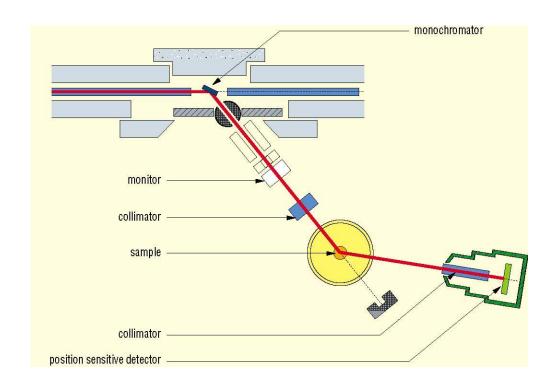
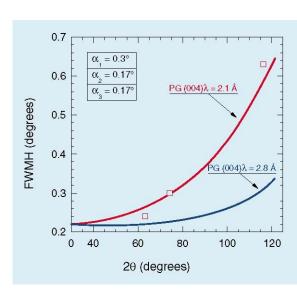
G 4-2

## Two-Axis Strain Diffractometer "DIANE"


| Beam tube                 | . Cold Neutron Guide G 5                                                                       |
|---------------------------|------------------------------------------------------------------------------------------------|
| Monochromator             | . Pyrolytic graphite (002) or (004)                                                            |
|                           | 2.3 Å ≤ λ ≤ 6 Å continuously variable                                                          |
| Type of instrument        |                                                                                                |
| Detector                  | . 100 x 100 mm <sup>2</sup> EMBL (Grenoble outstation) <sup>3</sup> He PSD                     |
| Neutron flux at specimen  | 1. TOO X TOO THIT LIMBL (GIERODIE OUISIALIOII) THE POD                                         |
| Neutron hux at specimen   | . Ca. 3.8 X TU TI CITI S AL 3 A                                                                |
| Angular ranges            |                                                                                                |
|                           | 0° < ω < 360°                                                                                  |
| Resolution                | $\Delta d/d = 1.9 \times 10^{-3}$ at $d = 2 \text{ Å}$ ( $\lambda = 2.8 \text{ Å}$ , using the |
|                           | (004) monochromator reflection)                                                                |
| Positioning table         | . with x, y and z movements: +/-75 mm x, y axes travel                                         |
| 3                         | and 300 mm z-axis travel                                                                       |
| Position repeatable       | to 1 micron (x, y, z). Samples up to 500 kg in weight                                          |
|                           | can be supported                                                                               |
| Gauge dimensions          | from 0.3 mm to 25 mm incident and outgoing beams                                               |
| dauge dimensions          | Variable in both dimensions.                                                                   |
| Data collection and       | variable in both dimensions.                                                                   |
| Data collection and       | B                                                                                              |
| instrument Control system | Personal computer (PC)                                                                         |
|                           |                                                                                                |
| Ancillary equipment       | ★ Uni-axial loading rig : ± 20 kN dynamic loading for                                          |
|                           | tension, compression and tension-compression.                                                  |
|                           | It can be mounted on positioning table                                                         |
|                           | ★ Eulerian cradle (inner diameter = 400 mm)                                                    |
|                           | $0 < \chi < 160^{\circ}$ and $0 < \phi < 360^{\circ}$ for complete                             |
|                           | stress tensor determination                                                                    |
|                           | ★ Four point bending device                                                                    |
|                           |                                                                                                |
|                           | ★ Furnace (T < 800°) for high temperature measurements                                         |
|                           |                                                                                                |

Internal and residual stresses in materials have a considerable effect on material properties, including fatigue resistance, fracture toughness and strength. Neutron diffraction provides a powerful non-destructive tool for stress analysis deep within a crystalline material. In this way, it does not need specimen preparation and samples with cumbersome geometries can be studied. The principle of the technique, called Neutron Strain Scanning, is to use crystal lattice as an atomic strain gauge to measure strain distributions with a sub-millimeter spatial resolution with an accuracy of better than 50 microstrain (50 x 10 ). The stresses are thus calculated from the measured strains by using elasticity laws. In the last years, a new diffractometer "DIANE" entirely dedicated to stress analysis was built at the Laboratoire Léon Brillouin in Saclay in collaboration with the Italian INFM (Istituto Nazionale Fisica della Materia). The instrument is a two axis diffractometer, consisting of a monochromator, a sample table and a multidetector. It is situated on the G4 cold guide of the Orphée reactor.


The monochromator is a pyrolytic graphite single crystal, using the (002) or the (004) reflection, providing a continuously variable wavelength spectrum between 2.3 Å and 5 Å. When it is possible, the preferred reflection is the (004), providing a good instrumental resolution.

The sample table has been constructed in order to support very big samples, up to 500 kg in weight. It is equipped with x-y-z translation tables and a Wrotation about the vertical axis. In this way, the residual stress field in real industrial components can be evaluated. For smaller samples (up to 5 kg weight), an Eulerian cradle, equipped with a x-y-z stage, for the determination of complete stress tensor in a point, is also available. Different sized Cd masks, ranging from 0.3 mm to 25 mm in width, just before and after the sample, are available to define the size and the shape of the gauge volume, according to the different experimental requirements. As an example, with a gauge volume of about 1 mm, a steel sample of about 30 mm thick can be investigated, whereas aluminum samples may be four times as thick.

## Two-Axis Strain Diffractometer "DIANE"



## General layout of the diffractometer G 4-2.



Instrumental resolution of G 5-2, measured with a standard germanium powder with a neutron incident wavelength of 2.8 Å and of 2.1 Å using the graphite monochromator (004) reflection.

The PSD is actually operating as a linear one dimensional detector system. The advantage of this solution with respect to the classical linear one-dimensional detector is that it has a larger effective detection area. The PSD is positioned at a distance ranging from 900 to 1200 mm from the sample, with an angular aperture of  $4^{\circ}\text{-}6^{\circ}$  in  $2\theta$  and an electronic resolution of about  $0.03^{\circ}\text{-}0.02^{\circ}$ . In this way complete Bragg peaks are recorded in single exposure type measurements, reducing the measuring time with respect to a single detector.

A new device for in situ mechanical loading of test samples during neutron diffraction strain measurements has been installed. It can be mounted on the neutron diffractometer and can be aligned with the loading direction parallel or perpendicular to the scattering direction for measurements of longitudinal and transverse strains. The capacity of the applied load cell is 20 kN and it is controlled by a pneumatic system. Different jaws of grips are available in order to study different specimen geometry.

Responsible: V. Klosek e-mail: vincent.klosek@cea.fr

LLB edition - 2015