applications may encompass the engineering self-assembling materials using active units, considered as a defining agenda in the community.



Large assemblies of active units display collective phenomena that are absent in equilibrium. One of the most ubiquitous is phase separation, where even repulsive but active particles phase separate into dense and dilute phases. In some cases, this phenomena resemble to liquid-vapor phase separation of standard fluids. Due to broken time-reversibility, however, active systems can show novel forms of phase separation, comprising a state where the liquid state comprises mesoscopic vapor bubbles (thus resembling to a boiling liquid), or active foams states, where thin liquid filaments are dispersed in the vapor.

Furthermore, in most experimental realization, active systems are `wet’, meaning that particles move in a fluid which itself can mediate interactions among particles, a feature whose consequences are so far little understood theoretically.



The main open theoretical question is how to control these novel states of matter in terms of microscopically tunable parameters. The main goal of this PhD is to fill this gap. This will require both analytical and computational work done on agent based models and continuous descriptions of active systems. If successful, the work will provide a guide for experimentalists to design novel self-assembling materials using active units. Given the ubiquity of phase separation in non-equilibrium contexts, we will further explore the relevance of these results to other out-of-equilibrium systems, such as biological tissues and granular materials.
Many-body physics of topological defects in active materials

SL-DRF-23-0342

Domaine de recherche : Physique théorique
Laboratoire d'accueil :

Service de Physique de l’Etat Condensé (SPEC)

Systèmes Physiques Hors-équilibre, hYdrodynamique, éNergie et compleXes (SPHYNX)

Saclay

Contact :

Cesare Nardini

Date souhaitée pour le début de la thèse : 01-09-2023

Contact :

Cesare Nardini
CEA - DRF/IRAMIS/SPEC/SPHYNX


Directeur de thèse :

Cesare Nardini
CEA - DRF/IRAMIS/SPEC/SPHYNX


Page perso : https://iramis.cea.fr/Phocea/Membres/Annuaire/index.php?uid=cnardini

Labo : https://iramis.cea.fr/SPEC/SPHYNX

Voir aussi : https://scholar.google.com/citations?user=F5AitakAAAAJ&hl=en

De nombreuses caractéristiques spatio-temporelles des matériaux biologiques et actifs, de la morphogenèse à la structure des assemblées denses de colloïdes autopropulsés, sont causées et contrôlées par des défauts topologiques. Il peut s'agir de défauts situés au-dessus de cristaux liquides, tels que des couches nématiques ou hexatiques, ou même au-dessus d'un solide cristallin. Les défauts peuvent servir de médiateur à la propagation anormale des contraintes, façonner la courbure des matériaux flexibles sous-jacents, ou même provoquer des transitions de phase entre des états où les défauts sont limités et d'autres où ils peuvent diffuser librement.



Ce projet de thèse vise à comprendre la physique multicorporelle des défauts topologiques dans les matériaux actifs en combinant des techniques analytiques et numériques, et à explorer leur pertinence pour les phénomènes collectifs dans les systèmes actifs et vivants.
Stages
Images
Systèmes magnétiques frustrés
Granular matter : Surface Flows
Granular matter : Surface Flows
Turbulence in Rotating Flows
Turbulence in Rotating Flows
Turbulence in Rotating Flows
Biophysicists discover hidden order in bacterial collective motion
Biophysicists discover hidden order in bacterial collective motion
Statistical physics in mechanics
Roughness exponents of fracture surfaces in packing of sintered glass beads.
Role of damage in the selection of the scaling properties of fracture surfaces: Experimental evidences and theoretical interpretation
Granular matter
Granular matter
Granular matter
Granular matter
Granular matter
Granular matter
Granular matter
Magneto-Hydrodynamics and Dynamo effect
Magneto-Hydrodynamics and Dynamo effect
Magneto-Hydrodynamics and Dynamo effect
Magneto-Hydrodynamics and Dynamo effect
Magneto-Hydrodynamics and Dynamo effect
Nonlinear Waves
Les feuilles tombent aussi en Amazonie !
Les feuilles tombent aussi en Amazonie !
Les feuilles tombent aussi en Amazonie !
Expérience VKS2 : observation d\'une dynamo turbulente (De l\'origine du champ magnétique terrestre...)
Expérience VKS2 : observation d\'une dynamo turbulente (De l\'origine du champ magnétique terrestre...)
Expérience VKS2 : observation d\'une dynamo turbulente (De l\'origine du champ magnétique terrestre...)
Expérience VKS2 : observation d\'une dynamo turbulente (De l\'origine du champ magnétique terrestre...)
Quand le mélange chaotique se heurte à un mur
Quand le mélange chaotique se heurte à un mur
Granular matter : Relaxation and response to a localized perturbation
Granular matter : Relaxation and response to a localized perturbation
Granular matter : Glassy behaviour and dynamical heterogeneities
Granular matter : Glassy behaviour and dynamical heterogeneities
Granular matter : Some applications of our research
Granular matter : Some applications of our research
Universal behavior of the dynamics of slow crack growth
Universal behavior of the dynamics of slow crack growth
Universal behavior of the dynamics of slow crack growth
Universal behavior of the dynamics of slow crack growth
Verres granulaires : un gigantesque jeu de tric trac collectif
Verres granulaires : un gigantesque jeu de tric trac collectif
Verres granulaires : un gigantesque jeu de tric trac collectif
Experimental and numerical nanoscale investigation of damage and fracture processes in glass
Experimental and numerical nanoscale investigation of damage and fracture processes in glass
Experimental and numerical nanoscale investigation of damage and fracture processes in glass
Subcritical Transition to Turbulence
Subcritical Transition to Turbulence
Subcritical Transition to Turbulence
Subcritical Transition to Turbulence
Chaotic Mixing
Physique statistique et systèmes complexes
APSC : Action Physique & Systèmes Complexes IRAMIS
APSC : Action Physique & Systèmes Complexes IRAMIS
Brevet :  Ensemble de distribution d\'un matériau granulaire par gravité
Emerging Collective Phenomena in Nanostructured Magnetic Materials
Emerging Collective Phenomena in Nanostructured Magnetic Materials
Systèmes complexes et fracture - Nano-Objets et Systèmes Complexes
Systèmes complexes et fracture - Nano-Objets et Systèmes Complexes
Let\'s Jam ! La criticalité de la transition de blocage des milieux désordonnés dévoilée
Irreversible deformation in glasses
Brevet : Procédé de fabrication d\'une couche d\'un matériau antiferromagnétique à structures magnétiques contrôlées. Process for fabricating a film of an antiferromagnetic material with controlled magnetic structures
Mise en mouvement collectif spontané
Mise en mouvement collectif spontané
Mise en mouvement collectif spontané
Mise en mouvement collectif spontané
La transition vitreuse : mise en évidence de son caractère critique à l’aide de mesures de réponse non-linéaire
Jusqu’\'où l’\'eau pénètre-t-elle dans la silice sous contrainte ?
Jusqu’\'où l’\'eau pénètre-t-elle dans la silice sous contrainte ?
Jusqu’\'où l’\'eau pénètre-t-elle dans la silice sous contrainte ?
Croissance des corrélations dynamiques durant le viellissement d\'un verre
Croissance des corrélations dynamiques durant le viellissement d\'un verre
Violation du théorème fluctuation-dissipation dans un verre de superspins
Violation du théorème fluctuation-dissipation dans un verre de superspins
Violation du théorème fluctuation-dissipation dans un verre de superspins
Physique de systèmes (modèles) biologiques
Fracture dynamique des matériaux fragiles : comment les fissures se propagent aussi rapidement
Fracture dynamique des matériaux fragiles : comment les fissures se propagent aussi rapidement
Anisotropy in the scaling properties of fracture surfaces: Experimental evidences of Family-Viseck scaling
Anisotropy in the scaling properties of fracture surfaces: Experimental evidences of Family-Viseck scaling
Anisotropy in the scaling properties of fracture surfaces: Experimental evidences of Family-Viseck scaling
Complex Liquid Thermoelectrics Research
Une transition de phase dans un écoulement turbulent ?
Comprendre l\'émergence de mouvements collectifs dans la matière active et biologique
Comprendre l\'émergence de mouvements collectifs dans la matière active et biologique
Une dynamo localisée au laboratoire
Une dynamo localisée au laboratoire
Une dynamo localisée au laboratoire
Une dynamo localisée au laboratoire
SPHYNX
Ecoulement de \
Ecoulement de \
Les liquides ioniques thermoélectriques: une alternative pour récupérer \
Les liquides ioniques thermoélectriques: une alternative pour récupérer \
Les liquides ioniques thermoélectriques: une alternative pour récupérer \
Les intermittences de la fracture
Les intermittences de la fracture
Les intermittences de la fracture
Thermoelectric properties of macro-ions in organic electrolytes
Interdisciplinary Multiscale Platform (IMP)
Comment un banc de poissons passe-t-il d\'un comportement collectif à l\'autre ?
Comment un banc de poissons passe-t-il d\'un comportement collectif à l\'autre ?
Comment un banc de poissons passe-t-il d\'un comportement collectif à l\'autre ?
Comment un banc de poissons passe-t-il d\'un comportement collectif à l\'autre ?
Comportement universel de la dynamique de rupture interfaciale
Comportement universel de la dynamique de rupture interfaciale
Comportement universel de la dynamique de rupture interfaciale
Comportement universel de la dynamique de rupture interfaciale
Breaking news ! Dans les matériaux désordonnés, la vitesse de fissuration modifie le mode de rupture
Breaking news ! Dans les matériaux désordonnés, la vitesse de fissuration modifie le mode de rupture
Breaking news ! Dans les matériaux désordonnés, la vitesse de fissuration modifie le mode de rupture
Conversion de l\'énergie
Conversion de l\'énergie
Mécanique non linéaire des empilements fragiles de grains
Mécanique non linéaire des empilements fragiles de grains
Mécanique non linéaire des empilements fragiles de grains
Mécanique non linéaire des empilements fragiles de grains
Le vide peut-il freiner deux atomes en rotation ? – Généralité du caractère inélastique des collisions atomiques (induit par les fluctuations quantiques)
Un état très turbulent et chaotique !
Un état très turbulent et chaotique !
Un état très turbulent et chaotique !
Manger et ne pas être mangé : les deux impératifs à l\'origine du comportement critique des troupeaux de moutons
Manger et ne pas être mangé : les deux impératifs à l\'origine du comportement critique des troupeaux de moutons
Première mise en évidence de la transition vers l\'ordre amorphe dans les verres
Première mise en évidence de la transition vers l\'ordre amorphe dans les verres
Première mise en évidence de la transition vers l\'ordre amorphe dans les verres
Découverte expérimentale  d’événements extrêmes dissipatifs de l\'énergie, à petite échelle dans un écoulement turbulent
Découverte expérimentale  d’événements extrêmes dissipatifs de l\'énergie, à petite échelle dans un écoulement turbulent
Découverte expérimentale  d’événements extrêmes dissipatifs de l\'énergie, à petite échelle dans un écoulement turbulent
Brevet : Miniature differential pressure flow sensor.
Lancement du projet européen FET Proactive \
Bérengère Dubrulle, femme scientifique de l’année - Prix Irène Joliot Curie 2022
Comprendre la génération d\'un champ magnétique au cœur des étoiles et des planètes
Comprendre la génération d\'un champ magnétique au cœur des étoiles et des planètes
MAGENTA H2020 project
MAGENTA H2020 project
MAGENTA H2020 project
Un papillon encore plus turbulent (suite...)
Un papillon encore plus turbulent (suite...)
La statistique des séismes retrouvée dans une expérience modèle : la propagation d’une fissure unique dans une roche artificielle
Nouveau type de matière active expliquant la formation d\'agrégats bactériens
Nouveau type de matière active expliquant la formation d\'agrégats bactériens
Nouveau type de matière active expliquant la formation d\'agrégats bactériens
Conversion efficace d\'énergie thermoélectrique dans les ferrofluides
Conversion efficace d\'énergie thermoélectrique dans les ferrofluides
Conversion efficace d\'énergie thermoélectrique dans les ferrofluides
Conversion efficace d\'énergie thermoélectrique dans les ferrofluides
Conversion efficace d\'énergie thermoélectrique dans les ferrofluides
La convection thermique stellaire reproduite en laboratoire
La convection thermique stellaire reproduite en laboratoire
La convection thermique stellaire reproduite en laboratoire
Cluster Phases and Bubbly Phase Separation in Active Fluids
Modélisation quantitative de la dynamique d’un cristal liquide de bactéries
Un papillon encore plus turbulent
Un papillon encore plus turbulent
Breaking news : les solides fragiles le sont moins que prévu !
Nano-impression électrique et manipulation d’hétérostructures oxydes ferroélectriques par microscopie à force piézoélectrique
Suspension de nanoparticules magnétiques dans un liquide ionique pour la thermoélectricité : une question d\'interface Magnetic nanoparticles suspension in ionic liquid for thermoelectricity: It’s all about interface
Suspension de nanoparticules magnétiques dans un liquide ionique pour la thermoélectricité : une question d\'interface Magnetic nanoparticles suspension in ionic liquid for thermoelectricity: It’s all about interface
Gardner ou pas Gardner ? Telle est la question…
Quand turbulence \
La dynamique du champ magnétique terrestre reproduite en laboratoire
La dynamique du champ magnétique terrestre reproduite en laboratoire
Activity waves and freestanding vortices in subcritical active matter
Quand le vent nous parle...
Ondes et tourbillons dans la matière active sous-critique : un nouveau modèle
Origine de l’irréversibilité en turbulence ?

 

Retour en haut