Aging, rejuvenation and memory: the example of spin glasses

F. Bert, J.-P. Bouchaud, V. Dupuis, J. Hammann, D. Hérisson, F. Ladieu, M. Ocio, D. Parker, <u>E. Vincent</u>

Service de Physique de l'Etat Condensé, CEA Saclay, France (CNRS URA 2464)

Osaka University, Kawamura's group, Nov. 24th 2006

- 2. Slow dynamics and aging
- 3. Rejuvenation and memory

- 2. Slow dynamics and aging
- 3. Rejuvenation and memory

SPIN GLASS: TYPICAL BEHAVIOUR

 $FC \equiv Field$ -Cooled magnetization $ZFC \equiv Zero$ -Field Cooled magnetization $TRM \equiv Thermo$ -Remanent Magnetization

> ZFC(t)+TRM(t) = FC(t)Nordblad et al, JMMM <u>54</u>, 185 (1986)

Superspin Glass

- Small enough ferromagnetic nanoparticle \rightarrow single domain magnetism
- T<<T_c : response of single nanoparticle ~ response of single spin
 → a 'superspin'

• Varying concentration of nanoparticles in a liquid dispersion changes dipoledipole interparticle interaction

Dilute nanoparticle system superparamagnet (non-interacting superspins)
Concentrated nanoparticle system Superspin glass (interacting superspins)

• To what extent do superspin glasses behave like atomic spin glasses?

Parker et al, *J. Appl. Phys.* **97**, 10A502 (2005)

The increase of T₀ indicates an enhancement of interactions

2. Slow dynamics and aging

3. Rejuvenation and memory

Spin glasses: slow dynamics + aging

t_w [min]-

300

100

30

10

1000

1. dc : Thermo-Remanent Magnetization (TRM)

Uppsala, Sweden (Lundgren, Nordblad...) 80' Saclay, France (Hammann, Ocio, Alba, Vincent...) 0,14 $CdCr_{1.7}In_{0.3}S_4$ 0,13 $M = f(t, t_w)$ Т 0,12 $m = M/M_{FC}$ Тg 0,11 0,14 0,13 Т 0.12 0,10 t t, ΜN 0,10 0,09 0,09 ٦ 0,08 0,08 Ht 0,07 0,06 0.07 1E-4 1E-3 0.01 0.1 100 10 = 12 K = 0.7 T_g t/t 0,06 t_{w} : waiting time t: observation time 0.1 10 100 1000 t [min]

> Non-stationary dynamics : (t, t_w) (dc) Scaling variable : $\sim t / t_w$ (dc)

FD relation graph (« CuKu graph »)

D. Hérisson and M. Ocio, *Phys. Rev. Lett.* **88**, 257202 (2002)

Eur. Phys. J. B 40, 283

(2004)

Miguel Ocio (1943-2003) D. Hérisson PhD thesis

- clear 1/T regime, and crossover to aging regime $1/T_{eff}$
- vanishing t_w -dependence in the 'extrapolation' $\rightarrow T_{eff} = f(C)$
- not domain growth-like (1/T_{eff}=0, horizontal lines)
- 1-step RSB type models: *straight lines of slope 1/T_{eff} compatible*
- continuous RSB models (SK, mean-field spin glass): $\chi = 1 \sigma = (1 C)^{0,47}$ (dashed line)

- 2. Slow dynamics and aging
- 3. Rejuvenation and memory

Aging, rejuvenation and memory: basic observation

« Negative temperature cycling » of a spin-glass (1992)

T \downarrow : rejuvenation, restart of the relaxation T \uparrow : memory, no effect of the time spent at T- \varDelta T

In simulations:

no rejuvenation and memory effects in the Ising spin glass ? Tokyo (Takayama group), Roma (Parisi group), ...

Recently: rejuvenation and memory effects in the Heisenberg spin glass Berthier & Young (2005)

Experiments on <u>Ising</u> and <u>Heisenberg</u> spin glasses: see *PRL* **92**, 167203 (2004) (nature of the Heisenberg spin-glass phase ? <u>chiral glass</u> à la Kawamura ?)

Multiple rejuvenation and memory effects in a spin glass

Uppsala / Saclay *PRL* **81**, 3243 (1998)

more details and references in cond-mat/0603583

Rejuvenation and memory effects in terms of spins? <u>not simply domain growth-like</u>

Aging at fixed T : growth of SG-order up to some coherence length L_T^*

Rejuvenation ⇒ different equilibrium correlations at different T's (chaos-like ?)

Memory \Rightarrow

L^{*}_n << << L^{*}₂ << L^{*}₁ • *hierarchy of length scales* • *net separation of L_i*'s with

temperature (« T-microscope » effect) A microscopic mechanism for rejuvenation and memory ?

S.Miyashita and E.V., EPJ B 22, 203 (2001)

1) Temperature dependent effective interactions *(due to frustration)* Example :

A microscopic mechanism for rejuvenation and memory ?

2) Memory spots

(due to inhomogeneity of interactions) Example:

<u>In a real spin glass :</u>

should occur naturally at various length/energy scales

Spin glass : rejuvenation vs cooling rate effects

MEMORY EFFECT IN NANOPARTICLES

 γ -Fe₂O₃ nanoparticles, d~8.5nm, f_v=35%

Conclusions

 Spin glasses : aging effects waiting time dependence of ac+dc susceptibility, and in noise similar to aging in structural and polymer glasses Effect on aging of thermal history: rejuvenation and memory phenomena (T-specific) cooling rate effects (T-cumulative) Rejuvenation and memory : aging at different temperatures can take place at well-separated length scales \leftrightarrow hierarchy of embedded coherence length scales, selected by T (microscope effect) Same scenario in other glassy systems ? probably yes (R&M in nanoparticles, PMMA, gelatine ...)

more details and references in cond-mat/0603583