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Chapter 1

Résumé détaillé

1.1 Présentation générale

La Résonance Magnétique (RM) est une méthode de caractérisation permettant de sonder
les propriétés de la matière. Cette technique est largement utilisée car sa seule condition
est la présence de spins, omniprésents dans la matière tant dans les électrons que dans
les noyaux. La fréquence de Larmor des spins ωs, accordée par l’application d’un champ
magnétique statique B0, permet aux spins d’absorber un champ électromagnétique à la
même fréquence ωs. Dans la RM à Onde Continue (CW), cette absorption se manifeste par
une modification du coefficient de réflexion, mesurable à l’aide d’un analyseur de réseau.
En RM pulsée, la dynamique du spin est sondée en utilisant des séquences d’impulsions
résonantes. La RM donne accès à toutes les propriétés intéressantes du spin : densité
de spin, fréquence de résonance, temps de relaxation, fluctuations magnétiques locales...
[Abr11; AB12]. Cette méthode de détection est utilisée sur une grande variété de systèmes
de spin, que ce soit en Résonance de Spin Électronique (ESR) ou en Résonance Magnétique
Nucléaire (RMN), et trouve des applications en biologie [Yos+96], en biochimie [Pol06]
et en sciences du solide [Sli55]. Cette diversité d’application correspond à des contraintes
expérimentales variées, telles que la température de l’échantillon et la fréquence ωs.

Cette thèse traite de la spectroscopie ESR d’impuretés paramagnétiques dans un cristal,
à des fréquences micro-ondes (5-10 GHz) pour des champs B0 dans la gamme 50-500 mT.
Les spins sont couplés à un résonateur micro-ondes de fréquence ω0 avec une force g0. La
méthode habituelle de détection des spins dans l’ESR pulsé est appelée Détection Inductive
(ID) [Rab+38; Blo46; PTP46]. Les spins sont sondés par des séquences d’impulsions
micro-ondes qui conduisent à une polarisation transversale macroscopique transitoire ⟨SX⟩.
La précession de Larmor de cette aimantation induit l’émission d’une impulsion micro-ondes
appelée écho de spin. Cet écho de spin est détecté par amplification et démodulation, et son
amplitude et sa phase codent les propriétés du spin. Les appareils d’ID-ESR disponibles
dans le commerce ne peuvent détecter que de grands ensembles de spins, supérieurs à 109

spins [Abh+22]. Dans ce contexte, il est très souhaitable d’augmenter la sensibilité de
l’ESR tout en préservant sa variété d’application.

Plusieurs méthodes ont été proposées et mises en œuvre pour augmenter fortement la
sensibilité ESR [WF16]. L’une d’entre elles consiste à utiliser la charge de l’électron porteur
du spin pour se coupler au champ électrique du résonateur, ce qui permet d’obtenir un
couplage généralement supérieur de plusieurs ordres de grandeur au couplage avec le champ
magnétique [Xia+04]. Cette méthode utilise une structure de transistor basée sur des
matériaux semi-conducteurs, ce qui limite considérablement ses possibilités d’application.
Une autre approche consiste à utiliser une pointe pour focaliser le champ magnétique
au-dessus d’un cantilever mécanique. Cette méthode a un très petit volume de mode, de
l’ordre de nm3, ce qui permet de balayer une surface mais reste aveugle aux propriétés

9



Chapter 1. Résumé détaillé

dans le volume de l’échantillon. Une autre idée consiste à contourner la limitation due à la
faible énergie des micro-ondes en utilisant des systèmes de spin qui présentent également
des transitions dans le domaine optique [Riz+22]. Les centres NV dans le diamant ainsi
que les ions Erbium sont de tels systèmes où la sensibilité d’un seul ion a déjà été atteinte
par méthode optique [Gru+97; Yin+13]. Cependant cette méthode ne s’applique qu’aux
quelques systèmes de spin avec une transition optique, ce qui limite beaucoup sa variété
d’application. Une méthode ESR générale et très sensible est à trouver ailleurs.

Au sein du groupe Quantronique, notre approche, dirigée par Patrice Bertet, consiste
à appliquer les techniques de l’Électrodynamique de Circuit Quantique (cQED) [HR06;
Wal+06] pour réaliser une ESR très sensible. La cQED utilise des circuits supraconducteurs
refroidis à la température du millikelvin. Ces circuits offrent de nouveaux dispositifs utiles
pour la détection des champs micro-ondes : résonateurs micro-ondes à faible volume et à
facteur de qualité élevé, Amplificateurs Paramétriques Josephson à limitation quantique
(JPA) et, plus récemment, détecteurs de photons micro-ondes uniques (SMPD) à base de
qubits. Ces circuits peuvent être appliqués à la spectroscopie ESR. Dans nos expériences,
nous utilisons des micro-résonateurs supraconducteurs pour détecter les spins: le faible
volume de leur mode magnétique permet une augmentation significative du couplage
spin-photon, jusqu’à g0/2π ∼ 1 kHz. Avec un couplage aussi important, les spins résonants
avec la cavité ont tendance à se relaxer de manière dominante par émission spontanée d’un
photon micro-onde, atteignant un nouveau régime pour la RM appelé régime de Purcell,
vu pour la première fois par Audrey Bienfait [Bie+16].

En utilisant de tels micro-résonateurs combinés à des JPA pour l’amplification sans
bruit du signal d’écho, l’ID-ESR s’est avéré atteindre une très haute sensibilité de ∼ 10
spins dans le travail de Vishal Ranjan [Ran+20a], mais a finalement été limité par le bruit
inévitable du champ du vide. En 2020, une nouvelle méthode qui permet de surmonter
cette limite fondamentale a été proposée et démontrée dans notre groupe: l’ESR détectée
par fluorescence ou FD-ESR [Alb+21]. L’idée est de détecter les photons micro-ondes
émis spontanément par les spins lors de leur relaxation radiative. Pour cela, nous utilisons
un SMPD récemment développé dans notre groupe par Emmanuel Flurin [Les+20]. La
preuve de principe de la FD-ESR a été obtenue par Emanuele Albertinale en détectant
des donneurs de Bismuth dans le Silicium [Alb+21; Alb21]. Cependant, la généralité
des possibilités d’application de la FD-ESR restait à prouver, ainsi que son avantage en
terme de sensibilité par rapport à l’ID-ESR. Ma thèse s’est déroulée en parallèle avec celle
de Léo Balembois, qui a travaillé à développer une nouvelle génération de SMPDs aux
caractéristiques améliorées.

Dans cette thèse, nous appliquons la FD-ESR aux ions de terres rares (REI) dans un
cristal de Scheelite de CaWO4, et en particulier aux ions Er3+. Ce système a été caractérisé
par ID-ESR dans notre groupe par Marianne le Dantec et Milos Rančić, et a montré des
propriétés de long temps de cohérence prometteuses pour des applications en informatique
quantique [Le +21; Le 22].

Dans cette thèse, nous prouvons que la FD-ESR est une méthode de carac-
térisation générale qui donne la même information sur les spins que l’ID-ESR
mais avec une plus grande sensibilité pour la détection de petits ensembles de
spins.

Ce manuscrit débute par trois chapitres de "contexte théorique" qui présentent au
lecteur les concepts de base nécessaires à la compréhension de notre travail. Dans le
Chapter 3, nous décrirons l’ESR réalisée dans le régime quantique sur un ensemble de
spins. Puis dans le Chapter 4, nous expliquerons le principe et les potentialités de deux
méthodes de détection: la détection en quadrature de champ et la détection de photons.
Ensuite, dans le Chapter 5 nous considérerons la physique des REI dans la Scheelite et
détaillerons quelques résultats de mesure obtenus avant la réalisation de cette thèse par
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Marianne Le-Dantec employant l’ID-ESR appliquée aux ions Erbium .

Dans le Chapter 6, nous décrivons les systèmes expérimentaux qui ont été utilisés
pour recueillir les données présentées dans cette thèse. L’échantillon étudié dans cette
thèse est un cristal de CaWO4 fabriqué et d’abord pré-caractérisé par ESR standard en
collaboration avec d’autres laboratoires. Nous décrivons les installations à température
ambiante et cryogénique permettant de réaliser l’ESR et nous présentons ensuite au lecteur
des mesures ESR typiques réalisées soit avec l’ID soit avec la FD.

Nous montrons expérimentalement dans le Chapter 7 que la FD-ESR est une méthode
de détection qui peut être appliquée à une grande variété d’espèces de spin et qu’elle a
une plus grande sensibilité que l’ID-ESR. Nous enregistrons pour cela des spectres avec
la FD-ESR sur une large gamme de champ magnétique révélant de nombreuses espèces
de spin. Parmi ces spins, nous décidons de manipuler des ions Erbium pour réaliser les
expériences de FD-ESR dans la suite de cette thèse. Nous étudions le signal de fluorescence
de spin car une meilleure compréhension de ce nouveau type de signal donne accès à des
informations supplémentaires sur le spin. Nous enregistrons le signal pour différentes forces
d’excitation et le reproduisons avec des simulations, prouvant par là que notre modèle de
simulation décrit bien la physique de notre expérience. L’amélioration de la sensibilité
étant au cœur de notre recherche, nous comparons le rapport Signal Sur Bruit (SNR) de la
FD-ESR et de l’ID-ESR et montrons un avantage pour la FD-ESR. Par conséquent, nous
validons la FD-ESR comme une méthode de spectroscopie de très haute sensibilité.

Grâce à la haute sensibilité de la FD-ESR, nous remarquons un phénomène qui était
resté invisible avec l’ID-ESR. Nous présentons dans le Chapter 8 la corrélation entre la
fréquence de résonance et le temps de relaxation pour un sous-ensemble de spin fortement
couplé au résonateur supraconducteur. Comme les simulations montrent que la contraction
thermique du fil du résonateur devrait induire une déformation du réseau cristallin, nous
attribuons cet effet à des contraintes mécaniques locales. Cet effet, connu pour d’autres
systèmes de spin [Pla+18], a été mesuré à différentes orientations de B0 et nécessiterait
un travail théorique supplémentaire pour être compris. L’homogénéité du couplage des
sous-ensembles de spin nous permet de les manipuler dans une oscillation cohérente. Par
conséquent, nous démontrons que la FD-ESR est une méthode de détection prometteuse
pour manipuler de manière cohérente un petit ensemble de spins.

Finalement, dans le Chapter 9, nous détectons les échos de spin avec la FD-ESR,
prouvant que cette méthode de détection est adaptée à toutes les applications standard
de la RSE [Bil+22]. Une séquence de pulses d’écho de Hahn suivie d’une impulsion de
restauration sont employées pour convertir la composante de spin ⟨SX⟩ en composante ⟨SZ⟩,
visible par FD-ESR [BHP73; OMG88]. Après avoir prouvé que nous sommes effectivement
capables de détecter la contribution de l’écho dans le signal de fluorescence, nous utilisons
la FD-ESR pour caractériser les propriétés cohérentes des spins. Nous détectons comment
l’amplitude de l’écho évolue dans le temps et montrons une modulation de l’enveloppe
de l’écho des spins électroniques (ESEEM) ainsi qu’un temps de cohérence d’environ 4
ms. Grâce à des mesures antérieures obtenues avec l’ID-ESR, nous savons que ce temps
de cohérence est limité par un bruit de champ magnétique, nous développons donc une
procédure de détection basée sur les fluctuations du signal pour accéder avec la FD-ESR
au temps de cohérence intrinsèque des spins. Nous comparons le SNR des deux méthodes
de détection appliquées à la détection de l’écho de spin et trouvons à nouveau un avantage
pour la FD-ESR.
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Figure 1.1: Principe de l’expérience et signal de fluorescence de spin. a. Schéma du
réseau cristallin CaWO4 centré sur un ion REI χ3+ qui a remplacé un Ca2+. Les oxygènes
sont supprimés pour plus de clarté. Un degré de liberté de spin est représenté pour le
REI ainsi que pour certains atomes de W. La symétrie cristalline est tétragonale autour
de l’axe c, ce qui signifie que les axes a et b sont équivalents. b. Forme du résonateur
2D de fréquence ω0/2π ≈ 7 GHz (rouge) fabriqué dans le plan (a, b) sur la surface de
l’échantillon (gris). Le fil du résonateur est le long de l’axe x (angle φw = 51 ◦) et B0 est
dans le plan (a, b) (angle φ). La section transversale de l’échantillon sous le fil de 2 µm
de largeur (rectangle rouge) présente la distribution spatiale du couplage g0 et du taux
radiatif correspondant ΓR (lorsque φ = 30 ◦). c. Illustration du montage 1, où chaque
spin j est couplé avec une force g0,j au résonateur avec des taux d’amortissement à la
ligne κc,1 et aux pertes internes κint,1. Les circulateurs permettent d’utiliser la même
ligne micro-ondes pour exciter les spins (impulsions carrées noires) et pour acheminer le
signal de spin (rouge et bleu) vers l’appareil de détection. Le signal peut être détecté soit
avec la FD-ESR en utilisant SMPD1, soit avec l’ID-ESR grâce à un JPA dans la ligne de
détection. L’orientation de B0 est fixée à φc = 47 ◦. d. Illustration du montage 2, avec
les caractéristiques du résonateur κc,2 et κint,2. Ce montage est adaptée uniquement pour
réaliser la FD-ESR et permet de modifier l’orientation φ du champ magnétiques. e. Courbe
de fluorescence typique prise avec le montage 2. Panneau supérieur : schéma de la séquence
de détection de spin où une impulsion d’amplitude β et de durée ∆t excite les spins qui
se relaxent ensuite en émettant des photons de fluorescence (courbe rouge), détectés et
intégrés sur une période Tint pour produire un nombre de comptes ⟨C⟩ (surface orange).
Panneau du milieu : les clics (barres verticales) se produisent avec une probabilité plus
élevée à des temps courts après l’excitation. Panneau du bas : taux de compte instantané
⟨Ċ⟩ (cercles), moyenné sur 100 itérations, qui décroît jusqu’à un taux de fond ⟨Ċbg.⟩ (ligne
noire pointillée).
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1.2 Résultats de la thèse

1.2.1 Système expérimental

Dans cette thèse, nous appliquons la FD-ESR aux REIs dans un échantillon de CaWO4.
Les ions REI sont naturellement présents dans le CaWO4 en substitution des ions Ca2+.
Certains ions REI, une fois insérés dans un cristal, se comportent comme des ions de
Kramers [Kra30] présentant un degré de liberté de spin. Nous nous concentrons ici sur
la résonance magnétique dans le cas d’un spin électronique qui se comporte comme un
spin-1/2. Comme le montre Figure 2.1a, les sites Ca2+ ont une symétrie tétragonale qui
induit la même symétrie sur les propriétés de spin [Enr71; Ber+09] : le tenseur g de spin
est anisotrope avec gc ̸= ga,b. La grande valeur de g dans le plan (a, b) pour plusieurs
REIs (les ions Erbium ont ga,b = 8.38) motive leur étude avec l’ESR car ils nécessitent un
champ résonnant B0 relativement faible et présentent un fort couplage magnétique dans
ce plan. Le choix de CaWO4 comme substrat est guidé par sa faible densité d’impuretés
paramagnétiques, essentiellement dominée par la fraction de l’isotope 183W qui possède
un spin nucléaire. L’échantillon a été produit sans dopage et nous utilisons les impuretés
REIs résiduelles. Une fois l’échantillon arrivé dans le Groupe Quantronique, Marianne Le
Dantec, une doctorante qui a précédé ce travail de thèse, a caractérisé de manière très
détaillée les propriétés des ions Erbium en utilisant l’ID-ESR [Le 22; Le +21].

Nous fabriquons sur la surface de l’échantillon dans le plan (a, b) un résonateur supracon-
ducteur 2D en Niobium tel que représenté dans Figure 2.1b. Le résonateur est caractérisé
par sa fréquence de résonance ω0/2π et ses interactions avec son environnement, avec un
taux d’amortissement dans la ligne κc et un taux d’amortissement dans ses pertes internes
κint qui se combinent en un taux total κ = κc + κint. Le résonateur est formé par des
capacités interdigitées reliées par un fil inductif de 2 µm de large. Ce fil couple magné-
tiquement le mode du résonateur aux spins avec une force de couplage g0(r) dépendant
de la position r du spin dans le substrat. Le champ intracavité α peuplant le mode du
résonateur entraîne le spin j de fréquence ωj/2π à la position r avec une fréquence de
Rabi ΩR(r). En faisant varier l’amplitude du champ dans le résonateur, on peut sonder
les spins à différentes distances du fil. Ensuite, les spins peuvent relaxer leur énergie soit
de manière non radiative avec un taux ΓNR, typiquement en émettant un phonon dans
le réseau cristallin, soit de manière radiative avec un taux ΓR, en émettant des photons.
Dans notre système, le taux de relaxation radiatif du spin est dominé par l’influence
du résonateur en raison de l’effet Purcell, ce qui donne ΓR = g2

0κ/(∆ω2 + (κ/2)2) avec
∆ω = ω0 − ωi le désaccord de fréquence du résonateur avec le spin. Ce taux est crucial
dans notre expérience car les photons émis radiativement par les spins sont détectables
avec la FD. La section transversale dans Figure 2.1b représente la distribution spatiale de
g0 et de ΓR sous le fil.

Figure 2.1c et Figure 2.1d sont les schémas des principaux composants micro-ondes mis
à température cryogénique dans les 2 montages expérimentaux utilisés dans cette thèse.
Dans le montage 1, l’échantillon est connecté à la fois au SMPD1, un SMPD de la première
génération, et à un Amplificateur Paramétrique Josephson (JPA) et peut donc être mesuré
soit avec la FD-ESR soit avec l’ID-ESR. Dans le montage 2, les mesures ne peuvent être
effectuées qu’avec la FD-ESR utilisant le SMPD2, un SMPD de la deuxième génération.
Dans ce 2e montage, le champ B0 est généré par deux bobines de Helmotz qui permettent
de changer la direction du champ φ dans le plan (a, b).

Une courbe typique de fluorescence de spin détectée avec la FD-ESR après une impulsion
d’excitation d’amplitude β et de durée ∆t appliquée à t = 0 est visible dans Figure 2.1e,
avec une illustration de la séquence d’impulsion. Les résultats du SMPD sous forme de clics
cj , pour le cycle j se produisant à un temps de cycle tj et dont la valeur est soit 0 soit 1, sont
représentés par des barres verticales qui montrent un excès d’occurrence après l’impulsion.
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Le taux de ces clics Ċ, appelé taux de compte, apparaît comme une mesure directe de
la fluorescence du spin. Le signal est moyenné sur plusieurs itérations, ce qui donne ⟨Ċ⟩.
Le cycle SMPD se répète pendant toute la durée Trep entre deux séquences d’impulsions
successives. Le taux de compte moyen décroit jusqu’au taux de fond ⟨Ċbg⟩ = ⟨Ċ(t = Trep)⟩.
Pour extraire une valeur unique d’une courbe de fluorescence de spin, nous additionnons les
comptes sur un temps d’intégration Tint pour obtenir les comptes intégrés ⟨C⟩. Cependant,
comme une partie des photons intégrés sont des faux positifs, on peut choisir de supprimer
les contributions du bruit de fond pour conserver une quantité directement proportionnelle
au nombre de spins : ⟨Cspin⟩. [Alb+21; Bil+22]

1.2.2 Spectroscopie à large échelle

Dans Section 7.1, nous décrivons des spectres FD-ESR pris sur une grande échelle
d’amplitude B0 et d’orientation φ. A chaque valeur de B0 et φ, nous envoyons une
impulsion de fréquence ω0/2π au résonateur et mesurons le signal de spin résultant. Nous
présentons une telle spectroscopie dans le panneau de gauche Figure 2.2a avec B0 variable,
où les nombreux pics différents avec des couleurs indiquent que la FD-ESR détecte une
grande variété d’espèces de spin présentes dans notre échantillon. Certains de ces pics sont
directement attribués à des espèces connues, telles que Er3+ et Yb3+, tandis que d’autres
restent inconnus. Une caractéristique intéressante de la FD-ESR est d’avoir accès à la
courbe de fluorescence de spin qui donne des informations supplémentaires sur le spin.
Dans le panneau de droite de Figure 2.2a, nous traçons la courbe de relaxation mesurée à
chaque pic et les comparons pour étayer l’attribution à des systèmes de spin.

La spectroscopie peut également être réalisée en faisant varier l’orientation du champ
dans le plan (a, b), comme le montre l’illustration Figure 2.2b. Ce motif de rotation est
riche en informations sur le spin car nous pouvons observer l’évolution des caractéristiques
des pics avec φ telle que la largeur de ligne spectrale, l’amplitude du signal ou les courbes
de relaxation. Dans le graphique, nous observons des pics qui restent fixes en B0, comme
la ligne d’Erbium à B0 ≈ 59 mT, et d’autres pics qui évoluent avec φ. Cette spectroscopie
est cohérente avec des expériences similaires réalisées avec l’ID-ESR. [Le 22]

Dans la suite du manuscrit, nous fournissons une étude plus détaillée de Er3+:CaWO4
en utilisant FD-ESR. Nous montrons dans Figure 2.2c l’évolution de la largeur de raie Γinh
de l’Erbium et de l’amplitude de raie à différents φ. L’amplitude atteint un maximum à
φ0 = 30◦, qui est l’orientation typique utilisée pour la manipulation du spin de l’Erbium
dans le montage 2 afin de maximiser le signal.

1.2.3 Le signal de fluorescence

Dans Section 7.2, nous étudions et reproduisons à l’aide de simulations la fluorescence de
spin afin de mieux comprendre ce signal de spin facilement accessible avec la FD-ESR.
Nous appliquons une impulsion d’excitation unique de force variable ϵ = β × ∆t aux spins
et enregistrons ⟨Ċ⟩ après l’impulsion. Le résultat est comparé à la même quantité simulée
avec un modèle d’équation maîtresse [Ran+20b], tel que présenté dans Figure 2.3 pour 4
valeurs de ϵ réparties sur 3 ordres de grandeur. La simulation inclut la distribution de spin
inhomogène en fréquence et en couplage. La courbe de relaxation de l’ensemble des spins
provient de la contribution de chaque spin j, dont la composante longitudinale ⟨SZ,j⟩ se
relaxe à la fois par rayonnement avec un taux dépendant de la position ΓR,j et de façon non
radiative avec un taux constant ΓNR. Comme la forme de la courbe est caractéristiques
d’une force d’excitation ϵ, nous pouvons faire correspondre une forme de courbe simulée à
une forme de courbe mesurée pour calibrer l’atténuation de la ligne d’entrée et trouvons
AdB = 84, 5 dB. Une fois l’amplitude de l’impulsion calibrée, seule l’efficacité totale de
détection du spin η reste un paramètre libre et peut être déterminée comme le rapport
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a

b c

Figure 1.2: Spectroscopie avec FD-ESR. a. Panneau de gauche: signal de spin
⟨Cspin⟩ en fonction de l’amplitude du champ B0 qui montre plusieurs signaux de spin (pics
colorés). La position des pics permet d’attribuer Er3+ (orange) et Yb3+ (vert) avec un
couplage hyperfin (symboles hexagonaux) ou sans (symboles circulaires), tandis que d’autres
pics restent inconnus (symboles en croix). Panneau de droite : courbe de fluorescence
normalisée avec le taux de faux positifs α soustrait pour chaque signal de spin détecté
dans la spectroscopie. Les courbes de fluorescence sont regroupées entre pics de faible
champ magnétique (panneau supérieur), entre pics associés à Yb3+ (panneau central) et
entre pics inconnus (panneau inférieur). b. Motif de rotation où nous traçons ⟨Cspin⟩
en fonction de B0 et φ. De nombreux pics sont visibles, certains montrant un champ
résonnant indépendant de φ alors que la position d’autres pics dépend fortement de φ. La
ligne d’Erbium est fixée à B0 ≈ 59 mT. c. Spectroscopie avec dépendance angulaire de la
raie de l’Erbium. Les données sont ajustées avec une Lorentzienne donnant une largeur de
raie inhomogène Γinh avec un minimum à φ0 = 30◦.

entre le nombre de comptes simulé et mesuré, ce qui donne η = 0, 15. Cependant, nous
observons des divergences entre la simulation et les données pour les faibles valeurs de
ϵ que nous attribuons à l’effet des déformations du crystal, non pris en compte dans les
simulations.

1.2.4 Sensibilité de la détection

Dans Section 7.3, nous avons comparé le SNR de la FD-ESR et l’ID-ESR dans des
conditions d’excitation de spins très similaires afin de confirmer l’intérêt de la détection
par fluorescence pour améliorer la sensibilité de la détection de spin. Pour l’ID-ESR, le
signal est l’intégration de l’écho de spin Xe, exprimé dans son unité naturelle grâce à la
calibration du nombre de photons de l’écho effectuée avec le SMPD. Pour la FD-ESR, le
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Figure 1.3: Signal de fluorescence et simulations à différentes forces d’excitation.
Courbes de relaxation du spin avec soustraction du fond (points bleus) comparée aux
simulations (courbe rouge) suite à une impulsion d’excitation unique pour différentes
forces ϵ avec l’étiquette des graphiques basée sur Table 7.1 : ϵ = 4.9 × 103 ns1/2 pour a,
ϵ = 1.4 × 104 ns1/2 pour e, ϵ = 1.0 × 105 ns1/2 pour i, ϵ = 2.2 × 106 ns1/2 pour m. Pour
calculer ces courbes de simulation, nous avons calibré l’atténuation dans la ligne AdB = 84.5
dB et considéré une efficacité de détection totale η = 0.15.

signal est le nombre de coups intégrés sur un temps optimal Tint avec le fond soustrait. Les
deux types de mesures sont répétés plusieurs fois afin d’obtenir des statistiques, comme
le montre l’illustration Figure 2.4a. Les résultats permettent de comparer SNRID avec
SNRFD dans Figure 2.4b. Dans le régime de faible ϵ, la FD-ESR présente un gain de SNR
allant jusqu’à un facteur 16 par rapport à l’ID-ESR, tandis que ce gain diminue à plus
haute valeur de ϵ. Par conséquent, la FD-ESR est adaptée pour améliorer la sensibilité
de l’ESR afin pour la détection de petits ensembles de spins avec une relaxation radiative
rapide.

1.2.5 Spectroscopie d’ions sous contraintes méchaniques

Dans Chapter 8, nous utilisons la haute sensibilité de la FD-ESR pour mesurer un
phénomène qui n’avait pas été détecté jusqu’à présent : un élargissement et une dis-
torsion du spectre REI par déformation mécanique du crystal. Nous remarquons que le
spectre de l’erbium est très différent lorsqu’il est pris à une force d’impulsion ϵ faible ou
élevée, comme on peut le voir dans Figure 2.5a. Bien que le spectre à forte intensité ϵ puisse
être ajusté par une Lorentzienne qui définit ce que nous appelons la ligne principale dans
la suite, le spectre à faible intensité ϵ est élargi, asymétrique, et présente une corrélation
entre un temps de relaxation radiative plus court et la position dans la ligne. Cela signifie
que les spins plus proches du résonateur, qui se relaxent radiativement plus rapidement en
raison de leur couplage plus élevé au résonateur, sont décalés en fréquence de résonance.
De tels décalages ont été observés précédemment avec les ions de Bismuth dans le silicium,
également mesurés par des micro-résonateurs. Ils se produisent en raison de la contraction
thermique différentielle entre le fil métallique inductif et le cristal hôte [Pla+18]. Dans le
cas de l’Erbium dans CaWO4, la contrainte modifie le champ cristallin et donc le tenseur
gyromagnétique du REI [Kie66; Mim65]. Pour explorer ce phénomène, nous mesurons les
spectres d’ions Erbium avec des impulsions de faible ϵ à différents angles φ. Les résultats
dans Figure 2.5b montrent comment la forme asymétrique évolue des deux côtés de la
ligne principale, en fonction de φ. Nous ajustons chaque spectre avec une Lorentzienne
asymétrique et trouvons que l’asymétrie γ × Γinh est apparemment antisymétrique autour
de φ0. La compréhension complète de l’effet des contrainte mécaniques sur les ions Erbium
nécessiterait un travail théorique plus approfondi et n’entre pas dans le cadre de cette
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a b

Figure 1.4: comparaison du SNR entre l’ID et le FD. a. Distribution du signal pour
l’ID-ESR (panneau supérieur) et la FD-ESR (panneau inférieur) ajustée avec une fonction
gaussienne (ligne solide plus foncée), montrant leur valeur moyenne (ligne pointillée noire).
Les graphiques sont alignés sur 0 et ont une largeur de 14 fois l’écarts types permettant une
comparaison visuelle. b. Panneau supérieur : SNRID (vert) et SNRFD (bleu) à différents ϵ
comme détaillé dans Table 7.2 et Table 7.3. Le rapport SNR est calculé en utilisant une
interpolation linéaire de SNRID (ligne continue verte). Panneau inférieur : rapport des
SNR des deux méthodes.

thèse.
Une conséquence intéressante de la contrainte mécanique est la séparation de la ligne

principale d’un sous-ensemble de spins avec un couplage relativement homogène geff. En
plaçant le champ magnétique à côté de la ligne principale, nous pouvons n’interagir
qu’avec ces spins fortement couplés. Dans Figure 2.5c, nous fixons B0 = 59.7 mT et
manipulons de manière cohérente les spins en résonance en faisant varier la durée de
l’impulsion d’excitation ∆t. Une oscillation cohérente est visible et est finalement amortie,
probablement par l’inhomogénéité de couplage restante. En réglant le champ plus près de
la ligne principale, nous pouvons sélectionner un sous-ensemble de spins avec un plus petit
geff et voir effectivement un ralentissement de la fréquence de Rabi effective.

1.2.6 Détection d’écho de spin par fluorescence

Dans Chapter 9, nous présentons la détection de l’écho de spin par FD-ESR. Comme
la FD-ESR est sensible à la composante de spin ⟨SZ⟩, nous utilisons une séquence de
trois impulsions ϵ/2X − τ − ϵY − τ − ϵ/2Φ, qui consiste à appliquer une impulsion de
restauration de phase Φ après la séquence d’écho de Hahn, pour projeter l’écho de spin
sur l’axe Z. Nous confirmons dans Figure 2.6a que le signal ⟨Cspin(Φ)⟩ possède une
partie incohérente constante modulée par une partie cohérente dépendant de la phase de
l’impulsion de restauration Φ. Les simulations permettent de reproduire ce signal avec
une bonne fidélité pour la partie incohérente et une modulation cohérente légèrement plus
importante, différence que nous attribuons à l’ESEEM, la modulation du signal due à
l’oscillation des spins nucléaires voisins du spin l’électronique. En mesurant l’évolution d’un
signal proportionnel à l’écho de spin Cecho = [C(Φ = 0) − C(Φ = π)]/2, nous observons la
forme de l’écho, visible dans Figure 2.6b, ainsi que la modulation du signal ESEEM, visible
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a b

c

Figure 1.5: Spectre asymétrique d’ions sous contraintes mécaniques et oscillations
cohérentes. a, panneau supérieur : spectroscopie normalisée de la raie de l’Erbium à
haut ϵ (points rouges) ajustée avec une Lorentzienne (ligne rouge) qui définit la raie
principale et une spectroscopie à bas ϵ (bleu). Panneau inférieur : T1,eff en fonction de B0
déduit des ajustements exponentiels sur les courbes de relaxation des données du spectre à
faible valeur de ϵ. Les barres d’erreur représentent le 1σ des ajustements. b, panneau de
gauche : spectres à faible valeur de ϵ pour différents φ (points) et ajustement lorentzien
asymétrique à l’aide de Equation 8.1 (ligne). Panneau de droite : skewness γ ×Γinh (points)
et ajustement en utilisant Equation 5.14 (ligne). Les barres d’erreur représentent le 1σ des
ajustements. c. ⟨Cspin⟩ en fonction de la durée de l’impulsion ∆t (points) à B0 = 59, 7 mT
et φ = φ0, avec la séquence d’impulsion représentée. La ligne continue est un ajustement
utilisant Equation 8.3. Les barres d’erreur sont des statistiques à 1σ.

dans Figure 2.6c. Nous caractérisons également le temps de cohérence de l’Erbium mesuré
par deux techniques différentes (voir dans Figure 2.6d) : par la détection du ⟨Cecho⟩, qui
correspond pour l’ID-ESR à la détection d’une quadrature de champ unique, et par le
calcul de l’écart type σ sur 4 phases d’impulsion de restauration différentes Φk = kπ/2
(k = 0, 1, 2, 3), qui correspond pour l’ID-ESR à la détection de l’amplitude du champ
d’écho. En ajustant ces deux courbes avec une exponentielle étirée, la première technique
donne un temps caractéristique relativement court T2,q = 3.6 ms que nous attribuons au
bruit du champ magnétique alors que la seconde technique donne le temps de cohérence
intrinsèque du spin T2,m = 19 ms [Le +21]. Comme la FD-ESR s’avère capable de détecter
les échos de spin, nous comparons le SNR pour la détection des échos avec la FD-ESR
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a b

c

d

Figure 1.6: Détection d’écho de spin par fluorescence. Toutes les barres d’erreur
sont des statistiques à 1σ. Les encarts représentent les séquences d’impulsions. a, ⟨Cspin⟩
en fonction de la phase de l’impulsion de restauration Φ avec des impulsions à haut ϵ, avec
B0 = 59, 7 mT et φ = φ0. Les points bleus (croix rouges) sont des points expérimentaux
(simulés). La ligne continue est un ajustement à l’aide de Equation 9.1 sur les données,
qui donne ⟨Cecho⟩ = 44 points. b, ⟨Cecho⟩ (points bleus) en fonction du délai ∆τ entre
l’impulsion de restauration et le moment attendu pour l’écho. La ligne continue est un
ajustement gaussien qui donne une largeur totale à mi-hauteur (FWHM) Te = 6, 1 µs,
correspondant à la durée de l’écho (double flèche noire). c, ⟨Cecho⟩ en fonction du délai 2τ
de deux mesures successives (rouge et bleu), montrant l’ESEEM. La différence de signal
entre les des mesures est probablement due à une différence dans la calibration du SMPD.
La ligne pointillée est τ = 100 µs, utilisée pour les données du panneau a. d, courbes de
relaxation de ⟨Cecho⟩ (points bleus) et σ (points rouges) en fonction du délai 2τ , toutes
deux ajustées avec une exponentielle étirée Equation 9.3. Les ajustements donnent pour la
relaxation ⟨Cecho⟩ une constante de temps T2,q = 3, 6 ms et un exposant xq = 1, 7, tandis
que pour σ on obtient T2,m = 19 ms et un exposant xm = 1, 13.

et l’ID-ESR dans des conditions d’excitation identiques. Nous trouvons que la FD-ESR
fournit un gain d’un facteur 1.6 pour une faible impulsion d’excitation.
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Chapter 2

Introduction

2.1 Overview

Magnetic resonance (MR) is a characterization method for probing the properties of matter.
This technique is widely used since its only requirement is the presence of spins, ubiquitous
in matter both in electrons and nuclei. The spin Larmor frequency ωs is tuned by the
application of a static magnetic field B0, which allow the spins to absorb an electromagnetic
field at the same frequency ωs. In Continuous Wave (CW) MR, this absorption manifests
itself by a change in the reflection coefficient, measurable with a network analyzer. In
pulsed MR, the spin dynamics is probed by using sequences of resonant pulses. MR gives
access to all the spin meaningful properties: spin density, resonant frequency, relaxation
time, local magnetic fluctuations... [Abr11; AB12]. This detection method is used on a
wide variety of spin system, either in Electron Spin Resonance (ESR) or Nuclear Magnetic
Resonance (NMR), and finds application in biology [Yos+96], biochemistry [Pol06] and
solid-state sciences [Sli55]. This diversity of application corresponds to various experimental
constraints, such as the temperature of the sample and the frequency ωs.

This thesis deals with ESR spectroscopy of paramagnetic impurities in a crystal, at
microwave frequencies (5-10 GHz) for B0 fields in the 50-500 mT range. The spins are
coupled to a microwave resonator at frequency ω0 with a strength g0. The usual spin
detection method in pulsed ESR is called the Inductive Detection (ID) [Rab+38; Blo46;
PTP46]. The spins are probed by sequences of microwave pulses, which lead to the
build-up of a transient macroscopic transverse polarization ⟨SX⟩ at a later time. The
Larmor precession of this magnetization induces the emission of a microwave pulse called
a spin-echo [Hah50]. This spin-echo is detected by amplification and demodulation, and
its amplitude and phase encodes the spin properties. Commercially available ID-ESR
apparatus can detect only large ensemble of spins, bigger than 109 spins [Abh+22]. In this
context, increasing the ESR sensitivity while preserving its application generality is very
desirable.

Several methods have been proposed and implemented to highly increase ESR sensitivity
[WF16]. One can use the charge of the electron carrying the spin to couple to the resonator
electric field, yielding typically orders of magnitude greater coupling than the magnetic field
coupling [Xia+04]. This method employs a transistor structure on top of semi-conducting
materials, which greatly limits its generality. Another approach is to use a tip to focus
the magnetic field on top of a mechanical cantilever. This method has a very small mode
volume of the order nm3, which permits to scan a surface but remains blind to bulk
properties. Another idea is to get around the limitation due to the low energy microwave
frequency field using spin systems that also have transitions in the optic domain [Riz+22].
NV centers in diamond as well as Erbium ions are such system where the sensitivity of a
single ion has already been reached by optical method [Gru+97; Yin+13]. However this
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method apply only to the few spin systems with an optical transition, which restricts a lot
its generality. A general ESR method with high sensitivity is to be found somewhere else.

In the Quantronics group, our approach, led by Patrice Bertet, is to apply circuit
Quantum Electrodynamics (cQED) [HR06; Wal+06] techniques to perform very sensitive
ESR. cQED makes use of superconducting circuits cooled down at millikelvin temperature.
These circuits offer new devices useful for microwave fields detection: low-mode-volume
and high-quality-factor microwave resonators, quantum-limited Josephson Parametric
Amplifiers (JPA), and more recently qubit-based Single Microwave Photon Detectors
(SMPD); therefore, they can be naturally applied for ESR spectroscopy. In our experiments,
we use superconducting micro-resonators to detect the spins; their specific interest is their
low magnetic mode volume, which enables a significant increase in spin-photon coupling,
up to g0/2π ∼ 1kHz. With such large coupling, spins resonant with the cavity tend to
relax dominantly by spontaneous emission of a microwave photon, reaching a new regime
for MR called the Purcell regime, first seen by Audrey Bienfait [Bie+16].

Using such micro-resonators combined with JPAs for noiseless amplification of the echo
signal, ID-ESR has proven to reach very high sensitivity of ∼ 10 spins in the work of Vishal
Ranjan [Ran+20a], but was ultimately limited by unavoidable vacuum field noise. In 2020,
a new method (called Fluorescence-Detected ESR, or FD-ESR) has been proposed and
demonstrated in our group [Alb+21], which promises to overcome this fundamental limit.
The idea is to detect the microwave photons spontaneously emitted by the spins during
their radiative relaxation. For that, we use a SMPD recently developed in our group by
Emmanuel Flurin [Les+20]. The proof of principle of FD-ESR was obtained by Emanuele
Albertinale by detecting Bismuth donors in Silicon [Alb+21; Alb21]. However, the generality
of FD-ESR remained to be proven as well as its advantage in term of sensitivity compared
to ID-ESR. My thesis took place in parallel with the one of Leo Balembois, who worked to
develop a new-generation of SMPDs with improved characteristics.

In this thesis, we apply FD-ESR to Rare-Earth Ions (REI) in a scheelite crystal of
CaWO4, and in particular Er3+ ions. This system was characterized by ID-ESR in our
group by Marianne le Dantec and Milos Rančić, and have shown long coherent properties
promising for quantum computing applications [Le +21; Le 22].

In this thesis, we prove that FD-ESR is a general characterization method
that yields the same information on the spins than ID-ESR but with a higher
sensitivity for small spin ensemble detection.

This manuscript starts with three "background" chapters that introduce the reader
with the basic concepts required to understand our work. In Chapter 3, we will describe
ESR performed in the quantum regime on a spin ensemble. Then in Chapter 4, we will
explain the principle and potentialities of two detection methods: quadrature detection and
photon detection. Next, in Chapter 5 we will consider the physics of REI in Scheelite and
detail some measurement results obtained by Marianne Le-Dantec with ID-ESR applied to
Erbium ions prior to this thesis .

In Chapter 6, we describe the experimental systems that have been used to collect the
data presented in this thesis. The sample studied in this PhD is a CaWO4 crystal fabricated
and first pre-characterized with standard ESR in collaboration with other laboratories. We
describe the room-temperature and cryogenic setups enabling to perform ESR and then
introduce the reader to the typical ESR measurement done either with ID or with FD.

We show experimentally in Chapter 7 that FD-ESR is a detection method that can be
applied to a wide variety of spin species and that it has a higher sensitivity then ID-ESR.
We record large-scale spectra with FD-ESR revealing many spin species. Among those
spins, we decide to manipulate Erbium ions to realize FD-ESR experiments in the rest of
this thesis. We investigate the spin fluorescence signal as a better understanding of this
new kind of signal gives access to additional spin information. We record the signal at
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various excitation strength and reproduce it with simulations, proving that our simulation
model captures most of our experiment physics. Since improving sensitivity is at the heart
of our research, we compare the Signal-to-Noise Ration (SNR) of FD-ESR and ID-ESR and
show an advantage for FD-ESR. Therefore, we validate FD-ESR as a very high sensitivity
spectroscopic technique.

Thanks to FD-ESR high sensitivity, we notice a phenomenon that had remained
invisible with ID-ESR. We present in Chapter 8 the correlation between resonant frequency
and relaxation time for a small spin sub-ensemble highly coupled to the superconducting
resonator. As simulations show that the resonator wire thermal contraction is expected
to induce lattice deformation, we attribute this effect to local strain. This effect, known
with other spin systems [Pla+18], was measured at various B0 orientation and would need
additional theoretical work to be understood. The spin sub-ensemble coupling homogeneity
enables us to drive them into a coherent oscillation. Hence, we demonstrate that FD-ESR
is a promising detection method to coherently manipulate a small spin ensemble.

Eventually in Chapter 9, we detect spin echoes with FD-ESR, proving that this detection
method is suited for ESR standard applications [Bil+22]. A Hahn echo sequence followed by
a restoring pulse is employed to convert the spin ⟨SX⟩ component into the ⟨SZ⟩ component,
visible with FD-ESR [BHP73; OMG88]. After proving that we are indeed able to detect
the echo contribution in the fluorescence signal, we use FD-ESR to characterize the spins
coherent properties. We detect how the echo amplitude evolves over time and show Electron
Spin Echo Envelope Modulation (ESEEM) as well as a spin coherence time of around 4
ms. From prior ID-ESR measurements, we know that this coherent time is limited by field
noise, therefore we develop a detection procedure based on the signal fluctuations to access
with FD-ESR the intrinsic spin coherence time. We compare the SNR of the two detection
methods applied to spin echo detection and find again an advantage for FD-ESR.

2.2 Thesis Results

2.2.1 Experimental system

In this thesis, we apply FD-ESR to REIs in a sample of CaWO4. REI ions are naturally
present in CaWO4 in substitution of Ca2+ ions. Some REI embedded in a crystal behave as
Kramers’ ions [Kra30] that present a spin degree of freedom. Here we focus on the magnetic
resonance of their electron spin that behaves as a spin-1/2. As shown in Figure 2.1a,
the Ca2+ sites have a tetragonal symmetry that induces the same symmetry on the spin
properties [Enr71; Ber+09]: the spin g-tensor is anisotropic with gc ̸= ga,b. The large
g-value in the (a, b)-plane for several REIs (Erbium ions have ga,b = 8.38) motivates their
study with ESR as they require a relatively low resonant field B0 and present a strong
magnetic coupling in this plane. The choice of CaWO4 as a substrate is guided by its
low paramagnetic impurities density, basically dominated by the fraction of 183W isotope
that possess a nuclear spin. The sample was grown undoped, and we use the residual
REIs impurities present in the sample. Once the sample arrived in Quantronics Group,
Marianne Le Dantec, a former PhD student, has characterized in great detail the Erbium
ions properties using ID-ESR [Le 22; Le +21].

We pattern on top of the sample surface in the (a, b) plane a 2D superconducting
resonator made of Niobium as represented in Figure 2.1b. The resonator is characterized
by its resonant frequency ω0/2π and its interactions with its environment, with a damping
rate in the line κc and a damping rate in its internal losses κint that combine in a total rate
κ = κc + κint. The resonator lumped element design presents two capacitive interdigitated
pads linked by a 2 µm-wide wire. This wire magnetically couples the resonator mode to the
spins with a coupling strength g0(r) depending on the spin position r in the substrate. The
intracavity field α populating the resonator mode drives the spin j of frequency ωj/2π at
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Figure 2.1: Experiment principle and spin fluorescence signal a. Schematic of the
CaWO4 lattice centered around a REI ion χ3+ that have replaced a Ca2+. Oxygens are
removed for clarity. A spin degree of freedom is represented for the REI as well as for
some W atoms. The crystal symmetry is tetragonal around the axis c, which means axis
a and b are equivalent. b. Design of the 2D resonator of frequency ω0/2π ≈ 7 GHz (red)
patterned in the (a, b) plane on top of the sample surface (grey). The resonator wire is
along the x axis (angle φw = 51 ◦) and B0 is in the (a, b) plane (angle φ). The sample
cross section below the 2 µm-wide wire (red rectangle) displays the spatial distribution of
the coupling g0 and of the corresponding radiative rate ΓR (when φ = 30 ◦). c. Illustration
of setup 1, where each spin j is coupled with a strength g0,j to the resonator with damping
rates to the line κc,1 and to its internal losses κint,1. Circulators allow to use the same
microwave line to excite the spins (black square pulses) and to route the spin signal (red
and blue) to the detection apparatus. The signal can be detected either with FD-ESR
using SMPD1, or with ID-ESR thanks to a JPA in the detection line. B0 orientation is
fixed at φc = 47 ◦ d. Illustration of setup 2, with resonator characteristics κc,2 and κint,2.
This setup is adapted only to perform FD-ESR and has a tunable field orientation φ. e.
Typical fluorescence curve taken in setup 2. Top panel: schematic of the spin detection
sequence where a pulse of amplitude β and duration ∆t excites the spins that then relax
by emitting fluorescence photons (red curve), detected and integrated over a period Tint to
produce a number of counts ⟨C⟩ (orange surface). Middle panel: clicks (vertical bars) occur
with a higher probability at short times after the excitation. Bottom pannel: instantaneous
count rate ⟨Ċ⟩ (circles), averaged over ≈ 100 iterations, that decays down to a background
rate ⟨Ċbg⟩ (dashed black line).
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position r with a Rabi frequency ΩR(r). Varying the amplitude of the driving field in the
resonator means probing spins at various distance from the wire. Afterward, the spins can
relax their energy either non-radiatively with a rate ΓNR, typically by emitting a phonon
in the crystal lattice, or radiatively with a rate ΓR, by emitting photons. In our system,
the spin radiative relaxation rate is dominated by the influence of the resonator due to
the so-called Purcell effect, yielding ΓR = g2

0κ/(∆ω2 + ((κ/2)2) with ∆ω = ω0 − ωi the
spin resonator detuning. This rate is crucial in our experiment as the photons radiatively
emitted by the spins are detectable with FD. The cross section in Figure 2.1b represents
the spatial distribution of g0 and ΓR below the wire.

Figure 2.1c and Figure 2.1d are schematics of the main microwave components put at
cryogenic temperature in the 2 experimental setups used in this thesis. In setup 1, the
sample is connected both to the SMPD1, a SMPD from the first generation, and to a
Josephson Parametric Amplifier (JPA) and thus can be measured either with FD-ESR or
ID-ESR. In setup 2, measurements can only be done with FD-ESR with SMPD2, a SMPD
from the second generation. B0 is generated by two Helmotz coils that allow to change the
field direction φ within the (a, b)-plane.

A typical spin fluorescence trace detected with FD-ESR following an excitation pulse
of amplitude β and duration ∆t applied at t = 0 is shown in Figure 2.1e along with the
sequence representation. The SMPD clicks outputs cj , from cycle j occurring at a cycle
time tj whose value is either 0 or 1, are represented by vertical bars and they show an
excess in occurrence following the pulse. The rate of those clicks Ċ, named count rate,
appears as a direct measurement of the spin fluorescence. The signal is averaged over
several iterations, yielding ⟨Ċ⟩. The SMPD cycle keeps on going for the whole duration
Trep between two successive pulse sequence. The average count rate relaxes down to the
background rate ⟨Ċbg⟩ = ⟨Ċ(t = Trep)⟩. To extract a single value from a spin fluorescence
curve, we sum the counts over an integration time Tint to obtain the integrated counts ⟨C⟩.
However, since part of the photons integrated are dark counts, one can choose to remove
the background contributions to keep a quantity directly proportional to the number of
spins: ⟨Cspin⟩. [Alb+21; Bil+22]

2.2.2 Large range spectroscopy

In Section 7.1, we describe FD-ESR spectra taken over a large scale of B0 amplitude
and orientation φ. At each value of B0 and φ, we send a pulse with frequency ω0/2π to
the resonator and measure the resulting spin signal. We present such a spectroscopy in
Figure 2.2a left panel with varying B0, where the many different peaks with colors indicate
that FD-ESR detects a wide variety of spin species present in our sample. Some of these
peaks are straightforwardly attributed to known species, such as Er3+ and Yb3+, whereas
others remain unknown. An interesting feature of FD-ESR is to have access to the spin
fluorescence curve that gives meaningfull spin information. In Figure 2.2a right panel, we
plot the relaxation curve measured at each peak and compare them to deduce information
on the spin system attribution.

The spectroscopy can also be taken varying the field orientation in the (a, b)-plane, as
is shown in Figure 2.2b. This rotation pattern is rich in spin information as we can extract
the peaks characteristics such as φ dependence, linewidth, signal amplitude or relaxation
curves. In the graph, we observe peaks that remain fixed in B0, such as the Erbium line at
B0 ≈ 59 mT, and other peaks that evolve with φ. This spectroscopy is consistent with
similar experiments done with ID-ESR. [Le 22]

In the rest of the manuscript, we provide a more detailed study of Er3+:CaWO4 using
FD-ESR. We show in Figure 2.2c the evolution of the Erbium line linewidth Γinh and
amplitude at various φ. The amplitude is reaching a maximum at φ0 = 30◦, which is the
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a

b c

Figure 2.2: FD-ESR spectroscopy in setup 2 a. Left panel: spin signal ⟨Cspin⟩ as a
function of the field amplitude B0 that shows a wide variety of spin signals (colored peaks).
The peaks position allows to attribute Er3+ (orange) and Yb3+ (green) with hyperfine
coupling (hexagon symbols) or without (circle symbols), whereas other peaks remain
unknown (cross symbols). Right panel: normalized fluorescence curve with dark count α
subtracted for each spin signal detected in the spectroscopy. The fluorescence curves are
grouped considering the low magnetic field peaks (top panel), the peaks associated to Yb3+

(middle panel) and the rest of the unknown peaks (bottom panel). b. Rotation pattern
where we plot ⟨Cspin⟩ as a function of B0 and φ. Many peaks are visible, with some peaks
showing a resonant field independent from φ while other peaks position strongly depends
on φ. The Erbium line is fixed at B0 ≈ 59 mT. c. Spectroscopy with angular dependence of
the Erbium line. The data is fitted with a Lorentzian yielding the inhomogeneous linewidth
Γinh with a minima at φ0 = 30◦.

typical orientation used for Erbium spin manipulation in setup 2 in order to maximize the
signal.

2.2.3 Fluorescence signal

In Section 7.2, we study and reproduce with simulations the spin fluorescence in order
to better understand this spin signal readily available with FD-ESR. We apply a single
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Figure 2.3: Fluorescence signal and simulations at various excitation strength.
Spin relaxation with background subtracted (blue dots) matched with simulations (red
curve) following a single pulse excitation with various strength ϵ with the graphs label
based on Table 7.1: ϵ = 4.9 × 103 ns1/2 for a, ϵ = 1.4 × 104 ns1/2 for e, ϵ = 1.0 × 105 ns1/2

for i, ϵ = 2.2 × 106 ns1/2 for m. To compute these simulation curves, we have calibrated the
attenuation in the line AdB = 84.5 dB and considered a total detection efficiency η = 0.15.

excitation pulse with various strength ϵ = β × ∆t to the spins and record ⟨Ċ⟩ following
the pulse. The result is compared to the same quantity simulated with a master equation
model [Ran+20b], as presented in Figure 2.3 for 4 values of ϵ spread over 3 orders of
magnitude. The simulation includes the inhomogeneous spin distribution in frequency and
coupling. The spin ensemble relaxation curve comes from the contribution of each spin j,
whose longitudinal component ⟨SZ,j⟩ relaxes both radiatively at the position dependent
rate ΓR,j and non-radiatively at constant rate ΓNR. Since the curve shape corresponds
uniquely to an excitation pulse ϵ, we can match a simulated shape with a measured shape
to calibrate the input line attenuation and find AdB = 84.5 dB. Once the pulse amplitude
calibrated, only the total spin detection efficiency η remains as a free parameter and can be
determined as the ratio of the simulated to measured number of counts, yielding η = 0.15.
However, we observe disrepancies between simulation and data at low-ϵ that we attribute
to strain effect, not considered in the simulations.

2.2.4 Detection sensitivity

In Section 7.3, we have compared the SNR of FD-ESR and ID-ESR in very similar spins
excitation conditions in order to confirm the interest of fluorescence detection to improve
the spin detection sensitivity. For ID-ESR, the signal is the integration of the spin echo
Xe, expressed in its natural unit thanks to the calibration of the echo photon number done
with the SMPD. For FD-ESR, the signal is the counts integrated over an optimal time Tint
with the background subtracted. Both type of measurements are reproduced many times
to obtain some statistics, as is shown in Figure 2.4a. The resulting SNRID is compared
to SNRFD in Figure 2.4b. In the low-ϵ regime, FD-ESR presents a SNR gain by up to a
factor 16 compared to ID-ESR, whereas the gain shrinks at high-ϵ. Therefore, FD-ESR is
suited to bring an improvement in ESR sensitivity to detect small spin ensemble with fast
radiative relaxation.

2.2.5 Spectroscopy of strain shifts

In Chapter 8, we then use the high sensitivity of FD-ESR to measure a phenomenon that
was not detected so far: a broadening and distorsion of the REI spectrum by mechanical
strain. We notice that erbium spectrum looks very different when taken at low or high
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a b

Figure 2.4: SNR comparison between ID and FD. a. Signal distribution for ID
(top panel) and FD (bottom panel) fitted with a gaussian function (darker solid line),
showing their mean value (black dashed line). Graphs are aligned on 0 and are 14 standard
deviation large allowing visual comparison. b. Top panel: SNRID (green) and SNRFD
(blue) at various ϵ as detailed in Table 7.2 and Table 7.3. The SNR ratio is computed using
a linear interpolation of SNRID (green solid line). Bottom panel: ratio of the two methods
SNRs.

pulse strength ϵ, as can be seen in Figure 2.5a. Although the high ϵ spectrum can be fitted
by a Lorentzian that sets what we call the main line in the following, the low-ϵ spectrum is
broadened, asymmetrical, and displays a correlation between a shorter radiative relaxation
time and the position in the line. This means that spins closer to the resonator, which
relax radiatively faster due to their higher coupling to the resonator, are shifted in resonant
frequency. Such shifts were previously observed in Bismuth donors in silicon also measured
by micro-resonators. They occur because of the differential thermal contraction between
the inductive metallic wire and the host crystal [Pla+18]. In the case of Erbium in CaWO4,
strain modifies the crystal field and therefore the REI gyromagnetic tensor [Kie66; Mim65].
To explore this phenomenon, we measure Erbium ions spectra with low ϵ pulses and various
angle φ. The results in Figure 2.5b show how the asymmetric shape evolves on both
sides of the main line, as a function of φ. We fit each spectrum with a skewed Lorentzian
and find that the Skewness γ × Γinh is apparently anti-symmetric around φ0. The full
understanding of the strain effect on the Erbium ions would require further theoretical
work and is out of the scope of this thesis.

An interesting consequence of the strain is the detuning from the main line of a spin
sub-ensemble with a relatively homogeneous coupling geff. Setting the magnetic field on the
side of the main line, we can interact only with those highly coupled spins. In Figure 2.5c,
we set B0 = 59.7 mT and coherently drive the spins on resonance by varying the excitation
pulse duration ∆t. A coherent oscillation is visible and is eventually damped, likely by the
remaining inhomogeneity in coupling. By setting the field closer to the main line, we can
select a spin sub-ensemble with a smaller geff and see indeed a slowdown in the effective
Rabi frequency.
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a b

c

Figure 2.5: Asymmetry spectrum of strained ions and coherent oscillations. a,
top panel: normalized spectroscopy of the Erbium line at high-ϵ (red dots) fitted with a
Lorentzian (red line) that defines the main line and a spectroscopy at low-ϵ (blue). Bottom
panel: T1,eff as a function of B0 deduced from exponential fits on the low-ϵ spectrum. Error
bars are 1σ from the fits. b, left panel: Low-ϵ spectra at various φ (dots) and skewed
Lorentzian fit using Equation 8.1 (line). Right panel: Skewness γ × Γinh (dots) and fit
using Equation 5.14 (line). Error bars are 1σ from the fits. c. ⟨Cspin⟩ as a function of pulse
duration ∆t (dots) at B0 = 59.7 mT and φ = φ0, with the pulse sequence illustrated in the
inset. The solid line is a fit using Equation 8.3. Error bars are 1σ statistical.

2.2.6 Fluorescence detection of spin echoes

In Chapter 9, we report spin echo detection using FD-ESR. As FD-ESR is sensitive to
the spin ⟨SZ⟩ component, we use a three pulse sequence ϵ/2X − τ − ϵY − τ − ϵ/2Φ, that
consists in applying a restoring pulse of phase Φ after the Hahn echo sequence, to project
the spin echo onto the Z-axis. We confirm in Figure 2.6a that the signal ⟨Cspin(Φ)⟩ has
a constant incoherent part modulated by a coherent part depending on the restoring
pulse phase Φ. Simulations are used to reproduce this signal with a good reproduction
of the incoherent part and a slightly larger coherent modulation, a difference that we
attribute to ESEEM, the signal modulation due to the oscillation of the electron spin
neighboring nuclear spins. Measuring the evolution of a signal proportional to the spin
echo Cecho = [C(Φ = 0) − C(Φ = π)]/2, we observe the echo shape, visible in Figure 2.6b,
as well as the ESEEM signal modulation, visible in Figure 2.6c. We also characterize
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a b

c

d

Figure 2.6: Fluorescence detection of spin echoes. All error bars are 1σ statistical.
The insets represent the pulse sequence. a, ⟨Cspin⟩ as a function of the restoring pulse
phase Φ with high-ϵ pulses, at B0 = 59.7 mT and φ = φ0. Blue dots (red crosses) are
experimental (simulated) points. The solid line is a fit using Equation 9.1 on the data
yielding ⟨Cecho⟩ = 44 counts. b, ⟨Cecho⟩ (blue dots) as a function of the delay ∆τ between
the restoring pulse and the expected echo time. The solid line is a Gaussian fit yielding a
Full Width at Half Maximum (FWHM) Te = 6.1 µs, corresponding to the echo duration
(black double arrow). c, ⟨Cecho⟩ as a function of the delay 2τ of two successive runs (red
and blue), showing ESEEM. The difference of signal between the runs is likely due to
difference in the SMPD calibration. The dashed line is τ = 100 µs, used for the data of
panel a. d, relaxation curves of ⟨Cecho⟩ (blue dots) and σ (red dots) as a function of the
delay 2τ , both fitted with a stretched exponential Equation 9.3. The fits yield for ⟨Cecho⟩
relaxation a time constant T2,q = 3.6 ms and exponent xq = 1.7, whereas for σ it gives
T2,m = 19 ms and exponent xm = 1.13.

the Erbium coherence time measured by two different techniques (see in Figure 2.6d): by
the detection of ⟨Cecho⟩, which in ID-ESR corresponds to the detection of a single field
quadrature, and by computing the standard deviation σ over 4 different refocusing pulse
phase Φk = kπ/2 (k = 0, 1, 2, 3), which in ID-ESR corresponds to the detection of the echo
field magnitude. As we fit those two curves with a stretched exponential, the first technique
yields a relatively short characteristic time T2,q = 3.6 ms that we attribute to field noise
whereas the second technique gives the intrinsic spin coherence time T2,m = 19 ms [Le +21].
As FD-ESR proves to be able to detect spin echos, we compare the SNR of echo detection
with FD-ESR and ID-ESR in identical pulse excitation conditions. We find that FD-ESR
provides a gain of a factor 1.6 for low excitation pulse.
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Chapter 3

Spins coupled to a quantum cavity

In this chapter, we proceed with the quantum description of the interaction between spins
and a microwave resonator. One key concept is the resonant enhancement of the spin
radiative relaxation that occurs by Purcell effect when the spin is on resonance with the
resonator frequency. Based on the Purcell effect, we provide an analytical formula that
describes the microwave fluorescence from an ensemble of electron spins. Combined with
numerical simulations of the spin ensemble evolution, this formula will be used extensively
to quantitatively model the results of the experiments presented in this manuscript.

3.1 The Jaynes-Cummings Hamiltonian
We start with the description of the spin-resonator system. The Hamiltonian that describes
this system, the so-called Jaynes-Cummings Hamiltonian, is

HJC = Hreso + Hspin + Hcoupling. (3.1)

It is the sum of three terms describing the resonator alone, the spin in the applied magnetic
field, and their magnetic coupling. In this part, we describe with further detail these 3
contributions.

3.1.1 Quantization of an electomagnetic resonator

A 2D superconducting lumped element resonator, consisting in two capacitive pads linked
by a wire, acts as a harmonic oscillator where the energy oscillates between an electrical
component (when charges Q and -Q accumulate on the pads) and a magnetic component
(when the charges flow from one pad to the other through the wire). The Hamiltonian that
describes properly such system is

Hreso = Q̂2

2C
+ Φ̂2

2L
(3.2)

where Q̂ and Φ̂ are respectively the charge and flux operators within the resonator, C is
its capacitance and L its inductance. Q̂ and Φ̂ are conjugate variables, which means they
respect the commutation rule: [Q̂, Φ̂] = iℏ.

Rather than operators describing the electromagnetic quantities such as Q̂ and Φ̂, one
might conveniently use field operators that describe the amount of photon populating the
resonator. Those operators are defined as

â = 1√
2ℏZ0

(Φ̂ + iZ0Q̂)

â† = 1√
2ℏZ0

(Φ̂ − iZ0Q̂)
(3.3)
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Figure 3.1: Quantum state representation a. Energy levels of a harmonic oscillator
(black lines) confined in a quadratic potential (blue line) with the Fock states represented.
b, Bloch sphere representation of the spin state SSS and its free dynamics. The spin precesses
around its quantization axis, defined by B0B0B0.

where ω0 = 1/
√

LC is the oscillator resonant angular frequency and Z0 =
√

L/C its
impedance. Those operators allow to express the resonator Hamiltonian

Hreso/ℏ = ω0(â†â + 1/2) (3.4)

as a function of the intra-cavity photon number operator â†â, whose eigenstates are Fock
states |n⟩ corresponding to n photons populating the resonator. The harmonic oscillator
energy spectrum is represented in Figure 3.1a.

3.1.2 Spin Zeeman Hamiltonian

In this thesis, we will be considering paramagnetic impurities in solids. Such systems can be
described by a spin operator Ŝ̂ŜS ≡ (ŜX , ŜY , ŜZ), written in this manuscript in dimensionless
units. In the case of a spin-1/2 system, this operator can be defined in term of the Pauli
matrices

σ̂X =
(

0 1
1 0

)
, σ̂Y =

(
0 −i
i 0

)
, σ̂Z =

(
1 0
0 −1

)
(3.5)

with Ŝ̂ŜS = 1/2σ̂̂σ̂σ.
The spin is source of a magnetic moment

µ̂̂µ̂µ = ℏµBggg · Ŝ̂ŜS (3.6)

where µµµ is the spin magnetic moment, ℏ the reduced Planck constant, µB the Bohr
magneton and ggg the paramagnetic system g-tensor, which depends on the system itself
and also of its host matrix (see Chapter 5).

In a magnetic field B0B0B0, the paramagnetic center undergoes a Zeeman effect described
by the Hamiltonian

Hspin/ℏ = −µ̂̂µ̂µ · B0B0B0 = −ℏµBgggB0B0B0 · Ŝ̂ŜS = −γsγsγsB0B0B0 · Ŝ̂ŜS (3.7)

with γsγsγs the spin system gyromagnetic tensor. Note that we will also encounter spin systems
whose Hamiltonian includes other terms, such as hyperfine interaction with nuclear spins
(see Chapter 5). In that case, and in all generality, the system is described by a spin
Hamiltonian Hspin(B0B0B0), which can be diagonalized, yielding the spin energy states.

In this work, we will always focus on transitions between 2 levels of the spin system,
which can be written as a ground state |g⟩ and an excited state |e⟩. In that basis, noting
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3.1. The Jaynes-Cummings Hamiltonian

Figure 3.2: Typical linear current distribution in the resonator wire and corre-
sponding B1. Top panel: current distribution corresponding to the typical current vacuum
fluctuations in our resonator, based on Equation 3.10. Bottom panel: field amplitude B1
generated by this current simulated with a finite element software, where the red rectangle
represents the wire.

ωs/2π the transition frequency between these states, also called Larmor frequency, the
Hamiltonian (restricted to the 2-level sub-space) is simply given by

Hspin = ℏωs

2 σ̂Z . (3.8)

The free dynamics corresponding to this Hamiltonian when the spin is not in |g⟩ nor in
|e⟩ is a precession of its spin vector SSS at this Larmor frequency around its quantization
axis Z set by B0B0B0, as represented in Figure 3.1b.

3.1.3 Magnetic coupling with a lumped element resonator

The resonator couples to the spin through the magnetic field B1B1B1 generated by the cur-
rent flowing in the resonator wire. Since the wire constriction dominates the resonator
inductance, we can express the current in the wire as

Î = Φ̂
L

= ω0

√
ℏ

2Z0
(â + â†) = δI(â + â†). (3.9)

From this expression, we notice that even in the field ground state |0⟩ there remain zero-
point quantum fluctuations of the current due to those on the field. These fluctuations are
the current vacuum fluctuations: δI =

√
⟨0| Î2 |0⟩ = ω0

√
ℏ/2Z0.

The current spatial distribution within the superconducting wire is non trivial. The
current penetrates the superconducting metal in such a way to expel the magnetic field
from inside the superconductor, except over a thin skin. A phenomenological description
of this skin effect has been proposed in [VT99], and yields the current density distribution

J(y) =


J0(1 − (2y/w)2)−1/2 for |y| ≤ |w/2 − λ2/(2b)|
J(w/2)exp(−(w/2 − |y| )b/λ2) for |w/2 − λ2/(2b)| < |y| < w/2
(1.165/λ)

√
wb J0 for y = w/2

(3.10)
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where y is the wire transversal coordinate, w the wire width, b its thickness and λ is
the penetration depth of the superconducting thin film. The normalization constant J0
allows to have

∫ w
−w J(y)dy = I. The typical current vacuum fluctuations distribution in

the resonator wire used in this thesis is shown in Figure 3.2.
From the knowledge of the current distribution, one can deduce using Faraday law

the corresponding spatial distribution of the magnetic field B1B1B1(I, rrr). The zero-point, or
vacuum, fluctuations are thus B̂1B1B1(rrr) = δB1δB1δB1(rrr)(â + â†) where δB1δB1δB1(rrr) are the magnetic field
vacuum fluctuations.

Finally, the spin-resonator coupling Hamiltonian is

Hcoupling = µBδB1δB1δB1(rrr) · ggg · Ŝ̂ŜS(â + â†). (3.11)

This Hamiltonian can be projected on the spin basis. We apply the rotating wave
approximation [HR06], which effectively removes the oscillating terms, and get

Hcoupling/ℏ = g0σ̂+â + g∗
0σ̂−â† (3.12)

where g0 = µBδBδBδB1 · ggg · ⟨e| Ŝ̂ŜS |g⟩ /ℏ is the spin resonator coupling field and where σ̂+ and
σ̂− are respectively the Pauli raising and lowering operators

σ̂+ = σ̂X + iσ̂Y

2 , σ̂− = σ̂X − iσ̂Y

2 . (3.13)

We thus obtain that the total Hamiltonian of the spin coupled to the resonator can be
written in a Jaynes-Cummings form:

HJC/ℏ = ω0(â†â + 1
2) + ωs

2 σ̂Z + g0(σ̂+â + σ̂−â†). (3.14)

To have in mind orders of magnitude for our system, let’s apply the Biot-Savard law in
the case of an infinitely long and narrow wire

δB1(r) = µ0
δI

2πr
= µ0

ω0
2πr

√
ℏ

2Z0
(3.15)

From the field δB1, we deduce the expression of the coupling

g0(r) = gµB

ℏ
δB1(r) ⟨e| Ŝ |g⟩ = gµB

ℏ
µ0

ω0
2πr

√
ℏ

2Z0
0.5. (3.16)

where g is the spin g-factor along the direction of B1 at position r. In the case of Er3+

electronic spins in a Scheelite crystal coupled to a resonator with the typical characteristics
of our experiment, we have spins located at a distance r ∼ 1µm from the wire and with
a g-factor g ≈ 8, coupled to a resonator of frequency ω0/2π ≈ 7GHz and impedance
Z0 ≈ 35 Ω. This yields a spin coupling g0/2π ∼ 500 Hz.

3.2 Dynamics of the spin-resonator open system

3.2.1 Input-Output theory

In reality, the spin resonator system is not isolated. The resonator is capacitively coupled
to a single external line to allow spin manipulation and detection. This coupling is
characterized by the rate κc at which the energy stored in the resonator leaks out. We
model these lines by the traveling electromagnetic modes that they convey, either towards
the resonator (âin), or away from it (âout). Note that whereas â has the dimension
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g0,j
Er3+

Figure 3.3: Schematic of the spin-resonator system coupled to an external line.
The resonator of frequency ω0/2π and impedance Z0 is coupled to spin j with a strength
g0,j . It is damped via the transmission line at a rate κc and via internal losses at a rate
κint. The traveling modes in the transmission line are either flowing in the system (âin) or
out from the system (âout)

of [
√

photon], âin and âout are expressed in [
√

photon/s]. The resonator also looses
energy in the surrounding materials (for instance through dielectric losses or the creation
of phonons) at a rate κint. In our experiment, the resonator total energy damping is
κ = (κc + κint) ∼ 106 s−1. Such system is represented in Figure 3.3.

The resulting evolution of the resonator field operator is based on the input-output
theory [GC85] and writes as

dâ

dt
= i

ℏ
[H, â] − κ

2 â −
√

κcâin,
√

κcâ = âout + âin.
(3.17)

To begin with, let’s consider only the resonator field evolving under this equation of
motion with the Hamiltonian H = Hreso, which would correspond to having the spins out
of resonance. The scattering matrix of a coherent mode ain = αine−iωt reflecting on the
resonator gives interesting insights on its properties

S11 = αout
αin

=
√

κcα − αin
αin

= κc

i(ω − ω0) + κ/2 − 1. (3.18)

According to the relative κc and κint amplitudes, the resonator response as a function of
the incoming coherent tone frequency varies between different regimes:

• under-coupled regime: if κint >> κc, even an on resonance the incoming field
only partially gets in the resonator where it is mostly damped, the rest is reflected
with a minimal phase shift.

• critical coupling regime: if κint ∼ κc, the field at resonance is efficiently transmitted
to the resonator and then completely lost (no reflection).

• over-coupled regime: if κint << κc, the incoming field mostly gets in and out from
the resonator, acquiring a 2π phase.

3.2.2 Spin coupled to microwave line

The spins are coupled to the lines through the resonator. According to the system
characteristics, different coupling regimes are possible:

• strong coupling regime: if g0 ≫ κ, an excitation can be coherently exchanged
back and forth between the spin and the resonator.
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Figure 3.4: Rabi oscillation on the Bloch sphere a, Rabi oscillation of resonant spin
around the axis eroteroterot = XXX that successively gets fully polarized in excited or ground state. b,
Rabi oscillation of a spin detuned from the resonator around the axis eroteroterot = 2g0αXXX + ∆ωZZZ
that gets only partially polarized in the excited state.

• weak coupling regime: if g0 ≪ κ, an excitation gets damped quickly in the
resonator.

In this thesis, we are in the weak coupling regime with g0/2π ∼ 500 Hz ≪ κ/2π ∼ 100 kHz.
The spin dynamics considerations that will follow are valid for this regime.

3.2.2.1 Spin coherent manipulation

The weak coupling regime means that there is no entanglement between the spins and the
cavity mode, therefore only the cavity field mean value is relevant in term of spin evolution.
In the usual experiments, we drive the spins with a coherent tone at the resonator frequency
ω0/2π sent through the lines that populates the resonator mode. Neglecting the time that
it takes to reach a coherent state â = α̂e−iω0t with a constant amplitude α in the resonator,
the Jaynes-Cummings Hamiltonian in the rotating frame at frequency ω0/2π is

H/ℏ = −∆ω

2 σ̂z + g0(σ̂+α̂ + σ̂−α̂∗) (3.19)

with ∆ω = ω0 − ωs.
We deduce from this Hamiltonian the evolution of the spin vector SSS under a drive

Ṡ =


˙̂
SX
˙̂
SY
˙̂
SZ

 =

 0 ∆ω −2g0 Im[α]
−∆ω 0 −2g0 Re[α]

2g0 Im[α] 2g0 Re[α] 0

S. (3.20)

In the following, we choose the phase reference so that, in the rotating frame, Re[α] = α
and Im[α] = 0. From this differential equation we can deduce spin trajectories in the Bloch
sphere, when starting with a spin in its ground state:

• If ∆ω = 0:

Ṡ =

0 0 0
0 0 −2g0α
0 2g0α 0

S (3.21)
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Figure 3.5: ESR measurement of Purcell effect on Bismuth donors in silicon
[Bie+16] Spin relaxation time T1 as a function of their detuning from the resonator ∆ω
(blue dots) and fit (red line) considering a radiative rate ΓR and a non radiative one ΓNR:
T −1

1 = (ΓR(∆ω) + ΓNR).

As represented in Figure 3.4a, SSS rotates around the axis eroteroterot = XXX at a Rabi frequency
ΩR0/2π = 2g0α/2π. Its component SZ oscillates between −1/2 and +1/2.

• If ∆ω ̸= 0:

Ṡ =

 0 ∆ω 0
−∆ω 0 −2g0α

0 2g0α 0

S (3.22)

As represented in Figure 3.4b, SSS rotates around the eroteroterot = 2g0αXXX + ∆ωZZZ at a Rabi
frequency ΩR/2π =

√
∆ω2 + Ω2

R0. Its component SZ oscillates between −1/2 and

ΩR0/(2
√

∆ω2 + Ω2
R0).

The spin-resonator coupling Hamiltonian describes how the field drives the spin into
Rabi oscillations; conversely, the Larmor precession of the spin magnetization generates a
field in the cavity. In the weak coupling regime, when no tone is applied to the resonator,
one can assume that ⟨dâ/dt⟩ = 0. Then, transverse magnetization finite in average ⟨S−⟩
induces an intra-cavity field

⟨a⟩ = ig

κ
⟨S−⟩. (3.23)

This field leaks into an output field ⟨âout⟩ = √
κc⟨â⟩.

3.2.2.2 Purcell effect

The presence of the spin environment, such as the crystal substrate and the resonator
coupled to a line, influences the spin relaxation rate Γ1. More precisely, when a spin is
coupled to a resonator in the weak coupling regime, the resonator damping rate in the
environment κ can enhance significantly the radiative relaxation rate ΓR by the so called
Purcell effect. When no drive is applied at the resonator input, one can adiabatically
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eliminate the resonator [HR06], which yields for ΓR the expression

ΓR(∆ω, g0) = g2
0κ

∆ω2 + (κ/2)2 . (3.24)

This effect has been measured (see Figure 3.5) by a previous PhD student of the group,
Audrey Bienfait, with setups very similar to those used in this work [Bie+16]. With
our system characteristics, for a spin on resonance with the resonator, we estimate the
order of magnitude of ΓR = 4g2

0/κ ∼ 50 ms−1. This rate is to be compared to the typical
electron spin radiative relaxation rate in free space of around 10−12 s−1, which is neglected
in our experiment. Since it is the radiative decay through the resonator that provides
the photons that will be detected in ESR, we understand that the enhancement of the
radiative relaxation rate due to this effect is essential for this work.

3.2.3 Master equation description

To fully describe the spin evolution in an open environment, we have to take into account
additional relaxation channels. We describe now the spin with its density matrix ρs, whose
evolution is governed both by the system Hamiltonian and by the quantum jumps modeled
with the Lindbladian operators Lα in the master equation:

ρ̇s = − i

ℏ
[HJC, ρs] +

∑
α

LαρsL†
α − 1

2(L†
αLαρs + ρsL†

αLα), (3.25)

In our experiment, that takes place at cryogenic temperature T0 ≈ 10 mK and at
microwave frequency ω0/2π ≈ 7 GHz, the relevant relaxation channels in our system are:

• Radiative relaxation: as explained in Section 3.2.2.2, the radiative relaxation rate
is dominated by the Purcell rate with LR =

√
ΓRσ̂−.

• Non radiative relaxation: the spins can also loose energy in a non-radiative way,
for instance in the lattice phonon bath, at a rate ΓNR with LNR =

√
ΓNRσ̂−.

• Pure dephasing: fluctuations, typically in the spin magnetic environment, dephase
the spin at a rate Γϕ with Lϕ =

√
Γϕ/2σ̂z.

From the spin density matrix evolution, we retrieve the spin vector SSS with

ρ̂s = 1
2(1 + Ŝ.σ̂),

Tr[ρ̂sŜi] = ⟨Ŝi⟩.
(3.26)

Altogether, it yields the complete Bloch equation

⟨Ṡ⟩⟨Ṡ⟩⟨Ṡ⟩ =


⟨ ˙̂
SX⟩

⟨ ˙̂
SY ⟩

⟨ ˙̂
SZ⟩

 =

 0 ∆ω 0
−∆ω 0 ΩR0

0 ΩR0 0

 ⟨S⟩⟨S⟩⟨S⟩ −

Γ2
Γ2
Γ1

 ⟨S⟩⟨S⟩⟨S⟩ (3.27)

where Γ1 = 1/T1 = ΓR + ΓNR is the spin longitudinal relaxation rate and Γ2 = 1/T2 =
Γϕ + Γ1/2 is the spin transversal relaxation rate.
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Figure 3.6: Typical linewidths in our experiment. Representation of the relative
linewidths in our system, in increasing order: single spin linewidth Γ2/2π ∼ 10 kHz,
resonator linewidth κ/2π ∼ 100 kHz and ensemble of spin linewidth Γinh/2π ∼ 1 MHz.

3.3 Dynamics of a spin ensemble in the low cooperativity
regime

As detailed in the introduction, the limited sensitivity of ESR experiments requires large
ensemble of spins to detect a signal. In this thesis also we are always addressing ensemble of
spins, although with a moderate number of spins thanks to the high sensitivity of FD-ESR.
We will now depict the dynamics of a spin ensemble coupled to a resonator and describe a
simulation tool that we use to predict the spin evolution and reproduce the signal observed
in the experiments.

3.3.1 Spin ensemble with frequency inhomogeneity at low cooperativity

The local environment of each spin j is crucial to determine its resonant frequency ωs,j/2π.
A single spin has a linewidth Γ2 coming from its relaxation time and from the fluctuations
of its local magnetic field. Considering several spins, local magnetic impurities or local
deformation of the crystal lattice can affect the spin properties such as ωs,j/2π. As a
result of the spins different local environments, a spin ensemble is spread in frequency by
this inhomogeneous broadening in a linewidth Γinh. These linewidths are to be compared
with the resonator linewidth κ to understand which spins are contributing to the signal,
as illustrated in Figure 3.6. In our experiment, the inhomogeneous linewidth Γinh/2π ∼
1 − 10 MHz largely dominates the resonator linewidth κ/2π ∼ 100 kHz. Therefore only a
fraction of the total spin ensemble is driven and measured.

All the excited spins are coupled to the resonator mode, which means that they
interact with each other through this mode. To determine whether the spin ensemble
state significantly influences its own dynamics by the field it creates in the resonator, we
introduce the ensemble cooperativity

Cp = 2g2
0N

κΓinh
(3.28)

With N the number of spins assumed to have a uniform coupling g0 [JM12]. Two regimes
of cooperativity have to be distinguished:

• strong cooperativity regime: if Cp ≫ 1, the spins behave in a collective fashion.
The field emitted by the spin ensemble strongly affects the spin dynamics.

• low cooperativity regime: if Cp ≪ 1, the spins behave independently.

To determine in which regime we sit in our experiments, let’s consider some orders of
magnitude. Since in this thesis we extensively study Erbium ions, let us use the Erbium
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a b

Figure 3.7: Spin ensemble dynamics simulation with a single pulse excitation
a, simulation of a single pulse (upper plot) that drives the evolution of a 1000 spins
with coupling g0/2π = 500 Hz spread uniformly in frequency over [−1, 1] MHz. The
spin ensemble components ⟨SX⟩,⟨SY ⟩,⟨SZ⟩ evolution is simulated for three different pulse
amplitude β0 (blue), 2β0 (orange) and 10β0 (green). b, spin excitation probability as a
function of the spin detuning ∆ω for the various pulse amplitude β0 (blue), 2β0 (orange)
and 10β0 (green). We notice that the excitation linewidth increases with the power in the
so-called power broadening.

spin concentration c ≈ 0.7 × 10−19 m−3 of the sample described in Chapter 6, which has
been determined from previous characterizations [Le 22]. The number N of spins with a
coupling g0/2π ≥ 500 Hz corresponds roughly to those contained in a volume l × w × d
where l = 630 µm is the wire length, w = 2 µm is the wire width and d = 1 µm a depth
below which spin have a coupling g0/2π < 500 Hz. This corresponds to N ∼ 104. With
the typical values g0/2π ∼ 500 Hz, κ/2π ∼ 100 kHz and Γinh/2π ∼ 1 MHz, we are well in
the weak cooperativity regime with Cp ≈ 0.04.

Therefore, collective effects should be negligible in our experiments, and the spin
ensemble response can be obtained by simply computing the response of each spin interacting
independently with the applied field or vacuum field in the cavity.

3.3.2 Spin manipulation: the ideal case of homogeneous coupling

In order to have some insights of the spin dynamics, let us first consider a spin ensemble
coupled to the resonator with a single well-defined coupling constant g0. It’s not the case
in our experiment, as expected from the field inhomogeneity below the wire shown in
Figure 3.2, but it is an interesting case to get a qualitative understanding of how the spin
state evolves during the experiment.

3.3.2.1 Single pulse excitation

A straight forward manipulation sequence consists in sending a single excitation pulse
to excite the spins. Each spin dynamics is described by Equation 3.27, a model that
we have implemented into a home-made Python program. Simulation results shown in
Figure 3.7 are for an ensemble of N = 1000 spins with coupling g0 = 500 Hz uniformly
spread in frequency with ∆ωj/2π = (ω0 − ωs,j)/2π ∈ [−1, 1] MHz. A single pulse of length
∆t = 5 µs and of 3 different amplitudes β is used to drive the spins. This pulse induces a
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3.3. Dynamics of a spin ensemble in the low cooperativity regime

rotation of about π/2, π or 5π for the spins with ∆ωi = 0. The pulse is applied along the
X axis, and the simulation considers a resonator with the typical characteristics of our
experiment (ω/2π = 7 GHz, κc/2π = 130 kHz, κint/2π = 100 kHz). In Figure 3.7a, we see
the simulated evolution of the incoming and intra-resonator fields, as well as the the spin
ensemble evolution. Right after the pulse, the oscillations in ⟨SZ⟩ and ⟨SY ⟩ are damped in
a time T ∗

2 = 1/Γinh ∼ 5 µs, going down to 0 for the ⟨SY ⟩ component. This fast decay is
in practice very complicated to detect as it overlaps in time with the cavity ring down,
namely the time needed for the cavity to relax the energy from the excitation pulse. On
the other hand, the longitudinal component ⟨SZ⟩ relaxes with a characteristic time T1 way
longer than the cavity ring down.

It’s interesting to notice that the spin will rotate around different axis at different speed
according to their detuning ∆ωj , as discussed in Section 3.2.2.1. By driving stronger and
stronger, we see in Equation 3.22 that we tend to drive the detuned spins around an axis
closer and closer to the equatorial plane, which means they will get more and more excited.
In other word, the excitation bandwidth broadens with the pulse power, a phenomenon
called power broadening. We can illustrate this phenomenon by looking at the spin j
excitation probability pe,j at the end of the simulated sequence

pe,j(β, ∆ωj) = 1 + 2⟨SZ,j(β, ∆ωj)⟩
2 . (3.29)

We plot this quantity in Figure 3.7b for the three pulse amplitudes, and clearly see the
excitation linewidth broadening with the pulse excitation amplitude.

3.3.2.2 Hahn echo sequence

A widely used excitation sequence to detect the spins ⟨SY ⟩ component is the Hahn echo
sequence: β/2X − τ − βY − τ − echo. The idea is to project the spins on the Bloch
sphere equatorial plane (at t = −2τ), and to use a refocusing pulse (at t = −τ) to have a
coherence resurgence of ⟨SY ⟩ at a given time t = 0, called spin echo. A simulation of such
an excitation sequence and the resulting spin evolution is presented in Figure 3.8 with the
same parameters as in Section 3.3.2.1. During the time of the echo, the spins refocus and
redefocus emitting thus a coherent field along the X axis in a temporal mode that lasts
Te ∼ T ∗

2 .

3.3.2.3 Hahn echo sequence with restoring pulse

The fluorescence detection method is sensitive to the spin longitudinal magnetization ⟨SZ⟩.
To detect an echo with FD, it is necessary to transfer the coherent ⟨SY ⟩ component at
the echo time onto the Z axis. This is achieved by a modification of the usual Hahn echo
sequence, using a so-called restoring pulse. By adding a third pulse to the Hahn echo
sequence, that turns it into a sequence β/2X − τ − βY − τ − β/2Φ, the spin echo gets
converted onto ⟨SZ⟩ component. The restoring pulse has a phase Φ that determines the
spin rotation axis and sets the direction towards which the coherent echo magnetization
⟨Scoh⟩ gets restored. In general, the spin longitudinal component following this excitation
sequence is the sum of an incoherent component and a coherent echo component:

⟨SZ(Φ)⟩ = ⟨Sincoh⟩ + ⟨Scoh⟩ cos(Φ) (3.30)

In Figure 3.9 are illustrated two radical cases: when Φ = 0, the third pulse is aligned
with the first one and the echo is projected towards the spin excited state, whereas when
Φ = π, the third pulse is anti-aligned with the first one and the echo is projected towards
the spin ground state.
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Figure 3.8: Spin ensemble dynamics simulation with a Hahn echo excitation
sequence. a, time evolution of the two intra cavity quadratures. In the inset is plotted
a zoom in the field resurgence due to the spin echo. b. Evolution of the spin ensemble
transversal components where the echo appears in the ⟨SY ⟩ component. c. Schematic of
the spin orientation in the Bloch sphere during the Hahn echo sequence.

3.3.3 Spin manipulation: the real case of inhomogeneous coupling

In reality, the spin coupling to the resonator is widely spread according to the spin position
in the sample. In order to quantitatively simulate both fluorescence and coherent signal,
we need to accurately know the spin coupling and frequency distribution.

3.3.3.1 Coupling distribution

From the knowledge of the field below the wire presented in Figure 3.2, we compute the
spatial distribution of the coupling g0(rrr), as shown in Figure 3.10a. The rotation angle of
each spin j under an excitation pulse strongly depends on its coupling g0,j and its detuning
∆ωj , as described in Equation 3.20. As the excitation pulse gets stronger, the low coupled
spins far from the wire are getting noticeably excited. At the same time, the spins closer
with a higher coupling undergo Rabi oscillations with the increasing pulse amplitude. The
spin state depending on their position in the sample at various pulse amplitude is visible
in Figure 3.10b, showing "waves" of excitation associated to Rabi oscillation in the Bloch
sphere, where each maximum corresponds to a rotation of (2k + 1)π with k ∈ N from the
spin ground state |g⟩.
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Figure 3.9: Spin ensemble simulation with a restored Hahn echo excitation
sequence a, top panel: Evolution of the two intra cavity quadratures with a varying
restoring pulse phase Φ ∈ [0 : 2π] (blue gradient for various Φ). Bottom panel: evolution
of the spin ensemble longitudinal component. b. Schematic of the spin orientation in the
Bloch sphere during the restored Hahn echo sequence for Φ = 0 ◦. c, ⟨SZ⟩ at the end of the
simulation according to Φ, showing the incoherent contribution (black double arrow)and
the echo modulation amplitude (blue double arrow).

a b

Figure 3.10: Coupling spatial distribution and resulting spin excitation a, Cross
section below the wire (red rectangle) showing the spatial distribution of the coupling g0
for typical experimental parameters. b, Representation of spins excitation probability pe

(green circle) as a function of the position below the wire (red rectangle) for 4 different
pulse amplitudes: β0 (i), 2β0 (ii), 5β0 (iii), 10β0 (iv). The computation is based on the
equation Equation 3.20, with ∆ω following a Lorentzian distribution of 1MHz linewidth
and 14000 spins uniformly distributed in space.

3.3.3.2 Fluorescence formula

With all that precedes, we are now able to derive an analytical formula for the fluorescence
signal evolution in time, which will be extensively used in this thesis to reproduce the
experimental data. In the weak cooperative regime, the fluorescence signal of a spin
ensemble is the sum of each spin individual relaxation. Following an excitation pulse
sequence finishing at time t = 0, a spin j finishes in a state SjSjSj ≡ (SX,j , SY,j , SZ,j)
depending on the spin characteristics g0,j and ∆ωj . Then, its radiative relaxation rate ΓR,j

also depends on its characteristics. As this spin can relax either in a radiative or a non
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Figure 3.11: Computation of the spin distributions and simulation of the flu-
orescence signal a, Normalized spin frequency distribution of the total spin ensemble
(blue) and frequency range considered in the simulations (red surface). b, Number of spin
Nspin as a function of coupling g0 used in the simulation (red histogram). The curve is a
continuity between a 1/g3

0 fit (green line), valid far from the wire at low g0, and the spin
coupling density extracted from the simulated g0 spatial distribution (blue line), valid close
to the wire. c, Simulated relaxation curves at various excitation strength ϵ spread over 3
orders of magnitude (darker red means stronger excitation).

radiative way, the probability that it emits a photon after an excitation sequence is

pj = ΓR,j

ΓR,j + ΓNR

1 + 2SZ,j

2 . (3.31)

The spin relaxes exponentially with a typical rate Γ1,j = ΓR,j + ΓNR. The radiative
relaxation triggers the emission of a photon either in the line, with a probability κc/κ, or
in the resonator losses, with a probability κint/κ. Therefore, the emission rate of detectable
photons to the line from this spin is

⟨â†
out,j âout,j⟩(t) = κc

κ
ΓR,j

1 + 2SZ,j

2 e−(ΓR,j+ΓNR)t. (3.32)

The total fluorescence signal is the sum of the contributions from all the spins that
writes as

⟨â†
outâout⟩(t) =

∑
j

⟨â†
out,j âout,j⟩(t) =

∫
d∆ω

∫
dg0ρ(∆ω)ρ(g0)⟨â†

outâout⟩(∆ω, g0, t). (3.33)

where ρ(∆ω) and ρ(g0) are the spin ensemble frequency detuning and coupling distribution.

3.3.3.3 Simulations of the fluorescence signal

Using the results presented earlier in this chapter, we can effectively reproduce the fluores-
cence signal obtained in the data. We use the master equation based spin simulation, as
introduced in Section 3.3.2, to determine the spin evolution during the excitation sequence
for various spin detuning ∆ω and g0. The resulting spin state triggers a fluorescence
that we compute using Equation 3.33. In order to have a quantitative reproduction of
our data, we need to know accurately the spin frequency and coupling distribution. In
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our simulations, we make the assumption that frequency and coupling distributions are
not correlated and can be treated independently. The whole simulations procedure is
summarized in Appendix A.

We first know from spectroscopic measurements that the frequency distribution ρ(∆ω)
has a Lorentzian shape with a linewidth Γinh/2π. We integrate the spin contributions over
a typical frequency range of ∆ω/2π ∈ [−1, 1] MHz, considering that spins further away
from the resonator won’t contribute significantly. The proportion of spin that lies in the
simulated frequency range for Γinh = 12 MHz is visible in Figure 3.11a.

In the case of the coupling distribution ρ(g0), the spatial coupling distribution below
the wire, from Figure 3.10a, and the spin spatial density c enable us to compute the number
of spins Nspin with a given coupling g0, as shown in Figure 3.11b. At low g0, Nspin evolves
as the number of spin in a hemisphere centered on the wire: Nspin ∝ 1/g3

0. This is the
regime far from the wire where the approximation of an infinitely long and narrow wire
is valid. We observe that this model doesn’t fit this distribution at high g0/2π > 500 Hz,
where the wire shape matters.

The results of fluorescence simulations following a single pulse with different strengths
ϵ = β × ∆t is visible in Figure 3.11c. The curves are non exponential and behaves as
expected at first sight: as ϵ increases, the fluorescence amplitude and decay time increase;
at high ϵ we observe a saturation since the spins far from the wire end up relaxing mostly
through their non-radiative channel. However, those curves need to be compared to the
data to assert that this modeling of the spin ensemble dynamics capture all the meaningful
physical phenomena, as we will verify in Chapter 7.

We notice that at high-ϵ and at time t > 1/ΓNR, the curves retrieve an exponential
shape, appearing as a straight line in Figure 3.11c. The spins contributing in this part
of the curve have their relaxation dominated by the non-radiative relaxation, which is
exponential and identical for all of them. Therefore, at high-ϵ and at time long enough,
the fluorescence curve detection appears as a method to access the spin non-radiative
relaxation time.

This simulation procedure is useful to extract additional information from the spin
relaxation curve. Indeed, the non trivial relaxation observed in the data of Figure 3.11c is
reproduced in simulations only with one value of β, which allows to calibrate it. Therefore,
the simulation gives access to the attenuation in the input lines. Moreover, the experimental
detection apparatus has a limited efficiency η that can be calibrated as the ratio of the
photons simulated over the photons detected. All these results are discussed with further
details in Chapter 7.
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Chapter 4

Spin detection methods

In this chapter, we describe and analyze the two spin detection methods used in this thesis
: Fluorescence-Detection (FD) ESR and Inductive Detection (ID) ESR. The difference
between these two methods comes from the fact that ID-ESR measures a field quadrature,
and is thus sensitive to vacuum fluctuations, whereas FD-ESR counts photons, and is thus
ideally noiseless in the absence of signal. Here, we describe the detection properties of
these two methods, the apparatus they require and their potential in term of sensitivity.

4.1 Quadrature detection

We start by reminding a number of useful concepts regarding the quantum description of
an electromagnetic mode; for more details please see [HR06].

4.1.1 Field quadrature observable

Considering a mode with the field operator â, one can decompose it on its quadratures X̂
and Ŷ [GK05] such that

X̂ = â† + â

2 ,

Ŷ = i
â† − â

2 .

(4.1)

Those quadrature operators respect the commutation rule [X̂, Ŷ ] = i/2 and are associated
to the photon number operator

â†â = X̂2 + Ŷ 2 − 1
2 . (4.2)

The phase space, where each axis corresponds to a field quadrature, is a convenient way
to represent a field state. In the following, we discuss several relevant states and provide
their graphical phase space representation. With δX2 = ⟨X̂2⟩ − ⟨X̂⟩2 the state variance
on quadrature X̂, we color in Figure 4.1 the position where |X − Xmax| ≤

√
δX2/2 and

similarly on the other quadrature Ŷ .

Vacuum state

The vacuum state |0⟩ is defined as the state with no photon populating the mode.
Therefore, the annihilation operator applied to this state gives a null result

â |0⟩ = 0. (4.3)
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Figure 4.1: Phase space representation of field state a, Representation of the vacuum
state |0⟩ as a disk centered on the space origin. The disk diameter represents the vacuum
fluctuations in each quadrature. b, Representation of a coherent state |α⟩ as a displaced
vacuum state. The field amplitude α corresponds to the distance from the origin to the disk
center, and its phase θ the angle with the reference quadrature X. c, time representation
of the two coherent state quadratures.

We notice that in such a state, even though ⟨0| X̂ |0⟩ = ⟨0| Ŷ |0⟩ = 0, there remain
fluctuations in each quadrature

δX2 = δY 2 = 1
4 . (4.4)

In term of photon number, it means that half a photon remains in the vaccum fluctuations,
represented as the state surface in Figure 4.1a.

Coherent state

A coherent state |α⟩ is a semi classical state with a defined phase and amplitude. This
state is an eigenstate of the annihilation operator

â |α⟩ = α |α⟩ (4.5)

where α = |α|eiωt is a complex number that characterizes the coherent state and ω/2π is
the state frequency in the laboratory frame. This kind of state is represented at a given
time t0 = θ/ω in Figure 4.1b, where we see that its quadratures write as

⟨α| X̂ |α⟩ = |α| cos(θ),
⟨α| Ŷ |α⟩ = |α| sin(θ),

δX2 = δY 2 = 1
4 .

(4.6)

This state quadratures ⟨X⟩ and ⟨Y ⟩ oscillate in time at the mode frequency (see Figure 4.1c).
In this thesis, as is usually done, we will use the rotating frame at ω so that the quadratures
are now constant in time for a free evolution of the mode. In this frame and by choosing
the appropriate phase reference, the coherent state can be all along one quadrature.
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Figure 4.2: Schematic of a coherent state amplification a, amplifier (rectangle) of
gain G amplifies the mode âin and mixes it with its internal mode b̂ to produce the mode
âout. b, The incoming mode (blue) gets amplified into the outgoing mode (green). The
amplification increases the mode amplitude and fluctuations by its gain G, as well as it
adds its internal fluctuations (grey) to the outgoing mode.

4.1.2 Quantum limited amplifier

The spin resonant signal that we are interested in is very weak compared to the usual
noise of the devices that acquire the signal at the room temperature. Therefore, we need
to drastically amplify the signal so it becomes visible among this noise. Although the
amplification happens all along an amplification chain, the first amplifier of such a chain is
crucial in terms of the signal SNR. We focus here on the properties of our first amplifier, a
parametric amplifier.

To describe an amplifier of gain G, we introduce the amplifier input and output mode,
respectively âin and âout. The amplifier applies the transfer function on each quadrature
[HM62]

⟨X̂out⟩ =
√

G⟨X̂in⟩,

⟨Ŷout⟩ =
√

G⟨Ŷin⟩.
(4.7)

A quantum-mechanical analysis of the amplification process [Cav82] shows that the
amplifier needs to add at least half a photon noise to the signal it amplifies, such that

δX2
out + δY 2

out ≈ G(δX2
in + δY 2

in + 1
2), (4.8)

as illustrated in Figure 4.2
In this thesis, we use parametric amplifiers, such as a Josephson Parametric Amplifier

(JPA) and a Josephson Traveling Wave Parametric Amplifier (JTWPA), in a phase
preserving amplification. The full description of those devices goes out from this thesis
scope, however the reader can refer to [Flu; Cas]. Those amplifiers allow a typical gain of
G ≈ 100 and work at the quantum limit, adding only the minimal noise of half a photon.

4.2 Photon detection

4.2.1 Photon number observable

The other detection method that we use in this thesis is based on counting photons rather
than detecting field quadrature. Limiting ourselves to photon numbers equal to 0 or 1,
this corresponds to measuring the photon number operator â†â.

Fock state
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The Fock state |n⟩ is defined as the photon number operator eigenstate and describes a
state populated by n photon, such that

⟨n| â†â |n⟩ = n,

δâ†â2 = ⟨n| (â†â)2 |n⟩ − ⟨n| â†â |n⟩2 = 0.
(4.9)

We see that the photon number fluctuation is null for any Fock state. Reminding that the
vacuum state is the state without photon |0⟩, this result gives a glimpse of the interest of
using photon counting: there is no intrinsic fluctuation in the signal, and thus no theoretical
limit in the detection SNR.

Coherent state

The SMPD can be used to detect a coherent state. In this case, the photon number
observable behaves such that

⟨α| â†â |α⟩ = |α|2 = n,

δa†a2 = |α|2 = n.
(4.10)

The photon number within a coherent state follows a Poissonian statistics where its variance
equals its mean value. Therefore, the direct detection of a coherent state using the SMPD
has unavoidable fluctuations, called shot noise.

4.2.2 Single Microwave Photon Detector (SMPD) device

The SMPD is an apparatus that yields a click whenever a microwave photon is incoming
to its input. Given that microwave photons have low energy and so are difficult to detect,
the fabrication and manipulation of a photon counting device at microwave frequency is
an active research field. Here we describe the photon counting principle and SMPD circuit
design used in this thesis [Les+20; Alb+21]. The devices used in the measurements reported
in thesis were designed and fabricated by Emanuele Albertinale and Leo Balembois, and
more details can be found in their respective theses. Here we will simply give a brief
account of their working principle.

4.2.2.1 SMPD principle

In order to detect photon, our SMPD implements the idea of using a Two-Level System
(TLS) to catch a traveling photon into an excitation. Practically, we are using a transmon
qubit as a TLS with a transition frequency in the microwave regime and a reasonably long
lifetime (T1 ∼ 10 µs). We can read out the transmon state with a very high fidelity to
determine if a photon has come or not [Bla+21].

However, a direct coupling between the microwave line and the qubit would quickly
damp the qubit excitation. To overcome this issue, we introduce in the SMPD additional
microwave components, namely a pump, a buffer resonator and a waste resonator, in order
to use a mode mixing process to catch an incoming photon. The qubit excitation occurs
through a four wave mixing process that converts a photon carrying the signal from the
buffer (at frequency ωb/2π) and a photon from the pump (ωp/2π) into an excitation in the
qubit (ωq/2π) and a photon in the waste resonator (ωw/2π). This mode mixing requires
energy conservation between the modes such that

ωb + ωp = ωq + ωw. (4.11)

Thanks to the waste resonator high dissipation rate, the mode mixing process is
effectively non reversible. Thus, we have enough time to read out the qubit state before it
relaxes.
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Figure 4.3: SMPD circuit. The signal comes from the line connected to the buffer
resonator (orange). This resonator can be tune on resonance with the signal using the
flux φ that thread its SQUID. The pump (violet) can convert a buffer excitation into an
excitation in the qubit (blue) and in the waste resonator (green). This conversion must
satisfy the energy conservation: ωb +ωp = ωq +ωw. The waste resonator is strongly coupled
to another external line.

4.2.2.2 SMPD building blocks

Transmon qubit

The transmon qubit, in blue in Figure 4.3, is a superconducting 2D device that consists
in a harmonic oscillator shunted with a Josephson junction to introduce non-linearity.
This non-linearity allows to manipulate only the transmon two first energy states whose
resonance frequency differs from the other transitions frequency, creating an effective TLS
system. This kind of qubit can be directly driven with a coherent tone sent to a line
coupled to it; in our experiment we use the same line for direct qubit manipulations as
for the pump tone. The qubit read out is done thanks to its dispersive coupling to its
neighboring resonators, either the waste or the resonator. The qubit non linearity is also a
critical element because it mixes our SMPD four modes and therefore enables the mode
conversion process.

Tunable buffer resonator

The buffer resonator, in orange in Figure 4.3, is at the SMPD input and receives the
photon to be detected. Since its frequency must be tuned with this photon, the buffer
resonator is designed with a SQUID loop in order to be able to adjust its resonance
frequency ωb/2π. The SQUID is a superconducting element based on two Josephson
junctions that acts as a tunable inductance according to the magnetic flux that thread
it. The buffer resonator bandwidth typically corresponds to the frequency band on which
photons are detected.

Dissipative waste resonator

The waste resonator, in green in Figure 4.3, is coupled to the qubit to enhance the
mode conversion process as it receives an excitation along with the qubit. Once excited,
our SMPD design requires the waste resonator to damp its energy faster than it would
convert it back through the mode mixing. Practically, the waste resonator is strongly
coupled to an external line to emit away its excitation.
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Figure 4.4: SMPD cycling operations. Schematic of the field amplitude reaching each
SMPD port during one SMPD cycle. This sequence is repeated as long as we want to
detect photons. Detection, the pump is ON to convert the weak signal arriving to the
buffer into a qubit excitation. The signal reaching the buffer is detected only during the
detection time. Read out, in setup 2, a coherent tone is applied to the waste to measure
the qubit state. In setup 1, the read out is done through the buffer. Reset, as long as the
qubit is found excited, we apply a π pulse on it and read out the resulting state. When
the qubit is found in its ground state, we start the next cycle.

Pump tone

The pump tone, in violet in Figure 4.3, is a tunable coherent tone sent to the qubit to
trigger the mode mixing process. Its frequency is chosen to satisfy the energy conservation
Equation 4.11 and its amplitude determines the mode mixing rate, finding a balance so it
catches the photon efficiently but lets the waste resonator relax from its excitation.

4.2.2.3 Sequence of operation

The SMPD is a device that works in a cyclic way, meaning that a basic set of operations is
repeated for the whole cycling time. A single cycle is describe in Figure 4.4, showing the
basic SMPD operations:

• Detection: during the detection time, we set the pump tone ON and enable the
conversion of a photon coming to the buffer into a qubit excitation. It corresponds
to the time window when the SMPD is ready to detect an incoming photon.

• Read Out: we probe the qubit state to determine if a photon has been detected in
the detection window.

• Reset: if the qubit is excited, we reinitialize it with a π pulse and read out again
its state. As long as the qubit is found excited by the read out, we repeat this reset
operation.

This sequence has a timescale of ∼ 10 µs so it needs to be repeated many times to
detect the whole spin fluorescence.

4.2.2.4 Figures of merit

From an operational point of view, the SMPD meaningful characteristics describe its
sensitivity to an incoming photon. This sensitivity depends on the photon detection
efficiency and on the detection noise due to dark counts.
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Efficiency

The SMPD efficiency determines the proportion of incoming photons that are indeed
detected by the SMPD. This efficiency is the product of two contributions:

• Duty cycle: ηdc corresponds to the ratio of the detection time over a full cycle time.
Indeed a photon that arrives out of the detection window won’t be detected, limiting
the SMPD efficiency.

• Conversion efficiency: ηSMPD describes the probability for a photon coming during
the detection window to be converted in a qubit excitation detected by the following
read out.

A balance is needed in the choice of the detection window: although we would like to
enlarge it to increase ηdc, if it becomes too long compared to the qubit T1 then an excitation
received at the beginning of the detection time window might relax before the read out
step, effectively reducing ηSMPD. For the SMPDs used in this thesis, the typical parameters
are ηdc ∼ 0.75 and ηSMPD ∼ 0.5.

Dark counts

The SMPD dark count rate α describes the rate of SMPD clicks in absence of signal.
Since readout errors are negligible when the qubit is in its ground state, the false click are
due to 2 main sources:

• qubit intrinsic excitation: superconducting qubits are in general found to have
an excitation probability higher than what would be expected at a temperature of 10
mK, due to various high-energy sources of radiation (infrared photons, cosmic rays,
...). This spurious excitation can cause a SMPD click in absence of incoming photon,
which is thus a dark count.

• lines converted excitation: it is extremely difficult to thermalize the microwave
modes in the input line at 10 mK. In practice, there are always out-of-equilibrium
microwave photons arriving from higher-temperature stages, which will be detected
by the SMPD and that we include in the so-called "dark count rate".

For the SMPD used in this thesis, we have typically α ∼ 1000 counts/s. It is worth to
mention that α fluctuates noticeably from experiment to experiment due to fluctuations in
the flux threading the buffer SQUID, in the qubit T1 and in the read out fidelity.

4.3 Spin detection methods Signal-to-Noise Ratio (SNR)

The SNR of an experiment yielding a signal s, with average value ⟨s⟩ and variance δs2, is
defined as

SNR = ⟨s⟩√
δs2

. (4.12)

It is a critical experimental property as it describes the amount of information extracted
from a single shot experiment and therefore the number of iterations needed to detect
a signal. Because an experimental system has fluctuations that prevent from averaging
indefinitely, a good SNR not only reduces the acquisition time but also gives access to
weak signals.
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From this quantity, we can deduce an ESR experiment sensitivity, expressed in
[Spins/

√
Hz], as the number of spins needed to have a SNR = 1 for 1 second of ex-

periment. Although given this definition the sensitivity is a quantity that we want to
minimize, we will keep referring to a gain in sensitivity as we reduce it. We extrapolate
the minimal number of spins detectable Nmin for a given experiment time Texperiment as

Nmin = sensitivity√
Texperiment

(4.13)

The goal of this section is to derive analytical formulas for the SNR of the 2 detection
methods used in this thesis. In that goal, we will consider a somewhat idealized situation in
which N spins are coupled to the detection resonator with an identical coupling constant g0,
and where they are spread in frequency in a Lorentzian distribution with an inhomogeneous
linewidth Γinh much smaller than the resonator bandwidth κ, enabling the application of
ideal spin driving pulses. Also the only relaxation channel considered is radiative, which
sets the experiment time Texperiment = TR = Γ−1

R . Even though these conditions are not
met in the actual experiments, the formulas derived will provide useful physical insights.
Whenever quantitative comparison with the data will be needed, we will use simulations.

4.3.1 Spin signal modeling

4.3.1.1 Spin inductive detection

We first compute the spin signal contained in a spin echo detected with ID. In the ideal case
studied here, the echo sequence can be defined for all spins as: π/2X − τ − πY − τ − echo.

For a single spin j with detuning ∆ωj and the echo occurring at a time t = 0, one can
deduce from Equation 3.20 that the spin lowering operator is

⟨S−,j(∆ω)⟩ = − i

4e−i∆ωt. (4.14)

As we integrate over the contributions from each spin, the spin ensemble lowering operator
becomes

⟨S−⟩ =
∫

S−(∆ω)ρ(∆ω) = − iN

4 e−Γinh|t|/2. (4.15)

We see in this equation that the spin operator indeed has a resurgence during the echo.
Using Equation 3.23, the resulting intra-cavity field echo is

⟨â⟩(t) = −g0N

κ
e−Γinh|t|/2. (4.16)

The echo is then transmitted to the line into a traveling mode âout. Experimentally,
we measure the echo field quadrature after its propagation in the microwave lines

⟨X̂out(t)⟩ = ηline⟨
â†

out(t) + âout(t)
2 ⟩ (4.17)

with ηline is the transmission efficiency in the lines.
The echo is described by its normalized mode temporal function u(t), which allows to

deduce the echo integrated amplitude

⟨X̂e⟩ =
∫

⟨X̂out(t)⟩u(t)dt (4.18)

where the mode normalization imposes
∫

|u(t)|2dt = 1. As we choose a function that
captures the mode shape u(t) = ⟨X̂out(t)⟩/⟨X̂e⟩, we have

⟨X̂e⟩ = N

√
ηresoηline

ΓR
2Γinh

(4.19)
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where ηreso = κc/κ is the proportion of intracavity photon emitted in the line. We see
that the echo signal is proportional to the number of contributing spin N . In the low
cooperativity regime, where NΓR/Γinh ≪ 1, the number of photons in an echo is small
compared to the spin number: ⟨X̂e⟩2 << N .

4.3.1.2 Spin fluorescence detection

As discussed in Section 3.3.2.1, the typical signal detected in FD-ESR is the spin fluorescence
following a single excitation pulse π. One can show with Equation 3.23 that after all the
drive photons have escaped the resonator at time t = 0, the intracavity photon number is

⟨â†â⟩(t) = ΓR
κ

Ne−ΓRt. (4.20)

The number of photons emitted by the spins is the integration of the intracavity photon
number over the whole spin relaxation. The FD signal corresponds to the number of counts
⟨C⟩ detected with the SMPD, which differs from the number of photons emitted by the
spins due to the limited detection efficiency η:

⟨C⟩ = ηN

η = ηresoηlineηdcηSMPD
(4.21)

where ηreso and ηline are considered the same as for ID detection.
We note that in our experiments

⟨C⟩
⟨Xe⟩2 = ηdcηSMP D

2Cp
≫ 1 (4.22)

with Cp the spin ensemble cooperativity. Therefore, the amount of detectable photons is
expected to be greater for FD than for ID.

4.3.2 Noise modeling in spin detection

4.3.2.1 Noise in inductive detection

As we explained in Section 4.1.1, the echo mode quadrature that we detect with ID holds
fluctuations at least equal to the vacuum fluctuations. Moreover, since we use amplification
to detect this signal, the parametric amplifier adds a quantum limited noise as detailed in
Section 4.1.2, which yields a total fluctuation in the echo mode

δX2
e = δX2

vacuum + δX2
amplification = 1

2 . (4.23)

This fluctuation is due to quantum mechanics laws that cannot be avoided with the
detection scheme presented here. One can think of using a phase dependent amplifier to
remove the amplifier noise contribution, but the fluctuation remains limited in the end by
the vacuum fluctuations.

4.3.2.2 Noise in fluorescence detection

In FD, the noise comes from two contributions:

• Dark counts: SMPD false clicks are rare and independent event that follow a
Poissonian distribution. It introduces therefore a fluctuation δC2

DC = αTR in the
number of counts depending on the amount of dark counts during the experiment.
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• Partition noise: the limited detection efficiency means that the number of counts
follow a binomial law with fluctuations δC2

η = η(1 − η)N , the so-called partition
noise.

The FD fluctuations is the sum of those contributions

δC2 = δC2
DC + δC2

η = αTR + η(1 − η). (4.24)

We see here that FD fluctuations depend on the device parameters α and η. We can
arbitrarily reduce those fluctuations if we find ways to improve the SMPD properties.

4.3.3 SNR comparison

Considering the SNR of these two detection methods, we get:

SNRID = N

√
ηresoηline

ΓR
Γinh

SNRFD = ηN√
αTR + η(1 − η)N

(4.25)

In ID-ESR, the SNR increases linearly with the number of spins N . It also depends on
the rates ratio between the photon emission rate ΓR and the echo damping rate Γinh.

In FD-ESR, we can distinguish two different fluctuation regimes:

• if αTR ≫ η(1 − η)N : the fluctuations are dominated by the dark counts. The SNR
increases linearly with the number of spins N , and it gets also larger when the spin
relaxation time ΓR reduces. In this thesis, we are always in this regime.

• if αTR ≪ η(1 − η)N : the fluctuations are dominated by the partition noise. The
SNR increases as the square root of N , and is now independent from ΓR.

To compare the two detection methods sensitivity, we have to introduce some parameter
values. To correspond to our experimental conditions, let’s consider the following figures:
ηreso ∼ 1/2, ηline ∼ 1, η ∼ 0.1, ΓR/2π ∼ 3 Hz, Γinh/2π ∼ 1 MHz, α ∼ 1000 counts/s,
N ∼ 104. In this condition, the ratio of SNR is

SNRFD
SNRID

∼ 10. (4.26)

Therefore, this ideal model predicts a gain in sensitivity with FD-ESR compared to ID-ESR
in our current experimental conditions. This gain in sensitivity is experimentally confirmed
in Chapter 7.

In addition, we see that SNRFD is only limited by the detection scheme characteristics
η and α that can, in principle, be arbitrarily improved. On the other hand, SNRID is
limited by the spin properties N , ΓR and Γinh that depend on the spin system.

Note that the SMPD can be used for direct echo detection, as will be done in Section 7.3.
In that case, the echo detection SNR is

SNRecho,SMPD = ⟨X̂e⟩
2

⟨X̂e⟩
= N

√
ηresoηlineηdcηSMPD

ΓR
2Γinh

. (4.27)

This time, the photon detection is expected to have a lower sensitivity than quadrature
detection by a factor

√
2 even in the case of an ideal SMPD with ηdc = ηSMPD = 1. This

appears as a motivation to develop a spin echo detection method based on spin fluorescence
detection, as will be implemented in Chapter 9.
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Chapter 5

Rare Earth Ions (REI) in Scheelite

In this thesis, we apply the FD-ESR method to REI spins in a scheelite crystal of CaWO4,
with a specific focus on Erbium ions Er3+. In this chapter, we introduce the physics of REI
embedded in a crystal of CaWO4 with a particular emphasis on the magnetic properties of
the ground-state doublet, which is the effective electron spin system under study in this
manuscript.

Our goal is not to provide a comprehensive review of this system, but rather to give
the essential elements of background needed to understand the experiments described later,
as well as point to relevant references whenever needed.

5.1 Rare earth ions in a crystal

5.1.1 Ion Hamiltonian

In this thesis we focus on rare earth atoms that belong to the Lanthanides family. In a
crystal, they usually become a tri-positive ion with their electronic structure becoming:
1s22s22p63s23p64s23d104p65s24d105p64fNe where Ne ∈ [0, 14] is the number of electrons
sitting in the 4f shell. Since the 4f orbital is spatially closer to the nucleus than the 5s
and 5p orbitals, it is shielded from external perturbations. This orbital property explains
the similarity between the Lanthanides as well as the possibility to describe their electronic
energy levels based on the free ion level structure.

5.1.1.1 Free ion Hamiltonian

We start the description of the rare earth electronic energy structure by considering a free
ion with interactions between the electrons and the nucleus. A central field approximation
allows to split the free ion Hamiltonian into 3 parts [Wei83]

HFI = H0 + HNC + HSO, (5.1)

where

H0 = −
Ne∑
i=1

[
ℏ2

2m
∇2

i + U(ri)
]

(5.2)

is the central field Hamiltonian with U(r) a spherical potential that approximates the
Coulombic potential due to the contribution of both the nucleus and the interaction with
the other electrons in the mean-field approximation,

HNC =
Ne∑
i<j

e2

rij
− ⟨

Ne∑
i<j

e2

rij
⟩ (5.3)
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Chapter 5. Rare Earth Ions (REI) in Scheelite

Figure 5.1: Energy states of a REI embedded in a crystal. The REI is described by
successive Hamiltonians with different energy scale. The free ion Hamiltonian HFI (∼ 105

GHz) defines electronic states characterized by the quantum number J . For Kramers ions,
the crystal field Hamiltonian HCF (∼ 103 GHz) splits their state into (2J + 1)/2 doublets
called Zi. The doublet behaves as a spin 1/2 and its degeneracy is lifted under a magnetic
field by the Zeeman Hamiltonian HZ (∼ 10 GHz). In the case of an nuclear isotope with
nuclear spin III, the hyperfine Hamiltonian HHF (∼ 10−1 GHz) splits each electronic spin
state.

is the electron-electron Coulombic interaction beyond the mean-field approximation, and

HSO =
Ne∑
i=1

ξ(ri)li.si (5.4)

is the spin orbit coupling between the spin si and the angular momentum li of electron i.
The central field approximation allows to solve the Schrödinger equation with H0. The

description of the electronic structure is based on 4 quantum numbers (n, l, ml, ms): the
principal quantum number n, the angular momentum quantum number l (0 ≤ l < n − 1),
the magnetic quantum number ml (−l ≤ ml ≤ l) and the spin quantum number ms = ±1/2.
H0 eigenstates depend on n and l so those are good quantum numbers to describe the
electronic state. In the following, we concentrate on the 4f orbital with n = 4 and l = 3,
which is relevant for the magnetic properties.

The Hamiltonians HNC and HSO can be treated together as perturbations since they
both have a lower energy scale than H0. One can use the so-called intermediate coupling
scheme [JL05] where we introduce the operator JJJ = LLL+SSS with LLL = ∑Ne

i li and SSS = ∑Ne
i si.

It defines another good quantum number J such that ℏJ(J + 1) is an eigenvalue of JJJ2.
The energy levels end up being (2J + 1) degenerate multiplets.

5.1.1.2 Effective spin 1/2 under crystal field interactions

For REIs in a crystal lattice, the spherical symmetry of U(r) is broken by the crystal
electric field following the crystal field Hamiltonian HCF. The crystal influence can be
treated as a perturbation that lifts the (2J + 1) degeneracy into crystal field states. In
particular, for REIs that have an odd number of electrons Ne in their 4f shell, the Kramers
theorem states [Kra30] that each crystal field state is at least doubly degenerate at zero
magnetic field. The states are therefore grouped into series of "Kramers doublets".

The Kramers doublet degeneracy is lifted by the application of an external magnetic
field B0 through the Zeeman effect

HZ = µBB0 · (L + gsS) = gJµBB0 · J , (5.5)
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5.1. Rare earth ions in a crystal

a b

c

Figure 5.2: CaWO4 crystal structure. Schematic of the CaWO4 lattice showing a
tetragonal structure, with a rotational symmetry around the c-axis.

where gs = 2 and gJ is the Landé g-factor. In the limit where the Zeeman energy splitting
of a given Kramers doublet is much smaller than the energy difference that separates it
from other doublets, the Zeeman Hamiltonian can be treated as if it arises from an effective
spin 1/2. This is the case in particular for the lowest-energy Kramers doublet, on which
we will focus in the following. Restricting ourselves to this effective spin 1/2, the Zeeman
Hamiltonian becomes

HZ = µBB0 · g · S (5.6)

where the g-tensor depends on the crystal host and reflects its symmetry.
Moreover, some REI isotopes have a non-zero nuclear spin III which induces additional

terms in the spin Hamiltonian. The hyperfine Hamiltonian arising from this nuclear spin
describes the interaction between electronic spin and nuclear spin as well as the nuclear
spin Zeeman splitting

HHF = S · A · I + µN B0 · gn · I (5.7)

where AAA-tensor is the hyperfine tensor, proportional to the electron g-tensor when the
Kramers doublets are non-mixed, which is the case for the REIs considered here, µN is the
nuclear magneton and gn is the nuclear spin g-factor.

The energy spectrum of a REI in a crystal is represented in Figure 5.1, considering
only the lowest energy levels of each Hamiltonian.

5.1.2 Rare earth ions in calcium tungstate

5.1.2.1 CaWO4 crystal properties

The calcium tungstate is a crystal with a tetragonal structure with lattice parameters
a = b = 0.524 nm and c = 1.138 nm, as is represented in Figure 5.2. In the lattice
unit cell the REI replaces Ca2+. Considering the calcium site, it is identical under any
combination of rotations by 90◦ around the c-axis and of reflections in the (a, b)-plane. This
kind of symmetry, called S4, affects the REI crystal field Hamiltonian, which satisfies the
same symmetry. Because of the crystal-field S4 symmetry, the g-tensor is diagonal in the
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Chapter 5. Rare Earth Ions (REI) in Scheelite

Isotope Nuc. spin Nat. abun. g∥ g⊥ A∥/h (MHz) A⊥/h (MHz) gn

Er (I = 0) 0 0.77 1.247 8.38 0 0 0
167Er 7/2 0.23 -130 -873 0.563

Yb (I = 0) 0 0.7
1.05 3.92

0 0 0
171Yb 1/2 0.14 788 3082 0.494
173Yb 5/2 0.16 -216 -851 -0.648

Table 5.1: Spin parameters for Er3+ and Yb3+ in CaWO4. Values for the erbium
are coming from [Ber+07] whereas for the ytterbium they come from [Sto14].

crystallographic (a, b, c) axes, with identical values when the field is applied perpendicular
to the c axis (ga = gb = g⊥) and a different value when it is applied parallel to c (gc = g∥).

There exist 2 different types of site for Ca2+ that distinguish themselves by the position
of the neighboring Oxygen atoms. Those two sites are related by inversion symmetry,
as can be seen in Figure 5.2, meaning that a rotation by 180 ◦ around an axis in the
(a, b)-plane allows to convert one site into the other. The difference between those two
sites, populated by REI with equal probability, induces different electric field dependence
for the ion spin [Mim64].

Since the REI substitute a 2+ ion by a 3+ ion, a charge compensation process
unavoidably happens in the crystal during its growth. For instance, this can happen through
the creation of calcium vacancies [MG67]. The charge compensation is a local random
phenomenon which triggers inhomogeneity in the crystal electric field that potentially
breaks the S4 symmetry of a neighboring REI site [GM64]. Nevertheless, ESR spectroscopy
studies of CaWO4 have shown REI lines that satisfy S4 symmetry, which implies that the
charge compensation happens over large scales and doesn’t impact the site symmetry for
at least a fraction of the sites.

The choice of CaWO4 as a substrate is motivated both by its crystal electrostatic field
that sustains high REI g-tensor components as well as its low concentration of magnetic
fluctuations sources. In term of crystal nuclear spin, the main contribution is the tungsten
isotope 183W that has a natural abundance of 0.145. Due to this low abundance combined
with a relatively small gyromagnetic ratio γW/2π = 1.8 MHz/T, CaWO4 is one of the most
magnetically-silent materials that can be found (at least, with natural abundance elements),
and is therefore well-suited to host long-coherence times electron spins [Kan+22].

5.1.2.2 REI spin properties in CaWO4

As discussed before, the ions g-tensor in such crystal follows an axial symmetry around the
c-axis. The strength of the spin coupling to the magnetic field varies from a REI specie
to another, with values for the species detected in this thesis given in Table 5.1. The
spin anisotropic g-tensor means that its polarization isn’t necessarily along the external
magnetic field. For a magnetic field with θ and φ in the spherical coordinates within the
crystal axis (a, b, c), the electron spin Zeeman Hamiltonian is

Hspin = µB0(g⊥ sin(θ) cos(φ)Sa + g⊥ sin(θ) sin(φ)Sb + g∥ cos(θ)Sc), (5.8)

as illustrated in Figure 5.3. Because of the c-axis symmetry, one can choose φ = 0 and
rewrite the Hamiltonian along the spin axis (X, Y, Z)

Hspin = geffµBB0ŜZ (5.9)
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B
0

Figure 5.3: Magnetic field orientation in the (a, b, c) axis

with
geff =

√
(g⊥ sin θ)2 + (g∥ cos θ)2

ZZZ = cos(θ)ccc + sin(θ)aaa
sin θ′ = sin θ × g⊥/geff

cos θ′ = cos θ × g∥/geff

(5.10)

where ZZZ is the spin quantization axis and geff the effective gyromagnetic factor.
In addition to the Zeeman splitting, some REI isotopes have a nuclear spin that

contribute to the spin Hamiltonian through the hyperfine coupling and the nuclear Zeeman
effect (Equation 5.7). The hyperfine A-tensor depends in the g-tensor and presents also a
parallel component A∥ along the axis c and a perpendicular components A⊥ in the (a, b)
plane. The relevant values for this thesis are presented also in Table 5.1. In this thesis, we
stick to the case where the Zeeman interaction dominates the hyperfine interaction. In
this high field limit, the ms and mI are indeed good quantum numbers and the hyperfine
coupling splits each Zeeman state into (2I + 1) states |ms, mI⟩.

The spin polarization depends on its ground-state manifold structure and follows a
Boltzmann distribution. In the case of a I = 0 spin, the spin states energy difference is
such that in a dilution cryostat

ℏωs ≫ kBTeff (5.11)

with kB the Boltzmann constant and Teff the effective spin temperature. Therefore, the
spin is fully polarized in its ground state. In the case of spins with I ̸= 0, neglecting the
population of the excited manifold, the population of level k of the ground state manifold
is given by Boltzmann law

pk = e−Ek/kBTeff∑
l e−El/kBTeff

(5.12)

with Ek the energy level of state k.

5.2 Erbium ion spins properties in CaWO4

We now focus more particularly on the case of Er3+ : CaWO4. We review its properties as
well as the measurements performed by Marianne Le Dantec during her thesis on the very
same crystal as was used in this thesis, but using ID-ESR [Le 22].
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5.2.1 Resonance linewidth

The interaction of the spin with its environment induces frequency shifts, which can be
static (leading to inhomogeneous broadening) or dynamic (homogeneous broadening).

5.2.1.1 Homogeneous linewidth

Fluctuations in a single spin resonant frequency appears as a broadening of its linewidth. As
those same fluctuations trigger the spin decoherence, the single spin linewidth is Γ2 = 1/T2.
These fluctuations arise from the spin dipolar coupling to surrounding magnetic dipoles.
In our system, the main contribution comes from the Tungsten nuclear spin bath.

5.2.1.2 Inhomogeneous linewidth

The specific environment of each REI leads to static shifts of its resonance frequency.
Therefore, the ensemble linewidth appears much broader, with an inhomogeneous linewidth
Γinh ≫ Γ2. We now discuss the physical causes of this inhomogeneous broadening

Dipolar coupling

A first cause of inhomogeneous broadening is the dipolar coupling to other magnetic
moments in the ion near vicinity, which causes the local magnetic field felt by each ion to
slightly vary from B0 and from each other. Here, we consider a very dilute crystal where the
distance between paramagnetic impurities is so large that the impurity to impurity coupling
contribution is negligible. The inhomogeneous broadening caused by the Tungsten nuclear
spins is estimated to be ∼ 100 kHz for Er3+ ions, much lower than the values measured (see
below). In summary, the magnetic contribution to inhomogeneous broadening is negligible
in the crystal considered here.

Electric field inhomogeneity

At zero magnetic field, the two states of a Kramers doublet have the same energy no
matter the electric field, because of time-reversal symmetry. However, the application of a
magnetic field B0 lifts this symmetry and allows a static electric field to modify the g-tensor
[Kie66]. Therefore, the transition frequency of a Kramers’ doublet can become linearly
sensitive to an applied electric field. Because this energy shift is itself also proportional to
B0, it can be interpreted as a linear dependence of the g-tensor with an applied electric field.
The inhomogeneous electric fields seen by the REIs appears as a source of inhomogeneous
broadening and is in fact the dominant one, as demonstrated in [Mim65] and as seen below.

In [Mim65] is studied in detail the g-tensor modifications induced by the application
of a static E field. In this thesis, we will restrict ourselves to application of B0 field in
the (a, b)-plane. In these conditions, it was found that an electric field in the (a, b)-plane
has no first order effect on the spin frequency whereas an electric field Ec along the c
direction induces a linear frequency shift through a change δg⊥ of the g-tensor perpendicular
component g⊥. This change can be written as

δg⊥(φ) = α sin (2φ − 2φ0)
2g⊥

Ec (5.13)

where φ0 is the angle where the sensitivity to the electric field vanishes and α is a parameter
that characterizes the spin sensitivity to the electric field. We see that δg⊥ depends on the
angle φ at which B0 is applied, and therefore the applied electric field breaks the rotational
invariance of the g-tensor in the (a, b)-plane into an ellipse. This ellipse intersects with the
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a b

Figure 5.4: Er3+ spectroscopy with ID-ESR from [Le 22] a, echo amplitude Ae as a
function of the detuning ∆ω from the middle of the Erbium line at various magnetic field
angle φ in the (a, b)-plane, where the symbols are data and the lines are Lorentzian fit.
b. Full-Width-at-Half-Maximum (FWHM) linewidth Γinh/2π as a function of φ, where
symbols are data and the line is a fit using Equation 5.14.

original circle at an angle φ0 where the Kramers doublet frequency becomes insensitive to
an applied electric field.

For a typical electric field inhomogeneity of ∆Ec in a crystal, the induced inhomogeneous
linewidth is

∂ω

∂Ec
= α sin (2φ − 2φ0)

2g⊥

µB

ℏ
B0

Γinh ∼ Γmin +
∣∣∣∣ ∂ω

∂Ec

∣∣∣∣∆Ec

(5.14)

where Γmin is the minimal linewidth reached at φ = φ0.
The inhomogeneity in electric field is possibly due to charge compensation or to local

deformations of the crystal that modify the electric field Ec felt by the spin. We will see in
Chapter 8 that crystal deformations at the interface between the Niobium superconducting
metal and the CaWO4 substrate due to differential thermal contractions cause strain shifts.
Indeed, those materials have roughly two orders of magnitude difference in their thermal
expansion coefficient at cryogenic temperature [YB71; Whi62]. The lattice strain induces
a modification of the local Ec in opposite direction for the two type of Ca2+ sites as it
changes the relative distance with the neighboring Oxygen atoms. Therefore, all the spins
in the strained crystal region have their frequency shifted in the same direction.

Prior to this thesis, the spectroscopy of Erbium ions was studied by Marianne Le
Dantec on this very same sample but using ID-ESR. In the results shown in Figure 5.4, we
see that the erbium ions line varies a lot in linewidth and amplitude with the field angle φ.
By fitting Γinh(φ) with Equation 5.14, the parameters were extracted: ∆Ec = 32.0 ± 0.6
kV/cm, φ0 = 31 ± 0.2 ◦ and α = (11 ± 0.6) × 10−6(V/cm)−1. In particular, it allows to
determine Γinh,0 = Γinh(φ0)/2π = 1.0 ± 0.2 MHz. In Section 7.1.3, we will revisit the
linewidth measurements using FD-ESR.

5.2.2 Energy relaxation

Once excited out of their thermal equilibrium, spins relax by exchanging energy with thermal
baths: either the lattice vibration bath (non-radiative relaxation) or the electromagnetic
bath (radiative relaxation). Those competing relaxation processes are taken into account
in the spin dynamics (Section 3.2.3). As discussed in Section 3.2.2.2, the spin radiative
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echoT ( x(N+1)(

Figure 5.5: Er3+ relaxation time with ID-ESR from [Le 22] T1 for various excitation
pulse amplitude β realized with the inversion recovery sequence followed by a CPMG
sequence [Alb+20], illustrated here, in order to enhance the measurement SNR.

relaxation rate ΓR is completely dominated by the Purcell effect due to the coupling with
the resonator. The spin non-radiative relaxation rate ΓNR depends on the spin coupling
with the crystal phonons. Indeed, the lattice vibration interacts with the spin magnetic
moment through spin-orbit coupling. At non zero magnetic field, the crystal field ground
state Z1 hybridization with higher energy level such as Z2 allows the lattice vibration to
interact with the spin magnetic moment. Moreover, for REI isotopes with nuclear spin, the
hyperfine coupling splits the spin states |e⟩ and |g⟩ into multiplets and opens up relaxation
through various possible transitions

|e, mI⟩ →
|g, mI⟩
|g, mI − 1⟩
|g, mI + 1⟩

(5.15)

The spins with a nuclear spin moment mI that allows those additional relaxation channel
relax faster in the lattice vibrations, with ΓNR ∝ (I(I − 1) − m2

I).
Prior to this thesis, Erbium ions relaxation was studied by Marianne Le Dantec on this

very same sample but using ID-ESR with inversion recovery sequence. This competition
between radiative and non-radiative relaxation was observed in the dependence of the
measured T1 with the excitation pulse amplitude β. Indeed, the spins contributing to the
signal g0, and therefore ΓR, depends on the pulse amplitude. One can distinguish the
low amplitude regime, for which ΓR > ΓNR and T1 strongly varies with β, from the high
amplitude regime, for which ΓR < ΓNR and T1 tends to saturate. The crossover between
those two regime is visible in Figure 5.5 and is quantitatively reproduced by simulations.
In Section 7.2, we will see a related effect by studying the excitation strength dependence
of the fluorescence curves.
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echo

Figure 5.6: Er3+ coherence time with ID-ESR from [Le 22] Echo amplitude Ae as a
function of 2τ . In orange, the data has been averaged on a single quadrature and was fitted
with: Ae = Ae−(2τ/T2,q)xq , yielding T2,q = 4.0 ± 0.1 ms, xq = 2.6 ± 0.2. In green, the data
has been averaged on the field magnitude and was fitted with: Ae =

√
Ae−2(2τ/T2,m)xm + C,

yielding T2,m = 23.2 ± 0.5 ms and xm = 2.4 ± 0.1.

5.2.3 Coherence times

The homogeneous linewidth Γ2 can be measured by recording the decay of a Hahn echo
amplitude as a function of the inter-pulse delay τ . This decay is caused by the spins
interaction with their dynamically-evolving environment.

In the sample studied in this thesis, the paramagnetic impurities are so dilute that
interactions between them are negligible. Interactions with the nuclear spins of the 183W
atoms in the vicinity are however relevant. They lead to two distinct effects :

• Electron Spin Echo Envelope Modulation (ESEEM): the oscillation of the most
proximal nuclear spins trigger a modulation of the ion spin frequency

• Spectral Diffusion (SD): the nuclear spins exchange energy in flip-flop interactions
that trigger fluctuations in the ion spin frequency. This is the dominant decoherence
phenomenon in our sample.

Prior to this thesis, Erbium ions coherence time was studied by Marianne Le Dantec
on this very same sample but using ID-ESR. On the one hand, ESEEM has been reported
by changing τ in small steps of ∼ 1 µs around τ ≈ 100 µs. On the other hand, the spin
coherence time has been studied by varying τ up to a few tens of ms. The results, presented
in Figure 5.6, show different coherence time according to the data averaging procedure.
When the data is average along one quadrature ⟨X⟩, the fit yields a coherence time of
T2,q = 4 ms, a value below the theoretical prediction for Er3+ : CaWO4 [Kan+22]. However,
when the signal is averaged in magnitude ⟨

√
X2 + Y 2⟩, the fit yields a coherence time of

T2,m = 23.2 ms. We attribute the difference between those two coherence times to field
fluctuations that randomizes the echo phase. In Chapter 9, we will demonstrate a method
to detect spin echoes with FD and observe similar Erbium coherence times.
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Chapter 6

Experimental system

This thesis focuses on ESR spectroscopy measurements performed with REIs in CaWO4. We
study a sample characterized prior to this thesis. In this chapter, we describe the Scheelite
crystal of CaWO4 as well as the resonator design. We then describe the experimental
setups.

6.1 Scheelite sample

6.1.1 Sample growth and properties

6.1.1.1 Sample preparation

Our sample is a piece of CaWO4 cut from a crystal boule grown with the Czochralski
method [Bra04]. This crystal was produced in the Walther-Meißner-Institut by Andreas
Erb and Jean-Côme Lanfranchi, and is described in detail here [EL13]. It was made
for particle detection applications, and therefore was prepared with ultra pure materials:
CaCO3 with purity of 99.999% and WO3 with purity of 99.998%. Nevertheless, the crystal
contains a low residual concentration of paramagnetic impurities, which are detected in
this work.

X-ray diffraction was used to prepare a sample in the shape of a rectangular slab, with
a thickness of 0.5 mm and a plane surface with dimensions 3 × 6 mm2 approximately
within the (a,b) plane. A second X-ray characterization done on the sample showed that
the surface makes an angle θc = 87 ◦ with the c axis, and that the sample short edge makes
an angle φc = 47◦ with the a-axis. Those figures are known within a precision of ±2◦

(Figure 6.1). In the following, except when explicitly mentioned, we consider the sample
surface as corresponding to the (a, b)-plane.

6.1.1.2 ESR characterization

The sample was first characterized with a commercial ESR spectrometer by Sylvain Bertaina,
from Aix-Marseille Université. Paramagnetic impurities were detected in a wide variety
of magnetic field amplitude and angle. In Figure 6.2, we can see many peaks, each one
associated with a spin species resonance. The peak position in B0 and its evolution with
the field orientation is an indication of the spin parameters, and thus can allow to recognize
the corresponding paramagnetic element. Many different experimental parameters can
influence the signal (resonator frequency, temperature, excitation power...) which means
that all the spins present in the sample are not necessarily detected. However, the chosen
parameters here are suited to detect REI impurities.
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a b

c

6 mm

3
 m

m

a b

Figure 6.1: Sample dimensions and orientation. a Schematic of the rectangular shape
sample. The sample surface corresponds approximately with the (a, b)-plane and its small
edge makes an angle φc with the a-axis. b X-ray diffraction picture with in red a fit that
allows to determine: θc = 87 ◦ and φc = 47 ◦

a b

Figure 6.2: ESR spectroscopy at a frequency ω0/2π = 9.63 GHz and temperature
T = 8 K. a. B0 ∈ [0, 600] mT varies the (a, c)-plane. 4 Kramers ions are identified with
colors: Erbium (red), Cerium (blue), Neodymium (green) and Ytterbium (yellow). A
strong signal associated to Iron ions is detected at B0 ≈ 160 mT. Unknown peaks evolve
in pairs. b. B0 ∈ [0, 225] mT varies in the (a, b)-plane. Kramers ions peaks are harder to
detect as the spin coupling is mediated by the smaller g∥ in this configuration. The iron
line is still visible at B0 ≈ 160 mT. Unknown peaks evolve in pairs.

The spectra in Figure 6.2a was recorded with B0 varying in the (a, c)-plane. Thanks
to our knowledge of the REI impurities g-tensor, we are able to recognize four of them:
Er3+,Ce3+,Nd3+,Yb3+.

The spectra in Figure 6.2b were recorded with B0 varying in the (a, b)-plane. This
time, the REI impurities are expected to have a constant resonant field due to the S4
symmetry of the Ca2+ substitution site (see Chapter 5). Those impurities are in fact
hardly visible here due to their weak coupling to the oscillating field in the c axis (Er3+ is
for instance expected at B0 ≈ 80 mT). We observe other lines which do not obey the S4
symmetry and evolve with the field orientation in groups of peaks. Some of these lines may
be associated with Er3+ in non-S4 symmetry due to charge compensation occurring in the
nearest neighboring Ca2+ sites [GM64]. Another feature of those two spectra is a strong
and narrow line at B0 = 160 mT (g ≈ 4.3), which consists in 4 closely spaced line when
measured at higher resolution, and which is attributed to the middle Kramers doublet of
Fe3+ [GKT78].

This characterization not only gives an insight of the paramagnetic species present in
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6.1. Scheelite sample

Er3+ Ce3+ Yb3+ Nd3+ Fe3+

0.7 2.7 38 12 11

Table 6.1: Absolute concentration of detected ions. Values in part per billion (ppb)
with an uncertainty of 20%.

a Reso 1

W

b c

Figure 6.3: Picture of our sample. a, schematic of the resonator design showing its
geometrical parameters l, w and W b, picture of the sample glued with Silicon grease on a
high resistivity Silicon chip to hold it in the 3D box. The resonator manipulated in this
thesis is "Reso 1". c, picture of the sample put in the copper box. We can see the pin that
penetrates in the box.

a b

c

Figure 6.4: Resonator characterization. a, "Reso 1" characterization with S11(ω) (dots)
and the corresponding fit (line) in setup 1 at ⟨â†â⟩ ≈ 7 × 105 and B0 = 60 mT. b, top
panel: relative shift in ω as a function of B0 for four test resonators with the same type of
design as patterned on our sample. Bottom panel: relative shift in κint as a function of B0
for the same resonators. c, power dependence of the resonator "reso 1" inner loss rate κint
at B0 = 60 mT. The errorbars are deduced from the fit.

the sample but also enables to compute their concentration. Indeed, the spins relative con-
centration can be extracted from those spectra after a renormalization by the experimental
parameters and the isotope abundance. Additionally, the absolute concentration of Er3+

was determined thanks to the ID-ESR measurements reported in [Le +21]. Altogether,
those sets of experiments give access to the Kramers ions concentration, which are summa-
rized in Table 6.1. The very low concentration of Er3+ in this sample is of interest for long
spin coherence times [Le +21].

6.1.2 Resonator characterization

For our experiments, a superconducting lumped-element resonator is fabricated on top
of the sample surface. It consists in two interdigitated electrodes (the capacitive part)
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connected by a narrow wire (the inductive part). The resonator is characterized by its
geometric properties, visible in Figure 6.3a: the wire width w and length l, the fingers
width W and the number of fingers Nfingers. Those parameters were adjusted to reach the
targeted frequency ω0/2π ≈ 7 GHz. Although 3 resonators were patterned on our sample,
only one of them is used in this thesis since it is the only one with a resonance frequency
within the SMPDs frequency range. This resonator, named "reso 1" in Figure 6.3b as in [Le
22], has the following characteristics: w = 2µm, l = 630µm, W = 10µm and Nfingers = 8.
Microwave simulations were conducted using Ansys HFSS software in order to develop
the resonator design and to compute its impedance, yielding Z0 = 35 Ω. The resonator
simulations and fabrications were done by Marianne Le Dantec. More details can be found
in Appendix B and in [Le 22].

As shown in Figure 6.3c, the sample is put in a 3D copper box and cooled at millikelvin
temperature in a dilution cryostat. The resonator is coupled to the measurement line
through a pin protruding in the cavity. This type of coupling enables to tune the resonator
coupling to the lines κc. This coupling can be changed by modifying the sample position
in the box, the size of the pin, the box resonance frequency...

Before any ESR experiment, the first step is to characterize the resonator. This is done
in a continuous wave measurement where we measure for each resonator the reflection
coefficient S11(ω) using a Vector Network Analyser. The measurement is then fitted by
Equation 3.18, as is shown in Figure 6.4a. The resonator characteristics vary with the
magnetic field amplitude, in particular due to it’s out of plane component that triggers
vortexes in the superconductor, changing ω0 and κint. The resonator is patterned in
Niobium and can withstand magnetic fields applied parallel to the surface, as can be seen
in Figure 6.4b where we measure 4 test resonators up to ∼ 250 mT. At B0 = 140 mT, the
highest field applied for ESR measurements in this thesis, we have a ∼ 20% increase in
κint and a shift in frequency of a few MHz. As we will focus on Erbium ions in this thesis,
"reso 1" characterization is done at B0 = 60 mT, close to the I = 0 Erbium resonance. It is
well established that the internal losses of superconducting resonators also depend on the
power at which they are measured due to the presence of a bath of two-level systems which
brings additional absorption at low powers, but gets saturated at high powers. Therefore,
we characterize in setup 1 the internal loss rate evolution according to the probing power,
corresponding to intra-resonator average photon number ⟨â†â⟩, and present the result in
Figure 6.4d. In both setups, we extract the resonator characteristics at ⟨â†â⟩ ≈ 1:

• setup 1: ω0/2π = 7.0035 GHz, κc/2π = 130 kHz and κint/2π = 100 kHz

• setup 2: ω0/2π = 6.999 GHz, κc/2π = 300 kHz and κint/2π = 60 kHz

Those parameters will be used in this thesis to perform simulations and fits.
The resonator characteristics differ from one setup to the other, likely due to different

experimental conditions. Since the experiments in setup 2 were done after the ones in
setup 1, the Niobium film has likely oxidized in between the two sets of experiment which
explains a reduction in ω0/2π in setup 2. Each setup has its own sample holder in which
we put differently the sample in order to have it strongly coupled to the microwave line,
yielding the difference in κc. Eventually, the magnetic field out of plane component depends
on the sample position relative to the coils, specific to each setup.

6.2 Experimental setups
We now describe the experimental setups used in this thesis. Two different setups mounted
in two different cryostats were operated during this thesis, with their description visible in
Figure 6.5 and Figure 6.6. Here, we describe the experimental principle in common for the
two setups as well as their few differences.
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Figure 6.5: Microwave setup 1. Schematic of setup 1 microwave components where the
label from A to G distinguish the room temperature setup (top part) from the cryogenic
setup (bottom part). The microwave lines are colored accordingly to their corresponding
detection step. The sample is inserted in a coil (red) to produce B0. A device name is
associated to each filter to help readers to find their characteristics.

6.2.1 Microwaves setup for ESR experiment

Experimentally, to shape the microwave pulses as well as to acquire the spin signal, we
use electronic devices to convert analog to digital and digital to analog signal. This kind
of device have a typical bandwidth of ∼ 200 MHz and therefore cannot be directly used
to shape and acquire a field at a frequency in the GHz range. To overcome this practical
issue, we use I/Q mixers to perform a modulation/demodulation procedure, where I and
Q stands for the 2 field quadratures at the mixer. The quadrature acquisition is done on I
and Q, which can be related to the echo natural quadrature X and Y if the amplification
is calibrated. For the modulation, a Local Oscillator (LO) converts the pulse sequence
generated at an Intermediate Frequency (IF) ωIF/2π = 100 MHz into a signal at the
required frequency ω/2π. In order to preserve the signal phase, demodulation is done with
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Figure 6.6: Microwave setup 2. Schematic of setup 2 microwave components where the
label from A to G distinguish the room temperature setup (top part) from the cryogenic
setup (bottom part). The microwave lines are colored accordingly to their corresponding
detection step. The sample is inserted inside two Helmotz coils (red and green) that can
generate a field in any desired direction within the (a, b)-plane. A device name is associated
to each filter to help readers to find their characteristics.
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the same LO than the corresponding pulse modulation: in ID-ESR it corresponds to the
spin excitation pulses that will trigger the spin echo, whereas in FD-ESR it corresponds to
the read out pulse sent to a SMPD port. To control our whole experiment, we operate
a Quantum Orchestration Platform (QOP) made by Quantum Machine® that acts as a
pulse generator of both analog and digital signal as well as an acquisition apparatus. The
QOP is based on a Fast Programmable Gate Array, which allows to have quick feedback
on the experiment status. This is in particular needed to perform the conditional SMPD
reset.

In the dilution cryostat, all the microwave components are cooled down to a temperature
of ∼ 10 mK. However, the electromagnetic field is not necessarily thermalized at ∼ 10 mK
since it is directly connected through the microwave lines to higher temperature stages. In
order to keep the field thermal population as low as possible, we put attenuators in the
input lines and circulators in the output lines. In the lines where we use strong pulses,
such as the SMPD pump line, we use directional couplers and 50 Ω impedance to damp the
field without warming up the cryostat. Moreover, we insert filters to let through only the
frequency of interest. In particular, we filter out the infrared field known to trigger quasi
particles excitation within the superconductor. As amplifiers typically emit permanently
photons at their output, the line used for spin excitation that is amplified is connected
to the cryostat through a switch that allows the connection only during excitation pulse.
A good thermalization of the lines is particularly critical for the SMPD, as it is directly
related to its dark counts rate.

The signal collected in the cryostat is amplified through a full amplification chain before
its acquisition, typically consisting in a parametric amplifier, a High Electron Mobility
Transistor (HEMT) and low noise amplifiers at room temperature.

The sample is inserted in coils to produce the static field B0. As this field would
be detrimental to the SMPD, The SMPD and the sample are spatially separated and
connected through a microwave cable. In addition, the SMPD sample holder is put in a
Mu-metal shield.

In the figures Figure 6.5 and Figure 6.6, the colors are associated to the ESR detection
steps:

• Spin excitation: we generate a pulse sequence at frequency ω0/2π and send it to the
sample. A Spectrum Analyser (SA) allows to measure the pulse amplitude before
the cryostat input.

• Buffer frequency tuning: we pass a DC current to tune the buffer frequency on
resonance, or out of resonance, with the spins.

• SMPD mode conversion and qubit reset: during the SMPD detection step we
generate the pump tone at frequency ωp/2π to convert an incoming photon into a
qubit excitation, while during the SMPD reset step we generate a qubit π pulse at
frequency ωq/2π.

• Parametric amplification: we send a microwave tone to the parametric amplifier
to amplify the signal with a quantum limited noise.

• Spin detection: for FD-ESR, we send a read out pulse to a SMPD port, then amplify
and acquire it to observe the qubit state. For ID-ESR, we directly amplify the echo
coming from the spin

6.2.2 Setup 1

The setup 1 full description is visible in Figure 6.5. This setup allows to perform both
FD-ESR and ID-ESR, as the sample is connected to the SMPD and a parametric amplifier.
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Figure 6.7: SMPD1. Picture of the SMPD1 chip with its various elements: the buffer
resonator connected to the buffer line (orange), the buffer’s SQUID line (red), the qubit
(blue), the pump line (violet) and the waste resonator connected to the waste line through
a Purcell filer (green).

For FD-ESR, the SMPD buffer frequency is tuned on resonance with the spins to detect
the spin signal while for ID-ESR, it is tuned out of resonance to simply reflect the spin
signal. The SMPD read out is performed through the buffer resonator. In this setup, the
coil is a simple solenoid, therefore the angle φ cannot be varied, and all the measurements
are done at φ = φc = 47 ◦.

In setup 1, SMPD1 comes from a first generation of SMPD made of Aluminum on
Silicon with a design shown in Figure 6.7. Each SMPD element, described in Section 4.2.2.2,
is visible here. In addition, there is a resonator called Purcell filter that couples the waste
resonator with the external lines, which limits the qubit effective coupling to this line and
therefore its Purcell relaxation rate.

The SMPD1 figures of merit are:

• Dark Count rate: α = 1500 ± 200 counts/s

• Conversion efficiency: ηSMPD = 0.45

• Duty cycle: ηdc = 0.58

The SMPD1 was fabricated by Emanuele Albertinale. More details can be found in [Alb21].
In setup 1, we have exclusively studied Er3+:CaWO4. Using this setup, we have

detected the spin fluorescence signal for various excitation strength and reproduced it
using simulations (Section 7.2). Thanks to the possibility to do measurements both in
ID-ESR and FD-ESR, we have quantitatively compared the SNR of those two detection
methods used for spin detection in similar spin excitation conditions (Section 7.3). We
have measured spin frequency shifts caused by mechanical strain and driven a small spin
sub-ensemble into coherent oscillations (Section 8.2.3). Eventually, we have compared the
SNR of the two detection methods for spin echo detection (Section 9.3).

6.2.3 Setup 2

The setup 2 full description is visible in Figure 6.6. In this setup, we can perform only
FD-ESR (since there is no parametric amplifier after the SMPD). The SMPD read out is
done through the waste resonator. The sample is put within two Helmotz coils that can
generate a field in an arbitrary direction in the (a, b)-plane.

In setup 2, SMPD2 comes from the second generation of SMPD, made of Tantalum on
Sapphire for all its elements except from the Josephson junctions, still made of Aluminum.
This change in material is meant to increase the qubit T1 [Pla+21], that indeed improved
from T1,setup1 ≈ 7 µs in 1st generation of SMPD to T1,setup2 ≈ 15 µs in the 2nd generation.
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Figure 6.8: SMPD2. Picture of the SMPD2 chip with its various elements: the buffer
resonator connected to the buffer line thorugh a Purcell filter (orange), the buffer’s SQUID
line (red), the qubit (blue), the pump line (violet) and the waste resonator connected to
the waste line through a Purcell filer (green).

As can be seen in Figure 6.8, the SMPD chip has also an additional Purcell filter fabricated
in front of the buffer line. Eventually, the SMPD sample holder has evolved to improve
the chip thermalization and to incorporate the infrared filters.

The SMPD2 figures of merit are:

• Dark count rate: α = 500 ± 200 counts/s

• Conversion efficiency: ηSMPD = 0.4

• Duty cycle: ηdc = 0.78

The SMPD2 has the particularity to have a pump frequency ωp/2π = 6.990 GHZ very close
to the buffer frequency ωb/2π = 6.999 GHz. In consequence of this frequency collision,
part of the pump photons likely leaks towards the buffer and contributes to the value of
α. This phenomenon is particularly visible when the resonator frequency decreases, as is
visible at high values of magnetic field in the large range spectroscopy shown in Section 7.1.

The SMPD 2 was fabricated by Léo Balembois. More details can be found in article
and PhD manuscript to be published soon.

In setup 2, we have measured large-scale FD-ESR spectra showing signal from a wide
variety of spin species and we have noticed the interest of the fluorescence curve in spin
characterization (Section 7.1). We have observed again the spin frequency shifts caused by
mechanical strain and studied its dependence with the static field angle (Section 8.1). We
have examined a spin sub-ensemble coherent oscillation dependence with the magnetic field
(Section 8.2). Eventually, we have characterized the spin coherence times using FD-ESR
(Section 9.1 and Section 9.2).

6.3 Typical experimental spin signal

Here, we describe typical ESR measurements and introduce the interesting physical quanti-
ties.

75



Chapter 6. Experimental system

a b
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TbTd
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Figure 6.9: ID-ESR and FD-ESR curves a, ID-ESR sequence representation and typical
experimental curve with the two quadratures (I in blue, Q in orange) plotted in arbitrary
unit, showing a spin echo at t = 0. In the inset, zoom on the echo with a gaussian fit (red)
yielding the echo mode. b. FD-ESR sequence representation and typical experimental
data. Top panel: manipulation sequence to detect spin fluorescence where we send at t = 0
an excitation pulse of strength ϵ (black rectangle), wait a dead time Td, then we cycle
the SMPD over a time Trep (vertical bars). The SMPD clicks are treated (quantities on
top) over various time (arrows at the bottom) as binned click probability or as integrated
counts. Middle panel: SMPD clicks (vertical bars) following a spin excitation pulse, where
we see a higher click probability just after the pulse. Bottom panel: averaged count rate
⟨Ċ⟩ that relaxes down to ⟨Ċbg⟩ (dashed line).

6.3.1 Inductive detection

A typical spin echo trace detected with ID-ESR following a Hahn echo sequence, as well as
a schematic of the pulse sequence, is shown in Figure 6.9a.

For pulses of amplitude β and duration ∆t, we define the pulse strength as ϵ = β × ∆t,
which gives an excitation sequence: ϵ/2X − τ − ϵY − τ − echo. We detect the quadratures
I and Q during the whole sequence. Since in most ID-ESR experiment the gain in the
amplification chain between the sample and the detection apparatus is not calibrated, we
cannot relate the signal amplitude to an absolute echo field amplitude. Therefore, the
resulting quadratures are plotted in arbitrary unit. The curves clearly show the 2 excitation
pulses as strong signals separated in time by τ = 50 µs. In addition, a zoom around t = 0
shows the spin echo, mostly appearing in the I quadrature.

As the signal presented here has been averaged over several iterations, the spin polariza-
tion depends on the time duration during which we let the spins relax before iterating the
experiment, namely the pulse sequence repetition rate Trep. So as to have a large signal,
Trep should be large compared to the spin relaxation time T1.

In order to extract a quantity proportional to the number of contributing spin, we
integrate the spin echo along the echo mode u(t). A Gaussian fit allows to extract u(t)
and then to perform the integration Equation 4.3.1.1. The resulting quantity ⟨Îe⟩ is
proportional to the spin echo ⟨X̂e⟩, although in most ID-ESR experiment ⟨Îe⟩ is also
computed in arbitrary unit as the amplification chain is not calibrated. However, we will
see in Section 7.3.1.1 that the SMPD allows to measure the number of photons in the echo
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mode, and so gives access to the echo absolute amplitude.

6.3.2 Fluorescence detection

A typical spin fluorescence trace following an excitation pulse applied at t = 0, as well as a
schematic of the signal treatment, is shown in Figure 6.9b.

As detailed in Section 3.3.2.1 and Section 4.2, we detect with FD-ESR the photons
emitted by the spins following an excitation pulse sequence (for instance, a single pulse, as
shown in Figure 6.9b). After reflecting on the spin resonator sample, the pulse reaches
the SMPD input, which strongly perturbs its operation during a certain time. We find
empirically that the SMPD recovers after a dead-time Td = 50 µs, which is negligibly short
compared to the fluorescence timescales that we are considering here. In this thesis, all the
FD measurements are taken after this dead time.

The SMPD click output cj , which is either 0 or 1, of cycle j at cycle time tj shows an
excess of photons following the pulse, which decays over a characteristic time Tcharac. The
SMPD clicks are coarse grained in bins of Nc cycles, corresponding to a bin time Tb, to
compute a binned click probability Cb(t) = 1/Nc

∑
t≤tj≤t+Tb

cj . The grain size is chosen
depending on the signal such that Tb ≪ Tcharac.

From that, we deduce the count rate Ċ = Cb(t)Nc/Tb. The signal is averaged over
several iterations, yielding ⟨Ċ⟩. The SMPD cycle keeps on going for the whole duration
Trep between two successive pulse sequence. The average count rate relaxes down to the
background rate ⟨ ˙Cbg⟩ = ⟨Ċ(t = Trep)⟩.

To extract a single value from a spin fluorescence curve, we sum the counts over an
integration time Tint to obtain the integrated counts ⟨C⟩ = ∑

0≤tj≤Tint⟨Cb(tj)⟩. The choice
of the integration time Tint is important to optimize the signal-to-noise ratio, as will be
detailled in Section 7.3.

However, since part of the photons integrated are dark counts, ⟨C⟩ is not directly
proportional to the contributing spin number. The background contributions can be
subtracted in order to get

⟨Cspin⟩ =
∑

0≤tj≤Tint

⟨Cb(tj)⟩ − ⟨ ˙Cbg⟩Tint, (6.1)

a quantity proportional to the spin number. One should keep in mind that the background
subtraction also removes the contribution of spins that have not reached steady-state at
t = Trep.
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Chapter 7

Fluorescence detection as a high
sensitivity spectroscopy method

In this chapter, we present FD-ESR spectroscopy measurements of the Scheelite sample.
Using the signal from Er3+, we provide a quantitative analysis of the fluorescence curves.
We also compare the SNR of ID-ESR and FD-ESR and find a significant sensitivity
improvement for small numbers of excited spins.

7.1 Spin spectroscopy using fluorescence detection

Here we report the first large scale spectra done with FD-ESR where several spin species
are detected. This result confirms the potential application of FD-ESR to characterize a
large variety of spin species.

7.1.1 Spectroscopy over a large range of magnetic field

In a first set of experiments, we perform FD-ESR on the Scheelite sample over a magnetic
field range of ≈ 90 mT, at φ = 37◦. For each value of B0, we apply an excitation pulse and
record the subsequent integrated number of counts. The procedure is repeated 50 times to
average the signal, resulting in a ⟨C(B0)⟩ curve shown in Figure 7.1. Since the small B0
out-of plane component is expected to shift the resonator frequency, we adapt every 0.5
mT the pulse frequency and the SMPD detection frequency. Among the lines visible in
this spectrum, we attribute some of them to known spin species.

We can attribute some lines to the Ytterbium ion: the two peaks at B0 = 87.5 mT and
B0 = 95.4 mT correspond to the mI = −5/2 and mI = −3/2 transitions of 173Yb+3, the
peak at B0 = 101.01 mT corresponds to the mI = −1/2 transition of 171Yb+3 and the peak
at B0 = 127.75 mT corresponds to the Ytterbium line I = 0. The other transitions of the
173Yb+3 isotopes are not visible, likely due to the polarization of the ground-state manifold
at 10 mK. Since we observe two transitions, their relative amplitude gives access to the
spins effective temperature Teff using Equation 5.12. To properly compare those peaks, we
subtract to the spin signal the dark count rate α = 330 counts/s, computed by averaging Ċ
over a magnetic range without spin signal B0 ∈ [50.5, 51.5] mT to mitigate the background
fluctuations. Also, as detailed below, the two transitions have different relaxation times,
each longer than Trep = 2 s, that need to be taken into account to properly compare the
peaks amplitude. All in all, we compute Teff = 40 mK.

Similarly, we can associate two lines to the Erbium ion: one small amplitude peak at
B0 = 52.15 mT is the mI = −1/2 transition of 167Er+3 and a large amplitude peak at
B0 = 59.75 mT is the I = 0 transition. The other transitions of the 167Er+3 isotopes are
not visible, again likely due to the polarization of the ground-state manifold.
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Figure 7.1: Large B0 range spectroscopy (setup 2). In the bottom panel is plotted
the integrated counts ⟨C⟩ over a time Tint = 450 ms as a function of B0, varying between
50.5 to 141 mT by step of 0.05 mT with φ = 37◦. The excitation pulse has an amplitude
β = 117 ns−1/2 and duration ∆t = 5 µs, with a repetition time Trep = 2 s. Every 0.5 mT,
we calibrate the pulse frequency and SMPD detection frequency to follow the shift in the
resonator frequency due to B0. The acquisition of this spectrum took 68h. In the top
panel is plotted the computed energy levels of Er3+, 171Yb3+ and 173Yb3+ according to
B0, with (blue) and without (black) nuclear spin hyperfine interaction. The corresponding
transition at ω0/2π are vertical bars, filled when I = 0 and dashed when I ̸= 0. The bars
are prolonged up to the data, where the colors (orange for Er3+, green for Yb3+) and the
position in B0 allow to recognize the transitions.

We use the Er+3 line I = 0 to calibrate our coils, given its known gyromagnetic tensor
as well as the sample orientation. We then check that the position of the Yb3+ line I = 0
coincides with the theoretical expectations to better than 10−1 mT, thus validating our
coil calibration procedure.

In addition to the Er3+ and Yb3+ peaks, several other lines are observed. One of them
is close to the value expected for Fe3+ (g ≃ 4.3). However, several considerations prevent
us from attributing this peak to Fe3+. First, we observe only one line, instead of the
expected 4 closely spaced lines. Second, the g = 4.3 line is generally attributed to the
middle Kramers doublet of Fe3+, which should not be populated at all at a temperature
close to 10 mK.
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a b

Figure 7.2: Spectroscopy with background removal and peaks fluorescence curve
(setup 2). Same data than Figure 7.1 a, ⟨Cspin⟩ as a function of B0, with the background
rate ⟨Cbg⟩ averaged over the time window [1.6 : 2] s. The peaks colors allow to recognize
the fluorescence curves, associated to various maker shape (circle for I = 0, hexagon for
I ̸= 0, crosses for unknown peaks). The peaks attributed are labeled. b, normalized
fluorescence curves with dark count subtracted for each colored peak in the spectrum. Top
panel: fluorescence curves of the 6 peaks at low B0: in orange is Er3+ with circle (hexagon)
for I = 0 (I ̸= 0), in red are two peaks labeled b1 and b2 with a fluorescence curve similar
than Er3+ with I = 0, and in brown are two peaks labeled s1 and s2 with a slow relaxation
rate compared to Er3+. Middle panel: fluorescence curves of the Yb3+ peaks with circle
(hexagon) for I = 0 (I ̸= 0). The hyperfine peaks are recognizable through their various
shade. Bottom panel: fluorescence curves of the 3 remaining unknown peaks.

The spectrum Figure 7.1 shows a large instability at B0 > 135 mT. We understand it
as due to the frequency proximity at high B0 between the SMPD buffer resonance, that is
shifted downward with B0 along with the sample resonator by up to 1.5 MHz, and the
SMPD pump, as discussed in Section 6.2.3.

In order to distinguish clearly the meaningful spin peaks from the background fluc-
tuations, we have subtracted in Figure 7.2a at each B0 the background contribution, as
explained in Section 6.3.2. In cases where the spins have not entirely decayed at a time
Trep, this background-subtraction procedure effectively removes part of the signal and
therefore affects the peak height. Because the fluorescence decay time depends on the spin
species, this can result in a drastic change in the relative peak amplitude. This is clearly
visible when comparing Figure 7.1 and Figure 7.2a.

In addition to the peak position and height, FD-ESR spectroscopy automatically gives
access to the shape of the fluorescence decay curve, which bears a number of information
about the spin properties that are not readily available in ID-ESR. Indeed, as explained
in Section 3.3.3, this shape in the most general case depends non-trivially on the pulse
excitation power, and on the spin radiative and non-radiative relaxation rates. Nevertheless,
as explained in Section 5.2.2, in the high-power limit the long-time decay is dominated
by the non radiative spin-lattice relaxation. It is thus worthwhile to examine the various
fluorescence curves of each species to access this non radiative relaxation rate. They are
plotted in Figure 7.2b with the dark count rate α subtracted to each of them. We have
chosen to organize these data in 3 groups :

81



Chapter 7. Fluorescence detection as a high sensitivity spectroscopy method

• Top panel shows the 6 low-field lines in the Er3+ region. On the Erbium, we observe
that the relaxation of the mI = −1/2 line of 167Er3+ is faster than the I = 0, as
expected from the spin-lattice relaxation (Section 5.2.2). A pair of peaks, in red
in the figure and called in the following b1 and b2, shows a fluorescence decay very
similar as the Er3+ line I = 0, which indicates that they might be related to Erbium.
They could come from Er3+ ions with a specificity in their local environment that
breaks the S4 symmetry, such as a charge compensation. The other pair of peaks, in
brown in the figure and called in the following s1 and s2, have a very slow relaxation
rate that explains why their amplitude is strongly reduced by the background removal
procedure. Since transition metal ions have usually lower spin-lattice relaxation
rates than REI, it is possible that these peaks originate from transition metal ion
paramagnetic species.

• Middle panel shows the Yb3+ lines. The decay rate of the I = 0 line is similar to
the decay rate of the 173Yb3+ line mI = −5/2 and the 171Yb3+ line mI = −1/2. On
the other hand, the 173Yb line mI = −3/2 has a faster relaxation. This behavior is
consistent with the so-called hyperfine effect in the REI spin-lattice relaxation (see
Section 5.2.2).

• Bottom panel shows the 3 last unknown peaks. Two of them, among which the peak
close to the expected Fe3+ peak, have a rather slow relaxation rate close to the s1
and s2 peaks relaxation rate, therefore we also suggest that they come from transition
metal ion spins. On the other end, the last peak has a relaxation rate similar than
the Er3+ line I = 0 and the Yb3+ line I = 0, suggesting a possible REI origin.

7.1.2 Rotation pattern spectroscopy

In Figure 7.3, we show a rotation pattern measured with FD-ESR where we vary the field
amplitude B0 and orientation φ both without and with background subtraction, plotting
respectively ⟨C⟩ and ⟨Cspin⟩. The peaks position angular dependence gives access to the
spin species gyromagnetic factor in the (a, b)-plane. We observe that some peaks have their
mean B0 field position independent of φ; they obey the S4 symmetry that is expected for
paramagnetic ions replacing a Ca2+ ion. On the other hand, the position of some other
peaks is seen to strongly depend on φ, revealing that they do not follow S4 symmetry.
We also see some spikes appearing rarely and randomly; we attribute them to a rare and
sudden change in the SMPD properties, such as at φ = 26 ◦ and B ≈ 53 mT, possibly due
to fluctuations of the properties of the transmon qubit. We take the rotation pattern in a
magnetic range with B0 < 91 mT to avoid reaching a coil quenching current. We notice
larger fluctuations and a rise in background at high magnetic field, again likely due to the
frequency collision between the pump and the buffer, as the buffer frequency is shifted
downward by up to 1.2 MHz (Section 6.2.3).

Among the S4-symmetric peaks, we retrieve the Er3+ lines I = 0 and mI = −1/2, as
well as the 173Yb with mI = −5/2 peak. If the peaks mean position remain fixed, their
amplitude and width appear to be strongly dependent on φ. The φ-dependent linewidth is
explained by the effect of the inhomogeneously distributed charged impurity background,
as explained in Section 5.2.1.2. This linewidth modulation also partly explains the observed
peak amplitude dependence on φ. Another effect comes into play: the coupling constant
g0, hence the radiative rate ΓR and also the integrated number of counts ⟨C⟩, depend on
φ. The linewidth evolution of the Er3+ line I = 0 is detailed in Section 7.1.3.

The pair of peaks on each side of the I = 0 Erbium at φ ≈ 37 ◦ are also visible in
this spectrum, showing a strong dependence of their resonance field with φ. The peaks b1
and b2 increase in field resonance as φ decreases and get too high in field resonance to be
seen when φ < 0. At the angles φ < 0, another pair of peaks appear and decrease in field
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a b

Figure 7.3: Rotation pattern spectroscopy, with varying B0 and φ (setup 2). a,
integrated counts ⟨C⟩ over a time Tint = 450 ms as a function of B0, varying between 50.5
to 90.8 mT by step of 0.1 mT, and φ, varying between −30 ◦ to 47 ◦ by step of 7 ◦. The
excitation pulse has β = 58 ns−1/2 and ∆t = 3 µs, with a repetition time Trep = 5 s. Every
2 mT, we calibrate the pulse frequency and SMPD detection frequency to follow the shift
in the resonator frequency due to B0. The acquisition of this rotation pattern took 100 h.
b, same data with background subtraction, plotting ⟨Cspin⟩. The background rate ⟨Cbg⟩ is
defined for each magnetic field parameter as the mean value of ⟨C⟩ over the time window
[4, 5] s.

resonance as φ decreases. Those two pairs of peaks have a similar amplitude modification
as we subtract the background, indicating similar decay time. A possible explanation of
those two pairs of peaks is that they arise from a replacement a Tungsten atom close to
the Erbium ion, for instance by a vacancy. This modification would give rise to two pairs
of ESR line showing an approximate 90 ◦ symmetry with one another [MG67].

We observe 4 peaks at B0 ∈ [70.4, 75.6, 82.1, 89.6] mT that obey the S4 symmetry, that
we name in the following li with i ∈ [1, 2, 3, 4].Thesepeaksareonlyvisibleforφ ∈ [−30, 12] ◦,
which explains that they do not appear in Figure 7.1. Note however that, due to the limited
range of our scan, we cannot exclude that related extra peaks can be found at higher B0.

To illustrate once again the interest of the access to the spin fluorescence curve, we
single out in Figure 7.4a the spectrum with background subtracted at φ = −2 ◦. We
compute the experiment dark count rate α = 430 counts/s using the average rate in the
field range B0 ∈ [50.5 : 58.5] mT where no peaks are visible. We associate the lines visible
in the spectrum in three groups and plot their fluorescence curves after subtracting α,
yielding the curves visible in Figure 7.4b:

• Top panel: we plot together the peaks previously seen in Figure 7.1. We recognize
the Er3+ line I = 0 at B0 ≈ 59.8 mT, the pair of peaks b1 and b2 at B0 ≈ 70 mT
and the 173Yb3+ line mI = −5/2 . We find again a striking similarity in the Erbium
fluorescence curve with the b1 and b2 fluorescence curves, whereas the 173Yb3+ relaxes
slower.

• Middle panel: we plot together the peaks at B0 ∈ [70.4, 75.6, 82.1, 89.6] mT that
we believe to belong to the same spin species. A natural hypothesis would be that
the 4 peaks arise due to the hyperfine coupling of a paramagnetic species with a

83



Chapter 7. Fluorescence detection as a high sensitivity spectroscopy method

a b

Figure 7.4: Spectroscopy at φ = −2 ◦ and peaks fluorescence curves (setup 2).
Same data than Figure 7.3 a, ⟨Cspin⟩ as a function of B0 at φ = −2 ◦, also visible in
Figure 7.3b. The peaks color and shade allow to recognize the fluorescence curves. The
peaks attributed are labeled. b, normalized fluorescence curves with dark count subtracted
for each colored peak in the spectrum to compare their relaxation shape. Top panel:
fluorescence curves of the 4 peaks seen in the previous spectrum: Er3+ line I = 0 ,173Yb
line mI = −5/2, b1 and b2 lines. Middle panel: fluorescence curves of the peaks li with
i ∈ [1, 2, 3, 4]. Bottom panel: fluorescence curves of the remaining unknown peaks.

nuclear spin. Several observations are however not entirely consistent with this
attribution. First, all 4 peaks have approximately the same amplitude, whereas one
would expect some differences due to polarization of the manifold ground state at
thermal equilibrium. Also, from the hyperfine effect in spin-lattice relaxation, one
would expect the relaxation of peaks l2 and l3 to be faster than peak l1, whereas we
observe the opposite. We finally note that peak l1 relaxes even faster than Er3+, and
thus shows an appreciable spin-lattice coupling, possibly indicating a REI origin.

• Bottom panel: we plot together the remaining unknown peaks. The fluorescence
curve gives additional information on each line, however we cannot conclude on their
source.

The recognition of all the peaks requires additional work that falls out of the scope of this
thesis, but the information within this rotation pattern is a proof of the characterization
possibility of the FD-ESR method.

Note that in the spectrum, spikes may arise due to random events leading to qubit
excitation over long times. Such event is visible in Figure 7.5 where we have plotted two
successive count rate traces, with one showing a clear sudden spike reaching Ċ ≈ 15000
counts/s and relaxing over a time scale of the order 1 s. This kind of even possibly arises
due to some high-energy particle impact on the chip.

To sum up all the spectroscopic information we have on this sample, we compare
this rotation pattern to one measured prior to this thesis using the ID-ESR. As can be
seen in Figure 7.6a, FD-ESR and ID-ESR angular dependence spectra show very similar
features: both show peaks with a S4 symmetry such as the Er3+ line I = 0 as well as lines
varying with the field orientation like the pair of peaks b1 and b2 as well as s1 and s2. This
similarity confirms that FD-ESR yields the same spectroscopic information than ID-ESR.
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Figure 7.5: Single shot count rate curves at B0 = 53.1 mT and φ = 26 ◦ (setup 2).
Two successive single shot traces of Ċ as a function of time, where one curve (blue) shows
a strong peak uncorrelated from the spin excitation pulse happening at t = 0.

a b c

Figure 7.6: Rotation pattern with ID-ESR and study of peaks properties. a,
ID-ESR rotation pattern measured prior to this thesis at ω/2π = 7.88 GHz (figure taken
from [Le 22]). b, li peaks resonance at 7.88 GHz (orange dots) and at 7 GHz (blue dots).
A linear extrapolation (green) yields an effective gyromagnetic factor γ = 39 GHz/T and a
Zero Field Spitting (ZFS) of about 4 GHz. c, resonant field of the peaks around the Er3+

measured with ID-ESR at difference frequencies, with φ = 47 ◦ (figure taken from [Le 22]).
Linear extrapolations (dashed line) yield the spins g-factor as well as a their ZFS.

In addition, the comparison of those spectra allows to characterize in more details the 4
high-field peaks li with i ∈ [1, 2, 3, 4], with 3 of them also visible in the ID-ESR spectrum.
We compare their resonant magnetic field at two different frequencies in Figure 7.6b and
extract a gyromagnetic factor γ = 39 GHz/T and a Zero Field Splitting (ZFS) of ∼ 4 GHz.
The peaks around Er3+ have been measured at various frequency in [Le 22], as is visible in
Figure 7.6c, allowing to compute their g-factor. We notice that the peaks b1 and b2 have a
ZFS of ∼ 2.8 GHz, which is unexpected for Er3+ with a charge compensation. We cannot
conclude in term of those peak attribution to a spin system.

7.1.3 Spectroscopy of Erbium ions

In the following of this thesis, we concentrate on Er3+ line I = 0 in order to extract
a comprehensive set of data that could be compared to the ID-ESR data presented in
Section 5.2 in order to conclude on the interest of FD-ESR.
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a b

Figure 7.7: Er3+ line I = 0. a, Er3+ spectroscopy in setup 2. Top panel: color maps
of ⟨Cspin⟩ as a function of B0 and φ, with the excitation pulse parameters: Tint = 0.45 s,
Trep = 5 s, ∆t = 3 µs and β = 58 ns−1/2. It shows a minimum in linewidth and maximum
in signal amplitude at φ0 = 30 ◦. Bottom panel: Γinh evolution with φ extracted using a
Lorentzian fit. b, Er3+ spectroscopy in setup 1. ⟨Cspin⟩ (blue dots) as a function of B0 at
φc, with the excitation pulse parameters: Tint = Trep = 8.6 s, ∆t = 4 µs and β = 52 ns−1/2.
The Loretzian fit (orange line) yields Γinh/2π = 10.8 MHz.

In setup 2, we characterize the Er3+ line I = 0 angular dependence by varying the
magnetic field orientation close to φ0, with the result visible in Figure 7.7a. We find the
expected values of Γinh/2π < 2 MHz at φ0 = 30◦, an angle interesting to explore the physics
of Erbium ions as it maximizes the signal. In the following of this thesis, experiments
performed in setup 2 are typically done with φ = 30◦ and B0 = 59.79 mT corresponding
to the middle of the line, except when stated otherwise.

In setup 1, the Erbium spectroscopy is done with the magnetic field fixed orientation
φ = φc = 47◦ showing a linewidth of Γinh/2π = 10.8 MHz, as illustrated in Figure 7.7b. In
this setup also we use the Erbium main line to calibrate our coil. In the following of this
thesis, experiments performed in setup 1 is done with B0 = 59.73 mT, except when stated
otherwise.

7.2 Simulation of the Erbium fluorescence
As discussed earlier, the spin relaxation curve detected with FD-ESR is a complex signal
that contains valuable information on the spins (characteristic relaxation time, curve shape,
curve amplitude...). Here, we compare quantitatively the measured fluorescence curves and
the model discussed in Section 3.3.3 in the case of the I = 0 line of Er3+. The comparison
is discussed in detail for various pulse excitation parameters in setup 1, and applied to a
single fluorescence curve in setup 2.

7.2.1 Fluorescence at various excitation strengths in setup 1

In setup1, we measure fluorescence curves varying the excitation pulse amplitude β and
duration ∆t over a wide range, summarized in Table 7.1. It corresponds to detecting
the fluorescence curve at various pulse strength, defined as ϵ = β × ∆t. Because of the
saturation of our amplifiers, we are limited to an upper-bound in β, which is why we also
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label β (ns−1/2) ∆t (µs) Trep (s) ϵ (ns1/2)
a 1.23 4 0.43 4.9 × 103

b 1.46 4 0.43 5.9 × 103

c 1.95 4 0.43 7.8 × 103

d 2.46 4 0.43 9.8 × 103

e 3.48 4 0.43 1.4 × 104

f 4.63 4 0.86 1.9 × 104

g 9.25 4 2.15 3.7 × 104

h 13.06 4 6.03 5.2 × 104

i 26.06 4 8.61 1.0 × 105

j 52 4 18.90 2.1 × 105

k 246 1 18.90 2.5 × 105

l 246 5 18.90 1.2 × 106

m 246 9 18.90 2.2 × 106

n 246 13 18.90 3.2 × 106

o 246 17 18.90 4.2 × 106

Table 7.1: Excitation pulse conditions. We vary the pulse amplitude β (the values are
deduced after the calibration of AdB) over the range available in our setup (a to j). To
keep increasing the excitation strength ϵ at saturation of amplitude, we vary the pulse
duration (k to o).

increase ∆t to keep increasing ϵ. However, the effect of β and ∆t on spin dynamics is not
equivalent, for instance due to power broadening as shown in Figure 3.7. We therefore also
simulate the high-ϵ pulse (k to o) with a fixed ∆t = 4 µs but varying the β to check that
that our results are consistent no matter the way to increase ϵ, as detailed below.

For each excitation condition, the repetition time Trep was carefully chosen such that
the count rate relaxes down to an apparent steady-state, meaning that we collect roughly
all the photons coming from the spins. The data are shown in Figure 7.8. Qualitatively,
we observe that the number of counts and the characteristic decay time increase with the
pulse strength. We also see that the shape of the curves deviates significantly from a single
exponential.

To perform quantitative predictions of the fluorescence curves based on Equation 3.33,
only two parameters are unknown : the attenuation of the lines AdB and the total spin
detection efficiency η. We proceed in two steps. First, we calibrate AdB by fitting the
time-dependence of the normalized fluorescence curves. Then, we obtain η by computing
the number of counts predicted, using the fact that the Er3+ concentration is known.

The other parameters used in the simulation are:

• the resonator characteristics ω0/2π = 7.0035 GHz, κc/2π = 130 kHz and κint/2π =
100 kHz,

• the non-radiative relaxation rate ΓNR = 0.15 s−1,

• the repetition time Trep,

• the pulse amplitude at the resonator input β,

• the spin distribution in frequency ρ(∆ω). We use the measured Er3+ Lorentzian
line and truncate it in a range ∆ω/2π ∈ [−575 : 575] kHz as shown in Figure 3.11a,
considering that the resonator frequency is at the line center and that spins out of
this simulated frequency range wouldn’t significantly contribute. To perform the
simulation, we sample this distribution with a 2 kHz step size.

87



Chapter 7. Fluorescence detection as a high sensitivity spectroscopy method

0.00 0.25
1600

1650
a

0.0 0.5

1750
2000

f

0 10

2000
2500

k

0.00 0.25
1500

1600
b

0 2
1750
2000
2250

g

0 10
2000

3000
l

0.00 0.25

1500

1600
c

0 51500

2000
h

0 10
2000

3000
m

0.00 0.251400

1600
d

0 5
1750
2000
2250

i

0 10
2000

3000
n

0.00 0.25
1800

2000
e

0 5
1500
2000
2500

j

0 10
2000

3000
o

C
 (c

ou
nt

s/
s)

t (s)
Figure 7.8: Fluorescence data curves at various ϵ (setup 1). Count rate ⟨Ċ⟩ as a
function of time t following an excitation pulse with various strength ϵ. We adapt Trep to
measure the fluorescence down to an apparent steady rate. Each curve label is associated
to ϵ in Table 7.1.

• the spin distribution in coupling ρ(g0). We use the coupling distribution shown in
Figure 3.11b. To perform the simulation, we sample this distribution with g0/2π ∈
[4 : 800] Hz in step of 27.5 Hz.

The simulation computes the final value of ⟨SZ⟩ following the excitation pulse for a
given coupling g0 and detuning ∆ω; using Equation 3.33, we thus obtain the fluorescence
curve (see Section 3.3.3).

7.2.1.1 Calibration of the line attenuation

An important unknown parameter is the attenuation in the microwave lines AdB, such that

β = 10AdB/20βSA (7.1)

with β the pulse amplitude reaching the sample for a given pulse amplitude βSA measured
with the Spectrum Analyzer at the cryostat input.
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a b

Figure 7.9: Normalized fluorescence curves for data and simulation (setup
1). a, Normalized fluorescence curve with background subtracted for the data with
βSA = 1.5 ∗ 105 ns−1/2 (blue dots) and several simulation curves (red lines) with varying
excitation pulse amplitude, yielding a fitting amplitude of β = 9.25 ns−1/2 (solid line).
b, Normalized relaxation curve with background subtracted for data (blue) and their
corresponding simulation (red) based on the calibration of the line attenuation.

We use the dependence of the fluorescence curve shape on β to determine the attenuation
that matches best our data. This adjustment is shown in Figure 7.9a. Here, we compare
a single normalized fluorescence curve to the result of the simulation (also normalized),
for several values of attenuation. The best match is obtained for AdB = −85 dB. Such an
attenuation is indeed compatible with the setup as shown in Figure 6.5, which includes 70
dB of fixed attenuation at low temperatures, ≈ 10 dB in cables (both at room-temp and
low-temp), yielding a likely total 5 dB attenuation in filters, circulators, and connectors.

Based on this calibrated attenuation, we have done the simulations that correspond to
the other experimental data and find a very good agreement in the curve shape, as can
be seen in Figure 7.9b. This good agreement therefore validates the value of input line
attenuation obtained.

7.2.1.2 Calibration of the detection efficiency

Now that the line attenuation has been determined, we obtain η by comparing the measured
number of counts to the simulation predictions. To remove the experimental background
as accurately as possible, we subtract the last data point in each fluorescence curve, and
we do the same treatment in the simulation. We then compare the integrated number of
counts in the data and in the simulation. The result is shown in Figure 7.10 top panel,
where we observe a similar increase in number of counts with ϵ up to a saturation value at

89



Chapter 7. Fluorescence detection as a high sensitivity spectroscopy method

101

102

103

104
C s

pi
n

 (c
ou

nt
s)

104 105 106

(ns1/2) 

0.10

0.15

C s
pi

n,
d

/C
sp

in
,s

Figure 7.10: Comparison of data and simulation integrated counts (setup 1).
a, Integrated counts with background subtracted for data (blue) and simulation (red) at
various pulse strength ϵ. We also plot the simulation results at high-ϵ keeping the pulse
duration fixed ∆t = 4 µs and varying the amplitude β only (black hexagons). b, ratio of
counts in data ⟨Cspin,d⟩ over simulation ⟨Cspin,s⟩ as a function of ϵ (green dots). The ratio
is roughly stable at high-ϵ at η = 0.15 (black dashed line) that we take as our measurement
efficiency.

high-ϵ. This saturation is well reproduced in the simulations of the same strength ϵ with a
fixed ∆t and a varying β. We interpret this saturation as being due to the non-radiative
relaxation of spins far from the wire that therefore won’t contribute to the signal. This
explanation is supported by the saturation in the decay characteristic time, detailed below.

We notice that the simulated predictions are consistently larger than the measured
counts. We plot the ratio of data over simulation in Figure 7.10 bottom panel, and find
that it is constant over a large range of ϵ values, at least in the high-ϵ limit. In the low-ϵ
regime however, this ratio is observed to decrease. This phenomenon is due to an extra
broadening of the spin resonance for the most strongly coupled spins due to mechanical
strain, and will be explained and investigated in more details in Chapter 8. Therefore, we
believe the detection efficiency corresponds to the ratio of photon number of at high ϵ,
namely η = 0.15.

This overall efficiency η = ηresoηlineηdcηSMPD decomposes into several efficiency contri-
butions, some of which we have measured:

• the resonator collection efficiency ηreso = κc/(κc + κint) = 0.55,

• the SMPD duty cycle ηdc = 0.58,

• the SMPD detection efficiency ηSMPD = 0.45.

Thus, we deduce that the transmission in the line efficiency is ηline ≈ 1. Even though
we would expect small losses in the cables and resonators between the sample and the
SMPD, this result makes sense regarding the various uncertainty sources such as the Er3+

concentration known with 20% uncertainty or the resonator impedance Z0 computed in a
microwave simulation that doesn’t take into account kinetic inductance.
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Figure 7.11: Fluorescence data curves reproduced with simulations (setup 1).
Fluorescence curve with background subtracted of data (blue dots), reproduced with
simulations (red line) using the calibration of AdB = −85 dB and η = 0.15, for various
pulse strength ϵ.

7.2.1.3 Data to simulation comparison

Eventually, the calibration of AdB and η allows to compare the data and the simulation
over the whole range of ϵ, as is shown in Figure 7.11. The agreement is quantitative over a
large range of ϵ despite the non-trivial dependence of the fluorescence curve shapes, which
supports the validity of the fluorescence modeling described in Section 3.3.3. As explained
earlier, the discrepancy at low ϵ is attributed to strain broadening, and will be explored in
Chapter 8.

Using this set of data and simulations, we have computed the fluorescence characteristic
relaxation time Tcharac, defined as ⟨Ċ(t = Tcharac)⟩ = ⟨Ċ(t = 0)⟩ × e−1. In the results
shown in Figure 7.12, the decay time Tcharac increases with ϵ until it saturates at high ϵ due
to the crossover between radiative and non-radiative relaxations, as observed with ID-ESR
in Figure 5.5. Nonetheless, here we observe also a saturation at low ϵ that happens at
Tcharac ≈ 200 ms in the data and at Tcharac ≈ 50 ms in the simulation. We attribute this
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Figure 7.12: Characteristic relaxation time in data and simulation (setup 1).
Fitted characteristic relaxation time Tcharac as a function of pulse strength ϵ for data (blue)
and simulation (red). The fit is also done on the simulations at high-ϵ keeping the pulse
duration fixed ∆t = 4 µs and varying the amplitude β only (black hexagons).

difference in the low ϵ characteristic times to strain effect that shifts the frequency of the
highly coupled spins away from the resonator frequency.

7.2.2 Fluorescence in setup 2

In setup 2, we apply the same simulation procedure to calibrate the line attenuation and
the detection efficiency, using the comparison with data at a single value of pulse excitation
strength. In this setup, the field orientation φ = φ0 is taken different than in setup 1,
changing the spin distributions. We use simulation parameters corresponding to this setup
configuration:

• the resonator characteristics ω0/2π = 6.999 GHz, κc/2π = 300 kHz and κint/2π = 60
kHz,

• the non-radiative relaxation rate ΓNR = 0.15 s−1,

• the repetition time Trep = 15 s,

• the pulse amplitude at the resonator input β,

• the spin distribution in frequency ρ(∆ω), visible in Figure 7.13a, where we truncate
the line in a range ∆ω/2π ∈ [−950 : 950] kHz and take a 3 kHz step size

• the spin distribution in coupling ρ(g0), visible in Figure 7.13b. We couldn’t fit the
data with the simulation using the coupling distribution deduced from the current
flowing in the resonator wire, likely due the line narrower linewidth that makes the
distribution more sensitive to strain. In order to mimic the strain effect, we introduce
in the coupling distribution a progressive cut-off ρ(g0) ∝ 1/g6

0 at high coupling for
g0 > 350 Hz, taking g0/2π ∈ [4 : 800] Hz with a finer sampling at high g0.

We obtain a good fit of the data for an attenuation AdB = 90 dB. Such attenuation
is reasonable considering the setup shown in Figure 6.6, which includes 80 dB of fixed
attenuation at low temperatures and ≈ 10 dB for the cables, circulators, and connectors.
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a

b

c

Figure 7.13: Data to simulation comparison (setup 2). a, normalized frequency
distribution with the Er3+ line at φ = 30 ◦ (black) and frequency range considered in the
simulations (red surface). b, distribution in number of spin Nspin as a function of coupling
g0, with the distribution deduced from the current flowing in the resonator wire (blue line)
and the distribution used here (red histogram), showing a cut-off at g0/2π = 350 Hz (black
dashed line). c, fluorescence comparison of data (blue dots) and simulation (red line) at
ϵ = 5.0 × 104 ns1/2 yielding AdB = 90 dB and η = 0.1.

Computing the ratio of data counts to the simulation prediction, we obtain η = 0.1
that comes from the successive efficiencies:

• the resonator collection efficiency ηreso = 0.83

• the SMPD duty cycle ηdc = 0.78

• the SMPD detection efficiency ηSMPD = 0.4

From this, we deduce ηline ≈ 0.4. A possible explanation of the difference with the
value in setup 1 is the presence of an infrared filter in between the sample and the SMPD
that might add losses.

7.3 Signal-to-Noise Ratio (SNR) experimental comparison
for spin detection

A strong motivation for developing the FD-ESR detection method is its potential to improve
the detection sensitivity compared to the usual ID-ESR, as explained in Section 4.3. In
order to quantitatively conclude on this SNR comparison, one needs to use the same
spin excitation conditions. In this chapter, we present a study of SNR for both ID-ESR
and FD-ESR in identical excitation conditions realized in setup 1, demonstrating a clear
advantage to FD-ESR in the detection of a low number of highly coupled spins.

7.3.1 Measurement procedure

The computation of a detection scheme SNR requires to determine both its mean value
and its variance. The most direct way to proceed is to acquire many single shot data and
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a b

Figure 7.14: Echo mode characterization a, normalized temporal mode u(t) fitted
on echo measured at various ϵ ∈ [3.9 × 104, 7.8 × 104, 1.6 × 105, 3.1 × 105, 6.2 × 105] ns1/2

(darker shade of orange). b, echo measured with quadrature detection or photon detection
with the same excitation conditions. Top panel: echo detected with quadrature detection
(green) and fit of its temporal mode with a Gaussian (orange line). Bottom panel: echo
detected directly with the SMPD, where each blue bar is the average number of count with
background subtracted during a single SMPD detection cycle.

to extract from each of them the quantity of interest. The distribution of this quantity
bears directly the signal mean value and variance. We compute the SNR of both ID-ESR
and FD-ESR on a wide range of excitation pulse parameters.

7.3.1.1 Inductive detection SNR

In the case of ID-ESR, the quantity of interest is the integrated echo amplitude in a Hahn
echo sequence: ϵ/2X − τ − ϵY − τ − echo.

As explained in Section 4.3.1.1, the echo is integrated over its corresponding temporal
mode u(t). We have verified that the echo emission mode is independent of the excitation
pulse power. For that, we record echoes for a large range of ϵ and fit their temporal
dependence with a Gaussian-shaped function u(t), normalized such that

∫
|u(t)|2 = 1. The

result in Figure 7.14a shows that the shape is independent of ϵ, as expected.
Because the echo amplitude is obtained after a complex chain of amplification, filtering,

and mixing, it is not straightforward to convert the detected output signal into the
dimensionless field amplitude at the output of the resonator, which is the quantity of
interest. Fortunately, this conversion is enabled by the presence of the SMPD in the setup.
In that goal, we measure a Hahn echo in the exact same conditions, first with amplification
and quadrature detection, and then with the SMPD, yielding the emitted echo energy
in absolute units. The data are shown in Figure 7.14b. A low excitation amplitude was
purposely chosen in order not to saturate either the JPA or the SMPD. We detect the echo
with the SMPD, correct with the known SMPD efficiency ηSMPD and the proportion of the
echo that happens in the SMPD detection time, and obtain an echo number of photons
⟨Xe⟩2 = 0.42 in the given excitation conditions. We therefore deduce the calibration of the
integrated homodyne voltage in absolute units and express in the following the integrated
echo Xe in its natural unit.
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Figure 7.15: ID-ESR histogram. Distribution of integrated spin echo in natural unit for
ϵ = 7.8×104 ns1/2 (green histogram) and its Gaussian fit (green line) that yields ⟨Xe⟩ = 0.6
(black vertical dashed line) and δX2

e = 2.45. The right inset represents the Hahn echo
sequence (black rectangle) and the signal in the integrated echo (green). The left inset
shows the standard deviation of similar distributions taken at various ϵ yielding a mean
value of δX2

e = 2.35 (black horizontal dashed line).

We now turn to the SNR measurements. At a given ϵ, single shot measurements of
the echo have been performed many times (∼ 1000 iterations) in order to determine the
distribution of Xe. As shown in Figure 7.15, the resulting histogram can be fitted by a
gaussian to extract its mean value ⟨Xe⟩ and its variance δX2

e . Such distributions were
measured for various ϵ to check that, as expected since the signal is integrated over the
same mode, the variance remains roughly constant at δX2

e = 2.35 ± 0.2, as can be seen in
Figure 7.15. As explained in Section 4.3.2, the expected variance in the echo mode can be
written as

δX2
e = δX2

vacuum + δX2
JPA + δX2

HEMT
GJPA

(7.2)

with δX2
vacuum = 1/4 the mode vacuum fluctuations, δX2

JPA = 1/4 the minimal fluctuations
added by the JPA and δX2

HEMT/GJPA = 0.15 the fluctuations added by the HEMT. The
HEMT contribution was measured separately, by measuring the variance with the JPA
turned off. The measured fluctuation δX2

e thus is larger than expected. This is likely due
in part to the neglect of losses between the SMPD and the JPA in our model, which leads
to an over-estimation of the conversion factor between the output voltage and the echo
dimensionless amplitude. In the following SNR measurements, we consider that δX2

e is
constant, and we only measure ⟨Xe⟩ as it is much faster.

7.3.1.2 Fluorescence detection SNR

We now turn to the FD-ESR SNR. We measure the single shot fluorescence trace many
times (up to ∼ 10000 iterations) following a single pulse excitation of strength ϵ and
integrate the number of counts for each iteration over a time Tint with the background
subtracted.

It’s worth to mention that the background rate ⟨Ċbg⟩ is averaged over all the iterations
at a given ϵ before subtraction, in order to minimize the added noise due to background
fluctuations. The SNR varies with the integration time Tint as can be seen in Figure 7.16a
where the SNR dependence with Tint is plotted for two values of ϵ with one order of
magnitude difference. In both case, the SNR increases at low Tint, as we integrate more of
the spin signal, and then starts to reduce at high Tint, as the added fluctuations typically
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a b

Figure 7.16: FD-ESR SNR dependence with Tint and histogram. a, SNR in FD-
ESR as a function of Tint for ϵ = 1.6 × 104 ns1/2 (top) and ϵ = 2.9 × 105 ns1/2 (bottom).
The vertical dashed lines correspond to Tcharac. b, distribution of integrated counts with
background removed for ϵ = 9.3 × 103 ns1/2 (histogram) and its Gaussian fit (blue line)
that yields ⟨Cspin⟩ = 5 counts (black vertical dashed line) and δC2 = 100.

due to dark count overcomes the gain in signal. We observe in those data that Tcharac
is close to the optimal integration time. This result was verified for all the excitation
parameters, therefore in the following we use Tint(ϵ) = Tcharac(ϵ) to compute the SNR. The
resulting histogram is fitted with a Gaussian to extract the signal mean value ⟨Cspin⟩ and
its variance δC2, as is shown in Figure 7.16b.

We reproduce the fluorescence curves measured at each ϵ with the master equation
simulation described in Section 7.2. The noise is modeled with Equation 4.24 with α = 1500
counts/s and η = 0.15. We compare the SNR measured and simulated in Figure 7.17. For
low to medium values of ϵ, we find a good agreement between both curves which confirms
the validity of the Poissonian description of the noise. However, we can see at high ϵ
the onset of some discrepancy. This is confirmed by looking at the ratio δC2/⟨C⟩, which
increases noticeably above the value of 1 expected for the Poisonian noise. This increase in
the noise is unexpected and presently not understood. In particular, this increase in noise
is not visible with ID-ESR at similar ϵ, as is visible in Figure 7.15. One possible hypothesis
is the onset of super-radiant fluctuations. More work is needed to investigate the validity
of this idea.
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Figure 7.17: FD-ESR comparison of data and simulation SNR. Top panel: FD-ESR
SNR as a function of ϵ in the data (blue) and in the simulation (red). Bottom panel: ratio
in the data of the variance δC2 over the mean value ⟨C⟩ (blue dots), expected to be equal
to 1 for a Poissonian distribution (black dashed line).

7.3.2 Comparison

Trep (s) ϵ (ns1/2)
0.87 9.8 × 103

0.87 2.0 × 104

1.75 3.9 × 104

4.30 7.8 × 104

14.00 1.6 × 105

17.30 3.1 × 105

17.30 6.2 × 105

Table 7.2: ID pulse conditions.

Trep (s) ϵ (ns1/2) Tcharact (s)
0.87 9.3 × 103 0.044
0.87 1.6 × 104 0.089
1.75 2.1 × 104 0.138
4.30 4.2 × 104 0.257
12.15 5.2 × 104 0.330
17.23 1.0 × 105 0.510
17.23 2.9 × 105 1.060
20.72 5.9 × 105 1.157

Table 7.3: FD pulse conditions.
We now turn to the comparison between ID-ESR and FD-ESR. The measurements are

done at various excitation pulse conditions ϵ and Trep for a fixed ∆t = 4 µs, with values
summarized in Table 7.2 with τ = 50 µs for ID-ESR and in Table 7.3 for FD-ESR. To have
quantitative comparison, the two detection methods must be applied to detect the same
contributing spins. In ID-ESR, we consider that the echo signal comes mostly from spins
that see the sequence π/2X − τ − πY − τ − echo whereas in FD-ESR, we consider that the
fluorescence mostly comes from spin that see a π pulse. Therefore, we compare the two
detection methods with the same pulse strength ϵ for the second pulse in the Hahn echo
and for the single pulse. The comparison results are plotted in Figure 7.18.

We start by comparing the signal mean value and fluctuations of these two detection
methods. In order to compare quantities with the same unit, the top panels plot the
number of photons in the signal and in the fluctuations for each detection method. We see
in Figure 7.18a that the number of photon carrying the signal increases with ϵ for both
detection methods. It makes sense since the number of contributing spins also increases
with ϵ. As expected from the discussion in Section 4.3, the number of detected photon is
much larger in FD-ESR than in ID-ESR, by a factor as large as 103 for the lowest pulse
excitation power. The ratio of the signals in FD-ESR and ID-ESR, ⟨C⟩/⟨Xe⟩, is shown
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a b c

Figure 7.18: Comparison of ID-ESR and FD-ESR a, top panel: amount of photon
detected using ID (green dots) and FD (blue dots) as a function of ϵ. We linearly interpolate
the values obtained with ID (green line) to allow comparison with FD. Bottom panel: signal
ratio of FD over ID as a function of ϵ. b, top panel: fluctuation of photon number detected
using ID (green dots) and FD (blue dots) as a function of ϵ. We linearly interpolate the
values obtained with ID (green line) to allow comparison with FD. Bottom panel: standard
deviation ratio of FD over ID as a function of ϵ. c, top panel: spin detection SNR using
ID (green dots) and FD (blue dots) as a function of ϵ. We linearly interpolate the values
obtained with ID (green line) to allow comparison with FD. Bottom panel: SNR ratio of
FD over ID as a function of ϵ.

to vary moderately with ϵ. In term of fluctuations, we observe in Figure 7.18b that the
FD-ESR detection method sees δC2 increase with ϵ as it depends on the amount of photon
detected, whereas ID-ESR has a constant noise at δX2

e . The ratio of the noise ⟨δC⟩/⟨δXe⟩
varies more appreciably, due to the noise increase with ϵ in FD-ESR.

We then compare in Figure 7.18c the SNR of ID-ESR and FD-ESR. All over the range
of ϵ studied here, we have a bigger SNR with FD-ESR than with ID-ESR. Although there
might be ESEEM effect reducing the effective spin echo signal, we don’t expect to have
more than 50% change in the amplitude detected with ID-ESR, as will be visible in the
ESEEM curve shown in Chapter 9. Therefore, we can conclude that fluorescence detection
indeed increases the sensitivity of ESR in the experimental parameters explored during
this thesis. A clear trend of reduction of this SNR gain is visible as we increase ϵ. From
previous discussion about mean value and fluctuation evolution with ϵ, we understand that
this reduction of SNR gain is largely due to the increase in the fluctuations of FD-ESR at
high ϵ. At the opposite, the gain in sensitivity increases at low ϵ with a measured gain of
up to a factor 16. Moreover, it is meaningful to note that δC is dominated by the detector
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dark counts, which can be reduced without limit with better SMPD properties; whereas
δXe is almost limited by vacuum fluctuations and can thus not be much reduced. Our
results therefore confirm that FD-ESR can be more sensitive than ID-ESR, in the limit of
small number of spins with sufficiently large radiative relaxation rate. The limit of single
spin detection has even been reached very recently in an experiment very similar to the
one presented in this thesis, as will be reported in the thesis of Z.Wang and L.Balembois.
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Chapter 8

Spectroscopy and coherent
dynamics of strained Erbium ions

In this chapter, we present further data on the Er3+ spectroscopy at low-power. Line
broadening and shifts are observed, which we attribute to strain in the substrate caused
by the differential thermal contractions of the metal thin-film and the crystal. Coherent
oscillations are observed in the tails of the spectrum.

8.1 Strain induced resonance frequency shift

8.1.1 Correlations between resonance frequency and relaxation time

The FD-ESR spectra discussed in Chapter 7 were obtained at high excitation pulse strength;
we now measure the erbium spectrum at much lower strength such that only the most
strongly coupled spins contribute to the fluorescence signal. The high/low-ϵ comparison is
shown in Figure 8.1. Here, the angle was φ = 30 ◦ for both spectra, and the spectra were
normalized to facilitate the comparison. We observe that the low-ϵ line is much broader
than the high-ϵ line that we will call the spin "main line" in the following. In the same
figure, we also show the effective decay time T1,eff, using an exponential decay fit, of the
fluorescence curves for the low-ϵ spectrum as a function of B0. Although we know that
the fluorescence relaxation isn’t exponential, T1,eff appears as a good approximation of the
curve decay time at low-ϵ, as is shown in the inset of Figure 8.1. We observe that T1,eff
strongly depends on B0; in particular, it is longer with T1,eff ≈ 0.2 s at the center of the spin
main line while it is shorter with T1,eff ≈ 0.05 s in the tails of the spectrum. This indicates
a correlation between frequency shift and the radiative relaxation rate of the spin. Another
confirmation of this correlation is acquired by treating the high-ϵ data differently: we
integrate the signal over various integration time down to Tint = 0.05 s, thereby enhancing
the contribution of the most strongly coupled spins which contribute more to the short-time
fluorescence. As expected, the lineshape is affected by this short-time integration (see
Figure 8.1), and some amount of broadening becomes visible as in the low-ϵ spectra.

Such correlation between the spins coupling and their resonance has been seen before
with donors in silicon measured by a superconducting resonator [Pla+18], and here we
observe it also for REIs in Scheelite. It is explained by strain induced shifts in the spin
resonance, resulting from differential thermal contraction between the metal and the
substrate as the sample is cooled down to 10 mK. In our system, we know that Niobium has
2 orders of magnitude larger thermal expansion coefficient than CaWO4. The mechanical
deformation in such conditions is simulated using a finite element simulation software
that yields the strain ϵϵϵ-tensor. The result is shown in Figure 8.2, where we plot the
cross section below the resonator wire either with the spatial distribution of the radiative
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Figure 8.1: Spectroscopy at high and low strength showing strain asymmetry
(setup 2). Top panel: Normalized spectroscopy taken at φ0 = 30◦ with high excitation
pulse strength (ϵ = 3.5 × 105 ns1/2, Tint = 0.75 s, Trep = 3 s, red dots) and at low strength
(ϵ = 5.8 × 103 ns1/2, Tint = 0.05 s, Trep = 1 s, blue dots). The red line is a Lorentzian fit
yielding Γinh/2π = 1.4 MHz. The frequency axis (top axis) is defined centered on the main
line. Middle panel: on the low-ϵ data, effective relaxation time T1,eff fitted with a single
exponential on the relaxation curve as a function of B0. The error bars are deduced from
the fit. In the inset is plotted the relaxation curve (green dots) fitted with an exponential
(orange) at B0 = 59.723 mT. Bottom panel: on the high-ϵ data, normalized spectroscopy
varying Tint from dark to light reds: [0.75, 0.2, 0.05] s.

relaxation time TR = 1/ΓR or with the hydrostatic strain ϵ =
√

ϵ2
x,x + ϵ2

y,y + ϵ2
z,z. We see

that the region where the strain is large coincides with the short radiative relaxation time,
typically TR < 0.07 s. As strain is unavoidably associated with a change in the crystal
field parameters, it appears plausible that strain leads to changes in the g-tensor, although
a quantitative modeling of the strain to frequency shift coefficients is unfortunately not
available and beyond the scope of this work.
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Figure 8.2: Cross section of TR and strain. Left: Spatial dependence of the radiative
relaxation time TR. On both plot the contours show the position where TR = 0.03 s (green),
TR = 0.05 s (blue), TR = 0.07 s (white). Right: Spatial dependence of the simulated
hydrostatic strain amplitude
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Figure 8.3: Angular dependence of the line asymmetry. Left panel: normalized
spectra taken at various φ (blue dots). The excitation pulse parameters (ϵ, Trep) vary from
spectrum to spectrum in order to have some signal. The integration time is taken fixed
at Tint = 0.05 s. The orange lines are fits done with Equation 8.1. Right panel: fitted
asymmetry parameter γ × Γinh as a function of φ for setup 2 (blue dots) and for setup 1
(red dot, detailed in Section 8.2.3). The error bars are 1σ deduced from the fit. The brown
line is a fit on the data from setup 2 except from the point at φ = 98◦, using Equation 5.14
that yields φ0 = 26 ◦ and a typical electric field modulation due to the strain ∆Ec = 25
kV/cm.

8.1.2 Line asymmetry dependence with the field orientation

In order to collect more data on the strain effect, we measure low-ϵ spectra at various field
orientation φ in Figure 8.3a. It is worth to mention that the spin coupling g0 depends on
φ, and therefore the pulse excitation parameters ϵ and Trep are adapted to have enough
signal while keeping ϵ as low as possible. In all spectra, the integration time is fixed at
Tint = 0.05 s to observe mostly the highly coupled spins. The strained lines appear to
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be quite asymmetric, and the sign of this asymmetry depends on φ. To extract more
quantitative information, we fit the lines with a skewed Lorentzian model

f(∆ω) = A

1 + 4( ∆ω
Γinh

)2
(1 + erf[γ∆ω

Γinh
]) (8.1)

where erf(x) is the error function defined as

erf(x) = 2√
π

∫ x

0
e−t2

dt. (8.2)

This fit allows to extract the skewness in frequency γ × Γinh dependence with φ, visible
in Figure 8.3b. We observe that the skewness goes to zero at φ0,skewness. We fit this
dependence using Equation 5.14 and extract the typical electric field modulation due to
strain ∆Ec = 25 kV/cm and the symmetry axis at φ0,skewness = 26 ◦, close to φ0 = 30 ◦.

A qualitative understanding of the strain effect on the spins was discussed in Sec-
tion 5.2.1.2. To summarize the arguments here, the Er3+ inhomogeneous linewidth is
dominated by the crystal electric field inhomogeneity Ec. Although a global electric field
would affect similarly the two Ca2+ sites and enlarge the linewidth, the strain modifies the
local Ec in opposite directions for the two sites and shifts the spin frequency in the same
direction, causing asymmetry.

8.2 Coherent oscillations of Erbium ions
The correlation of the spin resonance with its coupling g0 allows to address a sub-ensemble
of spins with a rather homogeneous coupling, by setting the magnetic field on the side of
the main line. Because the coupling is better defined, one may expect to observe coherent
oscillations with a well-defined Rabi angle; in this section, we report such measurements.

8.2.1 Coherent oscillations varying pulse duration

To select a spin sub-ensemble, we choose a value of B0 that is far enough from the main
line to have a relative homogeneity in g0 but staying in a range where we have enough
signal. Based on the spectra in Figure 8.1a, we set B0 = 59.7 mT and realize a Rabi
measurement by varying the excitation pulse duration ∆t. The resulting signal, visible in
Figure 8.4a, shows an increase in amplitude with ∆t as well as a damped oscillation. The
curve is fitted with

f(∆t, β) = A sin2(ΩR0∆t/2)e−∆t/Tc,1 + B(1 − e−∆t/Tc,2) (8.3)

where a Rabi oscillation damped with a characteristic time Tc,1 is superposed with an
exponential increase of characteristic time Tc,2. This fit allows to extract from the Rabi
frequency ΩR0 = 4g0,eff,R

√
κcβ/κ the effective coupling g0,eff,R/2π = 350 Hz.

The damping of the Rabi oscillations may have several origins. It could originate from
the inhomogeneous broadening, or from residual inhomogeneity of the coupling constant, or
it could also be caused by the spin coupling to proximal nuclear spins (the same effect that
causes ESEEM). Using simulations, we tested the simplest hypothesis of inhomogeneous
broadening as well as inhomogeneous broadening combined with a coupling distribution
modeled by a Gaussian centered on g0,eff,R with a given width. In order to compare the data
with the simulations, since we cannot quantitatively know the number of strained spins,
we normalize the Rabi oscillation curves and plot them together in Figure 8.4b. Several
Gaussian width in the coupling distribution have been tried without success in reproducing
the data, therefore it appears that this simple model is not sufficient. Therefore, either
the distribution in coupling constant has a non-Gaussian shape (which is likely), or the
coupling to the nuclear spins cannot be neglected.
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a b

Figure 8.4: Rabi oscillations varying the pulse duration. a, Rabi oscillations (blue
dots) measured by varying the pulse duration ∆t with field parameters φ = 30 ◦ and
B0 = 59.70 mT and with pulse parameters β = 10 ns−1/2, Tint = Trep = 0.25 ms. The solid
line is a fit using Equation 8.3 that yields g0,eff,R = 350 Hz. Error bars are 1σ statistical. b,
Top panel: coupling distribution ρ(g0) used for the simulations. For the red simulation, a
single value of g0 = 350 Hz is used to simulate a perfectly homogeneous coupling whereas for
the brown simulation, a distribution of ρ(g0) that combines the known spatial distribution
of coupling (blue, deduce from Figure 3.11b) and a gaussian distribution centered around
g0 = 350 Hz is used to simulate some inhomogeneity in coupling. Bottom panel: the same
data normalized (blue dots) plotted together with the normalized simulation (red and
brown).

8.2.2 Rabi frequency dependence on the magnetic field

We explore how the contributing spins effective coupling evolves with the magnetic field B0,
using two different methods to determine this quantity. The first method consists in fitting
the Rabi oscillations obtained at various B0 on the side of the main line to determine
g0,eff,R, with the plots visible in Figure 8.5a. As we get further away from the main line,
we see that the Rabi frequency increases, indicating that g0,eff,R increases, and the amount
of signal decreases, indicating that less spins contribute. The other way to extract the
effective coupling is to fit the relaxation curves with an exponential decay of a characteristic
time dominated by the radiative relaxation: T1,eff = κ/4g2

0,eff,r. In Figure 8.5b, we perform
a fit on the average of all the relaxation curves taken at a given field B0 and see the same
effect than in the Rabi oscillation: the signal relax faster and has a smaller amplitude
farther from the main line.

Eventually in Figure 8.5c, we plot the effective coupling for the 2 fitting methods
and find that they have a similar dependence with B0 but have different values, with
g0,eff,r = 1.53g0,eff,R ±0.05. Using the simulations shown in Figure 8.4 (brown), we apply the
same fitting procedure to extract the spin coupling and find g0,eff,r,simu = 1.38g0,eff,R,simu,
in a rather good agreement with the experimental result. The plateau reached far from the
main line might be due to a large region where the coupling is rather uniform but where
the strain varies, or maybe also to the limited detection sensitivity of our measurement
that might not detect the signal from the few higher coupled spins.
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a b c

Figure 8.5: Rabi oscillations at various B0 (setup 2). Data measured by varying the
pulse duration ∆t at various field amplitude from B0 = 59.673 mT (red) to B0 = 59.723
(yellow) by step of 0.01 mT, with the parameters φ = 30 ◦, β = 11.5 ns−1/2 and Tint = 0.075
s and Trep = 0.25 s. a, Rabi oscillations (dots) fitted using Equation 8.3 (solid lines) to get
g0,eff,R. b, fluorescence curves at each B0 averaged over all ∆t (hexagons) and exponential
fits yielding g0,eff,r. c, effective spin coupling g0,eff as a function of B0, fitted with the Rabi
oscillation (dots) and the relaxation curves (hexagons). The error bars are 1σ deduced
from the fits.

8.2.3 Consistency with setup 1 measurements

We report in this part similar measurements done in setup 1 that show the effect of strain
as well as coherent oscillations of a spin sub-ensemble.

8.2.3.1 Asymmetry in the Erbium line

We measure the Er3+ line at low-ϵ and high-ϵ in setup 1, with results visible in Figure 8.6a.
We observe that the high-ϵ spectrum is symmetrical, with a Lorentzian shape, while the
low-ϵ spectrum has a strong asymmetry, fitted with Equation 8.1 that yields a skewness
consistent with the measurement at the same φ done in setup 2, as can be seen in Figure 8.3.

We plot in Figure 8.6a the effective T1,eff as a function of B0 for the low-ϵ spectrum.
We find again that there is a longer relaxation time T1,eff ≈ 0.1 s in the main line than on
the tails where it goes down to T1,eff ≈ 0.03 s. The values of T1,eff are noticeably smaller
than for setup 2, as expected due to the difference in the resonator properties κc and κint
as well as due to the the field orientation, which gives the maximum spin coupling g0 when
aligned with the wire at φc.

8.2.3.2 Coherent oscillations varying pulse duration or pulse amplitude

To select a spin sub-ensemble with a relatively homogeneous coupling, we set the field at
B0 = 59.88 mT. In Figure 8.6b, we observe coherent oscillations induced by varying the
pulse duration ∆t and we fit the data with

f(∆t) = A sin2(ΩR0∆t/2)e−∆t/Tc,1 + B(1 − e−∆t/Tc,2) + C(1 − e−∆t/Tc,3) (8.4)

consisting in a Rabi oscillation damped in a characteristic time Tc,1 superposed with two
exponential of characteristic times Tc,2 ans Tc,3. The fit allows to extract the effective
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a b

c

Figure 8.6: Strain effect and coherent oscillations (setup 1). a, spectra taken
with φ = 47 ◦. Top panel: Normalized spectroscopy at high excitation strength (ϵ =
2.1 × 105 ns−1/2, Tint = 3 s, Trep = 8.6 s, red dots) and at low excitation strength
(ϵ = 1 × 104 ns−1/2, Tint = 0.05 s, Trep = 0.52 s, blue dots). The high-ϵ data are fitted with
a Lorentzian yielding Γinh/2π = 11 MHz (red line) while the low-ϵ data are fitted with
Equation 8.1 yielding γ ×Γinh/2π = 22.8 MHz. The black dashed line is the field amplitude
used to detect Rabi oscillations. The frequency axis (top axis) is defined centered on the
main line. Bottom panel: Effective relaxation time T1,eff fitted with an exponential decay
on the low-ϵ fluorescence data. Only the values where the signal is large enough to extract
the fit are plotted. The error bars are 1σ deduced from the fit. b, coherent oscillations
at B0 = 59.88 mT and φ = 47 ◦ varying the pulse duration ∆t (blue dots) with the pulse
parameters β ≈ 6.5 ns−1/2, Tint = 0.05 s, Trep = 0.2 s. The orange line is a fit, using
Equation 8.4, that yields g0,eff,R = 470 Hz c, coherent oscillations at B0 = 59.88 mT and
φ = 47 ◦ varying the pulse amplitude β (blue dots) with the pulse parameters ∆t = 4 µs,
Tint = 0.05 s, Trep = 0.1 s. The orange line is a fit, using Equation 8.3 with ∆t = 4 µs, that
yields g0,eff,R = 570 Hz.

coupling g0,eff,R = 470 Hz. The fit with two exponentials, yielding Tc,2 ≈ 2.5 µs and
Tc,3 ≈ 70 µs, appears as an indication that the non oscillating part of the signal comes from
spins with a coupling g0 < g0,eff,Rabi, whose contribution keeps increasing as ∆t increases.

At the same value of B0, we induce coherent oscillations by varying the pulse amplitude
β at fixed ∆t = 4 µs, as shown in Figure 8.6c. The data is fitted with Equation 8.3, which
yields an effective coupling g0,eff,R = 570 Hz. We notice that the increase of signal fitted by
the exponential is qualitatively different for the two Rabi measurements: when varying ∆t
the signal saturates after a few Rabi oscillations, whereas when vary β the signal keeps
increasing. We understand this difference as being due to the power broadening described
in Section 3.3.2.1: as the excitation power increases, the detuned spins contributes more
and more to the total signal.

In conclusion, the study of strain effects on Er3+ in CaWO4 and the possibility of
driving a small ensemble of spins into coherent oscillations appear as a proof of the interest
of FD-ESR high sensitivity. In the curves presented in Figure 8.6, we can distinguish a
signal of the order ∼ 0.1 photon, which corresponds to ∼ 10 spins contributing provided
the calibrated SMPD efficiency. Therefore, this detection method is very promising for
reaching the limit of single spin detection, as it was measured in the Quantronics group
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following the results presented in this thesis. Articles and the PhD manuscript of Zhiren
Wang are to be published soon about this result.
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Chapter 9

Fluorescence detection of spin
echoes

In order to fully characterize the spin dynamics, FD-ESR needs to be able to detect spin
echoes. Although we have seen in Chapter 7 that direct echo detection is possible, this
echo detection method wouldn’t yield the FD-ESR sensitivity gain proven in the same
chapter. Indeed the amount of signal detected in the echo mode is limited, as discussed in
Section 4.3, and the photon shot noise in FD-ESR would limit its sensitivity even for an
ideal SMPD.

In this chapter, we report the detection of spin echoes using FD-ESR by adding a
restoring pulse to the Hahn echo sequence. Using this detection method, we characterize
the Er3+ coherence properties. Eventually, we check that, in identical excitation pulse
conditions, FD-ESR using restored Hahn echo sequence is more sensitive than ID-ESR for
the detection of spin echo.

9.1 Method for the fluorescence detection of spin echo

9.1.1 Restoring the spin echo

As seen in Section 3.3, the fluorescence signal is proportional to the spin longitudinal
component ⟨SZ⟩. In order to detect a spin echo using the spin fluorescence, we need to
convert the transverse magnetization appearing at the echo time ⟨SX⟩ into a longitudinal
one; this is achieved by a π/2 rotation. Therefore, the ideal FD spin echo sequence consists
of 3 pulses π/2X − τ − πY − τ − π/2Φ, which consists in a Hahn echo sequence followed by
a restoring π/2 pulse with phase Φ, followed by microwave fluorescence detection. The
echo is expected to appear as a modulation of the number of counts as a function of Φ.

The measurements in Figure 9.1a shows the integrated counts according to Φ with the
background removed. This set of data is acquired in setup 1 using high-ϵ pulses with the
magnetic field B0 = 59.73 mT set at the middle of the Er3+ main line in order to maximize
the signal. The measurements consist in 3 different pulse sequences:

• ϵ/2X − τ − ϵX − τ − ϵ/2Φ: the projection modulates the signal according to Φ, with
a projection towards the excited state when Φ = π.

• ϵ/2X − τ − ϵY − τ − ϵ/2Φ: the projection modulates the signal according to Φ, with
a projection towards the excited state when Φ = 0.

• ϵ/2X − 2τ − ϵ/2Φ: the signal is independent from Φ. This appears as a proof that
the modulation comes from the spin echo.
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a b

Figure 9.1: Restoration of spin echo. a, in setup 1, ⟨Cspin⟩ as a function of the
restoring pulse phase Φ for 3 different pulse sequence: ϵ/2X − τ − ϵY − τ − ϵ/2Φ (blue
dots), ϵ/2X − τ − ϵX − τ − ϵ/2Φ (orange dots), and ϵ/2X − 2τ − ϵ/2Φ (green dots). The
solid lines are fits with Equation 9.1 that yields Cincoh = 980 counts, Cecho = 160 counts,
Φ0 = 0.05π (blue curve) and Cincoh = 1010 counts, Cecho = 160 counts, Φ0 = 0.98π (orange
curve). The experiment parameters are: B0 = 59.73 mT, τ = 50 µs, ϵ = 2.1 × 105 ns1/2,
Trep = Tint = 6.9 s. b, in setup 2, ⟨Cspin⟩ as a function of the restoring pulse phase Φ
with ϵ/2X − τ − ϵX − τ − ϵ/2Φ (blue dots) and a fit with Equation 9.1 (blue line) that
yields Cincoh = 460 counts, Cecho = 43 counts, Φ0 = 0.02π. The experiment parameters
are: B0 = 59.744 mT, φ = 30 ◦, ϵ = 1.4 × 105 ns1/2, Trep = Tint = 1.52 s. The red cross
are simulations considering an efficiency η = 0.094 that matches the number of incoherent
photons ⟨Cincoh⟩ from the data. We represent 2⟨Cecho⟩ with a double arrow.

The modulation can be fitted with a cosine function

f(Φ) = Cincoh + Cecho cos(Φ + Φ0) (9.1)

where Cincoh are counts due to incoherent photons, Cecho is the signal modulation due to
coherent photons resulting from the projection of the echo on the Z axis and Φ0 is the
signal modulation phase depending on the second pulse phase. As we observe a signal
modulation with Φ only in the presence of a spin echo, we confirm that this 3 pulses method
allows to detect spin echoes with FD-ESR. The presence of the incoherent background in
the data of Figure 9.1a is likely due to the spin coupling g0 inhomogeneity.

To test this hypothesis, we use our simulation tool to model the 3-pulse echo data.
Other data are taken in setup 2 using high-ϵ pulses with the magnetic field amplitude
B0 = 59.744 mT in order to sit at the middle of the Er3+ main line. The field orientation
φ = 30 ◦ maximizes the signal amplitude. To compare the simulations with the data,
we adjust the efficiency η = 0.094 to match the incoherent background (the difference
with the value reported in Section 7.2.2 is possibly due to a difference in the SMPD
calibration). Then, in Figure 9.1b, we observe that the modulation is well reproduced
by the simulation; in particular the amplitude is close to the measured value. The slight
residual discrepancy in amplitude may be due to ESEEM oscillations, which are not taken
into account in the simulation (see below). Overall, the agreement is satisfactory, and
confirms our understanding of the echo signal, in particular that the incoherent background
is caused by the large Rabi frequency inhomogeneity in this experiment, and would likely
vanish in an experiment where well-defined Rabi rotations are applied.
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Figure 9.2: Echo shape detection. Top panel: in setup 2, ⟨Cecho⟩ as a function of the
restoring pulse time ∆τ : ϵ/2X −τ −ϵY −τ +∆τ −ϵ/2X/−X . The experiment parameters are:
B0 = 59.744 mT, τ = 1 ms, φ = 30 ◦, ϵ = 2.9 × 104 ns1/2, Trep = Tint = 1.52 s. Error bars
are 1σ statistical. Bottom panel: in setup 1, field quadrature in natural unit as a function of
time ∆τ centered around the echo following a Hahn echo sequence: ϵ/2X −τ −ϵY −τ −echo.
The experiment parameters are: B0 = 59.73 mT, τ = 50 µs, ϵ = 1.9 × 104 ns1/2, Trep = 7.5s.
The solid lines are gaussian fits of the echo mode.

In the following, we use the pulse sequence: ϵ/2X −τ −ϵY −τ −ϵ/2Φ. In order to extract
a quantity proportional to the spin echo amplitude, we define the FD echo amplitude as

⟨Cecho⟩ = ⟨C(Φ = 0)⟩ − ⟨C(Φ = π)⟩
2 . (9.2)

Therefore we have to apply twice the 3 pulse sequence to extract ⟨Cecho⟩, hence the division
by a factor 2 to correspond to the amount of signal extracted by one sequence. This
procedure appears as an analogy of phase cycling in ID echo detection, where the echo
emerges successively aligned (in analogy with ⟨C(0)⟩) and anti-aligned (in analogy with
⟨C(π)⟩) with one quadrature. The quantity 2⟨Cecho⟩ is represented in Figure 9.1b with a
double arrow.

9.1.2 Spin echo shape detection

To further confirm that the signal we get with ⟨Cecho⟩ corresponds to the spin echo, we
measure the echo shape with FD-ESR. We apply a sequence ϵ/2X −τ −ϵY −τ +∆τ −ϵ/2X/−X

and we plot ⟨Cecho⟩ as a function of the restoring pulse time position ∆τ . This measurement
is compared to the echo shape detected using ID-ESR in Figure 9.2. We indeed see a
similar echo shape with the two detection methods. The echo mode is fitted with a gaussian
f(∆τ) = Ae−2∆τ2/T 2

e that yields similar echo duration for the two detection methods, with
Te,FD = 6.1 µs and Te,ID = 5.8 µs.
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Figure 9.3: Detection of ESEEM. In setup 2, we plot ⟨Cecho⟩ as a function of the inter-
pulse time τ with 1 µs time step for two successive runs with different SMPD calibration,
with run 1 (blue) and run 2 (red). The vertical dashed line corresponds to the value of
τ = 100 µs used in Figure 9.1b. The experiment parameters are: B0 = 59.744 mT, φ = 30 ◦,
ϵ = 2.9 × 104 ns1/2, Trep = Tint = 1.52 s.

9.2 Characterization of Erbium coherent properties
In this part, we use the restored Hahn echo sequence to characterize the erbium spin
dynamics with FD-ESR. We first detect the ESEEM effect and then measure the spin
coherence time using two different protocols that correspond to single quadrature detection
and to echo field magnitude detection. All the data shown in this part are taken in setup 2
at high-ϵ, with B0 = 59.744 mT and φ = 30 ◦.

9.2.1 Electron Spin Echo Envelope Modulation (ESEEM)

In order to see ESEEM, we vary the delay τ in the restoring pulse sequence by small
time steps of 1 µs. In Figure 9.3, we observe a reproducible modulation of ⟨Cecho⟩ in two
successive runs. The difference in signal amplitude is likely explained by difference in the
SMPD calibration. Note that the ESEEM may explain the residual discrepancy between
simulations and data visible in Figure 9.1b since the value τ = 100 µs is not at a maximum
of the ESEEM modulation. A detailed understanding of this ESEEM signal is possible
[SJ01; Le 22] but was not attempted, as it was not the goal of this study.

9.2.2 Coherence times

9.2.2.1 Measurement in quadrature

To measure the spin coherence time, we detect ⟨Cecho⟩ as a function of τ at longer time
scales than for the ESEEM measurements. We observe in the data shown in Figure 9.4 the
decay of ⟨Cecho⟩. We fit this decay with a stretched exponential

⟨Cecho(τ)⟩ = Ae−(2τ/T2,q)xq (9.3)

where T2,q is the characteristic decay time and xq the stretching exponent. The fit yields
T2,q = 3.6 ms and exponent xq = 1.7, in good agreement with the coherence time detected
with ID in quadrature, as presented in Figure 5.6. Indeed, the quantity ⟨Cecho⟩ is sensitive
only to the echo amplitude along the axis X, in analogy with the ID quadrature detection.
This brings further confirmation that ⟨Cecho⟩ is indeed proportional to ⟨SX⟩ and can be
used for Hahn echo detection.
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Figure 9.4: Erbium coherence time in quadrature. In setup 2, ⟨Cecho⟩ as a function of
the delay 2τ with 0.2 ms time step (blue dots). The solid line is a fit done with Equation 9.3,
yielding a time constant T2,q = 3.6 ms and exponent xq = 1.7. The experiment parameters
are: B0 = 59.744 mT, φ = 30 ◦, ϵ = 2.9 × 105 ns1/2, Trep = Tint = 8.16 s. Error bars are 1σ
statistical.

9.2.2.2 Measurement in amplitude

As explained in Section 5.2.3, the actual erbium spin coherence time, as caused by the
183W spectral diffusion, is significantly longer than the T2,q = 3.6 ms measured using
quadrature-sensitive detection, which was found to be limited by B0 noise. In ID-ESR,
it is possible to access the intrinsic coherence time T2 ms using magnitude averaging [Le
+21]. We now explain that it is also possible to perform an analog of magnitude averaging
in FD-ESR, enabling us to retrieve the T2 ≈ 20 ms coherence time measured in Figure 5.6.
The derivation of the equations used here is available in Appendix C.

We start with a model that describes how the magnetic field noise affects the measure-
ments. We attribute the difference of T2 ̸= T2,q to flux fluctuations in the echo phase δΦ
(due to magnetic field noise) that randomize the echo phase once 2τ > T2,q. To model this
effect, we describe the integrated counts as

C(Φ, δΦ, τ) = Cincoh + Cecho cos(Φ + δΦ)e−(2τ/T2)2 (9.4)

where the intrinsic spin coherence time is assume to decay with a Gaussian shape and
δΦ is a random variable that follows a gaussian distribution whose standard deviation is
2
√

2τ/T2,g, such that the probability to have δΦ = m is

p(δΦ = m, τ) = T2,g√
π4τ

e
−

(mT2,g)2

2(2
√

2τ)2 (9.5)

Experimentally, we have to perform the measurement with a finite number of phases
Φ. We derive the result of this model for the fluctuations σ, taken over discrete values of
phase Φ ∈ [0, π/2, π, 3π/2] and the random phase δΦ, yielding

σ =

√
Var(Cincoh) + C2

echoe−2(2τ/T2)2

2 . (9.6)

We readily see that the evolution of this quantity allows to extract the characteristic time
T2.
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Figure 9.5: Simulation of the coherent signal evolution. a, we simulate 1000 iterations
of C(Φ, δΦ, τ) based on the Equation 9.4 with C0 = 100 counts, Cecho = 10 counts, T2,g = 4
ms and T2 = 20 ms. The number of counts follows a Poissonian distribution. In the top
panel, we plot ⟨Ce⟩ as a function of 2τ (blue circle) with a fit using Equation 9.3 (orange
line) that yields T2,q = 3.94 ms and xq = 2.04. In the middle panel, we plot the variance
for each angle σΦ with Φ ∈ [0, π/2, π, 3π/2] (various shade of red) as a function of 2τ .
In the bottom panel, we plot ⟨σ⟩, the fluctuations over the angles Φ for each iteration
then averaged over all the iterations, as a function of 2τ (green diamond) and its fit with
Equation 9.7 (orange line) that yields T2,m = 20.08 ms and xm = 1.99. The vertical
magenta dashed line represents 3 different times 2τ1 < T2,g, T2,g < 2τ2 < T2 and T2 < 2τ3.
b, Sketch of the number of counts C as a function of the restoring pulse angle Φ at 3
different times 2τ1, 2τ2, 2τ3 as shown in figure a. The orange line represents ⟨C⟩ and the
green width σΦ the standard deviation at each angle. The diamonds show the values of
Φ ∈ [0, π/2, π, 3π/2] used to compute σ, schematically represented with an arrow.

We numerically implement this model with a sample of 1000 iterations of the random
variable δΦ and considering a Poissonian distribution of the the total number of counts,
with T2,g = 4 ms and T2 = 20 ms. In Figure 9.5a, we show the evolution of 3 quantities:

• Cecho, the echo amplitude in one quadrature decays with a characteristic time T2,q,
fitted with Equation 9.3 yielding T2,q = 3.94 ms and xq = 2.04.

• σΦ, the variance of a given phase Φ over the random phase δΦ increases up to
2τ = T2,g and then decreases.

• σ, the variance over the phase Φ and the random phase δΦ decays with a characteristic
time fitted with the equation:

⟨σ⟩ =
√

Ae−2(2τ/T2,m)xm + B (9.7)

yielding T2,m = 20.08 ms and xm = 1.99. This confirms that σ is the right quantity
to consider in order to extract T2.

In Figure 9.5b, we consider the integrated counts C as a function of Φ at 3 different
times [2τ1, 2τ2, 2τ3] to illustrate the phenomenon that explains the evolution of these
quantities:
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Figure 9.6: Erbium coherence time in magnitude. In setup 2, standard deviation ⟨σ⟩
computed over Φ ∈ [0, π/2, π, 3π/2] averaged then over 950 iterations as a function of the
delay 2τ (green diamond). The solid line is a fit using Equation 9.6 yielding Tm = 19.0 ms
and exponent xm = 1.13. The experiment parameters are: B0 = 59.744 mT, φ = 30 ◦,
ϵ = 2.9 × 104 ns1/2, Trep = 1.52 s, Tint = 0.55 s. Error bars are 1σ statistical.

• At 2τ1 < T2,g, the echo happens along a given phase and contributes to σ by the
difference in the average signal of each phase Φ.

• At T2,g < 2τ < T2, the echo happens with a random phase and therefore acts as an
effective increase in the fluctuations at each phase. The echo still contributes to σ.

• At T2 < 2τ , the echo is suppressed and doesn’t contribute anymore to σ.

We now experimentally realize this measurement procedure. We measure the integrated
counts for Φ ∈ [0, π/2, π, 3π/2] as a function of τ . Because of fluctuations in the setup,
typically due to the air conditioner, a slow fluctuation prevented us from taking the variance
at a given τ over the many iterations done during the measurement. To minimize the
impact of slow drifts, we found it is better to compute first σ at a given τ for a single
iteration and then average it over many iterations. The result, presented in Figure 9.6,
shows a decay with 2τ that is fitted with Equation 9.7 to extract T2,m = 19.0 ms and
xm = 1.13. The stretched exponent is however not the one expected for spectral diffusion,
as shown in Figure 5.6. We believe this is due to the low SNR of these measurements.

9.3 Signal-to-Noise Ratio (SNR) experimental comparison
for spin echo detection

We now compare the SNR of ID-ESR and FD-ESR for echo spin detection in identical
excitation conditions. We use setup 1 with B0 = 59.73 mT and apply a relatively low-ϵ
pulse, namely ϵ = 9.8 × 103 ns1/2, within the regime where FD-ESR has proven a gain in
sensitivity to detect spins in Section 7.3. Histograms are acquired following procedures
similar as the ones detailed in Section 7.3:

• ID-ESR: we measure the integrated echo amplitude with the pulse sequence ϵ/2X −
τ − ϵY − τ − echo over 4000 iterations. It is expressed in its natural unit thanks to
the echo photon number calibration discussed in Section 7.3.1.1.
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Figure 9.7: Histogram comparison between ID and FD for echo detection (setup
1). Histograms of echo detection with ID (green, 4000 iterations) and FD (blue, 4000
iterations) taken in the same conditions with ϵ = 9.8 × 103 ns1/2, τ = 50 µs and Trep = 0.43
s with their gaussian fits (solid lines). The solid black line show the distributions mean
value while the dashed black line shows the 0. Graphs are aligned on 0 in horizontal axis
and are 6 standard deviation large.

• FD-ESR: we measure Cecho using 2 successive pulse sequences: ϵ/2X −τ −ϵY −τ −ϵ/2X

and ϵ/2X − τ − ϵY − τ − ϵ/2−X . We repeat the measurement over 9000 iterations.

Here we are directly comparing the same echo using the two detection methods. The result
is shown in Figure 9.7, where the histograms are plotted to allow a visual comparison of the
SNR: the x axis is centered on 0 and its scale is 6 times the distribution standard deviation
for each histogram. The center of the histogram, corresponding to the measurement mean
value, is further away from 0 for FD than for ID, which is an indication of the FD gain
in sensitivity. This is confirmed by the SNR computation yielding SNRID = 0.08 and
SNRFD = 0.13.

We assume that the number of spins contributing to the echo corresponds to the
variation of the observable ⟨Sz⟩ under the first pulse in the Hahn echo sequence. We
perform the simulation of this pulse for the conditions used here, yielding Nspin = 320 spins.
Given the measured SNR values, we deduce the detection sensitivity for the two methods:

• In ID-ESR, the sensitivity if 1200 [Spins/
√

Hz]

• In FD-ESR, the sensitivity is 750 [Spins/
√

Hz]

The FD sensitivity is not as good as the record in ID-ESR [Ran+20a], but this likely
due differences in the resonator design. In Z. Wang thesis, a sensitivity of 0.5 [Spins/

√
Hz]

is reached with single pulse FD-ESR, thanks to an optimized SMPD and resonator design,
giving access to single-spin measurements
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In conclusion of this chapter, we have proven that we can detect spin echoes using
FD-ESR with a sensitivity gain compared ID-ESR. We also have proposed and performed
a method to access the spin intrinsic coherence time in the presence of magnetic noise in
analogy to magnitude averaging in ID-ESR.
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Chapter 10

Conclusion

Fluorescence detection as a widely applicable high sensitivity spin detection
method

In this thesis, we investigated an Electron Spin Resonance (ESR) spectroscopy method
based on Fluorescence Detection (FD), recently proposed in [Alb+21]. The results presented
here show that FD-ESR can reach a higher sensitivity than the usual Inductive Detection
(ID) ESR while preserving all the ESR detection possibilities.

We applied FD-ESR to Rare Earth Ions (REI) in Scheelite using a Single Microwave
Photon Detector (SMPD) device, at millikelvin temperature. The experiment used a
superconducting resonator magnetically coupled to the resonant spin ensemble in order
to manipulate and detect the spin signal. We reported large-scale FD-ESR spectra
showing signal from a wide variety of spin species, proving the generality of this detection
method. As FD gives immediately access to the spin fluorescence, it calls for a better
understanding of the spin relaxation curve. Focusing on Erbium ions, we modeled the spin
ensemble dynamics as the sum of single spin contribution and performed simulations that
quantitatively reproduce the fluorescence signal over three orders of magnitude in excitation
pulse strength. The comparison of ID and FD in similar spin excitation conditions confirmed
a sensitivity gain with FD for spin detection, reaching a factor 16 at the lowest excitation
strength explored. This higher sensitivity allowed us to measure the frequency shifts caused
by mechanical strain on a small spin sub-ensemble and to study its dependence with the
static field angle. Thanks to the spin sub-ensemble coupling homogeneity, we observed spin
coherent oscillations. Although FD is sensitive to incoherent photons, we used a three-pulse
sequence to perform FD of Hahn echoes. We characterized the spin coherence time using
FD, and demonstrated a method to access the spin intrinsic coherence time even in the
presence of magnetic field noise. Eventually, we show that there is also a sensitivity gain
with FD compared to ID for echo detection.

Perspectives for future experiments

Considering the wide variety of spin signal detected in our Scheelite sample using
FD-ESR, it would be interesting to explore even larger field parameters to push forward
the paramagnetic impurities characterization. Moreover, some peaks not yet attributed to
spin species could be better known through these wider range spectra. As the fluorescence
curves show that some spins have a decay time way longer than the REIs, and therefore
were not properly measured given the experimental parameters used in this thesis, we
could better characterize those peaks by increasing the experiment repetition time.

The FD-ESR characterization could be implemented to other kind of sample than
Scheelite. It would be straight forward to apply it to other kind of crystal on which
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Chapter 10. Conclusion

we can pattern a superconducting resonator. Another appealing application would be
the characterization of materials deposited on top of the resonator. That way, we could
characterize other type of spin species not embedded in a crystal using FD-ESR, opening
the way for applications in chemistry [Sen90].

Our data call for a better modeling of the behavior of REIs under strain. Even
though our simulations reproduced quantitatively most of the data presented in this thesis,
the strain effect remained elusive to it. It would be interesting to explore the g-tensor
dependence with strain in order to implement it in our simulations.

The Signal-to-Noise Ratio (SNR) study described in this thesis explores a parameter
range where FD always gives a sensitivity gain compared to ID. However, the gain seriously
reduced at high excitation strength, and one would expect a SNR crossover at even higher
pulse strength. It would be interesting to reach that regime where ID is more sensitive than
FD and describe further the conditions where the crossover happens. For characterization
applications, it would be of great interest to be able to know which detection method to
use in order to maximize the detection sensitivity according to the characteristics of the
spin system under study.

Eventually, our experiment sensitivity could be even more enhanced. The resonator
design could be modified to increase the spin coupling, for instance by shrinking the wire
width. The SMPD device dark counts could be reduced by increasing the working frequency
or by narrowing the resonator bandwidth. The magnetic field could be applied on the
crystal c-axis, so that spin like Erbium ions with gperp > gpara gets even more coupled to
the resonator. All in all, by implementing such modifications, the single spin sensitivity for
Erbium detection in a Scheelite sample has already been reached in our group, as will be
reported in the theses of Z. Wang and L. Balembois.
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Appendix A

Simulations

In the following we describe the set of equations implemented in a python code to numerically
simulate the spin ensemble dynamics coupled to a cavity. The simulation is valid in the
low-ensemble-cooperativity regime. In this regime, the dynamics of each spin packet is
simulated independently, and the ensemble result is obtained by simply summing each spin
packet contribution weighted by its density.

A.1 Single spin evolution
The simulation is performed by considering separately each spin packet j, characterized
by its frequency detuning from the resonator ∆ωj , and its coupling g0,j . This yields a
relaxation rate

Γ1,j = ΓR,j + ΓNR =
g2

0,j
κ
4 + ∆ωj

+ ΓNR. (A.1)

with the contributions of the Purcell radiative rate ΓR,j, that depends on the cavity total
loss rate κ, and a non-radiative rate ΓNR considered homogeneous over the spin ensemble.

Initialization

The simulation takes into account the finite repetition time by initializing the spin
packet as follows. It is assumed that at the end of the coherent evolution in the previous
sequence, the spin packet is fully un-polarized, ⟨Sz,j⟩ = 0. Then, after a waiting time Trep,
the polarization at the beginning of the sequence should be

⟨SZ,j(t = 0)⟩ = 1
2(e−Γ1,jTrep − 1). (A.2)

which we thus consider as the initialization of the spin packet at the beginning of the
computation.

Excitation pulse field

The dynamics depends on the drive field, which consists of a sequence of pulses of
amplitude β(t). We take into account the cavity filtering of these pulses by first computing
the time-dependent intra-cavity field α(t), using

dα

dt
= −κ

2 α −
√

κcβ (A.3)

with κc the cavity coupling rate to the microwave lines. Note that here, we neglect the
modifications of the intra-cavity field caused by spin absorption; this corresponds to the
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low-ensemble-cooperativity hypothesis (or equivalently, in magnetic resonance terms, the
neglect of radiation damping).

Spin dynamics

The spin packet j dynamics under the influence of the resonator intra cavity field α is
then computed as

Ṡj =


⟨ ˙̂
SX,j⟩

⟨ ˙̂
SY,j⟩

⟨ ˙̂
SZ,j⟩

 =

 0 ∆ωj 0
−∆ωj 0 2g0,jα

0 2g0,jα 0

S −

 Γ2
Γ2

ΓR,j + ΓNR

S (A.4)

with Γ2 the spin decoherence rate considered homogeneous over the spin ensemble.

Case 1: spin induction detection

If we want to compute the inductively emitted spin-echo, we then obtain the intracavity
field considering the spin contribution

dα

dt
= −κ

2 α −
√

κcβ + ig0,j⟨S−,j⟩. (A.5)

Case 2: spin fluorescence detection

To simulate the spin radiative energy relaxation, we compute the spin dynamics at a
time t > Tempty following the excitation pulse sequence such that α(t = Tempty) = 0. The
spin relaxes exponentially as it generates an intracavity field:

|αj |2(t) = ΓR,j
κ

1 + 2SZ,j(t = Tempty)
2 e−(Γ1,j)t. (A.6)

Field emitted in the line

The intracavity field induces a field emitted in the microwave line:

αout,j = √
κcαj (A.7)

A.2 Spin ensemble signal
Case 1: spin induction detection

The contributions from all the spin packets are coherent during the echo, yielding

⟨αout⟩(t) = κc
κ

2i
∑

j

g0,jρ(∆ωj)d∆ωjρ(g0,j)dg0,j⟨S−,j⟩(t). (A.8)

where ρ(∆ωj) is the spin frequency density at ∆ωj and ρ(g0,j) is the spin coupling density
at g0,j , such that for a total of Nspin we have

Nspin =
∑

j

ρ(∆ωj)d∆ωjρ(g0,j)dg0,j . (A.9)

Case 2: spin fluorescence detection
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A.2. Spin ensemble signal

The total fluorescence signal is the sum of the contributions from all the spin packets,
that writes at time t > Tempty

⟨α†
outαout⟩(t) =

∑
j

ρ(∆ωj)d∆ωjρ(g0,j)dg0,j⟨α†
out,jαout,j⟩(t) (A.10)
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Appendix B

Resonator fabrication

B.1 Microwave simulations
Microwave simulations were conducted using Ansys HFSS software in order to predict
the resonator frequency for a given resonator design. The simulator solves the system
electromagnetic eigenmodes and yields the corresponding mode frequency ω/2π and quality
factor Qc = ω/κc. The resonance frequency is targeted around 7 GHz for a few reasons:
this frequency is high enough to have the spins polarized at a temperature of T = 10 mK
since ℏω ≫ kBT , this frequency is small enough so that a relatively small field B0 ≈ 100
mT allows to set the REI ions on resonance with the resonator, and it corresponds to a
frequency in the detection range of our SMPDs. The various elements taken into account
in the simulations are:

• the copper box

• the antenna, coupled to a 50 Ω line

• a silicon piece meant to hold the sample

• the CaWO4 sample

• the resonator

All copper elements and the resonator are taken as perfect conductors. The silicon relative
permittivity at cryogenic temperature is taken as ϵSi = 11.5 [Kru+06]. For CaWO4, the
relative permittivity is anisotropic, with ϵa,b = 11.7 ± 0.1 and ϵa,b = 9.5 ± 0.2 [TA75].

The simulation tool solves Maxwell equations and gives the spatial distribution of elec-
tromagnetic quantities for 1 Joule of energy in the eigenmode, as presented in Figure B.1b.
From those quantities, we can compute the resonator impedance and find Z0 = 35 ± 2 Ω.

B.2 Fabrication recipe
The 2D superconducting resonator was made out of Niobium (Nb), a superconductor
material with Tc = 9.2 K and a bulk critical magnetic field Bc = 0.2 T. The resonator
fabrication steps done in a clean room are the following:

• Substrate cleaning: 5’ in acetone bath with ultrasounds, 1’ in isopropanol (IPA)
bath with ultrasounds, then rinse in another bath of IPA for 30” and blow dry. The
sample is put on a hot plate at 115 ◦C for 5’ to evaporate any residual water.

• Metal deposition: sputter of a 50 ± 3 nm thick Niobium layer. To avoid metal
deposition on the sample sides, it is surrounded by silicon pieces.
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20 mm1 mm

a b

Figure B.1: Microwave simulations a Simulation result showing the resonator design
with its geometrical parameters: the wire width w, the wire length l and the capacitive
fingers width W . The colors represent in logarithmic scale the surface current when 1 J
of energy is injected in the resonator resonance mode. b Picture of the whole simulation
result with colors representing the electric field in the box when 1 J of energy is in injected
in the box fundamental mode.

• Resist coating: Clean of the Niobium surface with 3’ in acetone while moving the
chip with tweezers, twice 30” in IPA in two different bath, 3’ on a 110 ◦C hot plate.
Cover the sample with nLOF2020 resist: 4” at 8000 rpm (rotations per minute)
acceleration 4000, then 60” at 4000 rpm acceleration 1000. Baking for 90” on hot
plate at 110 ◦.

• Optical lithography: Exposure done with the lithography machine Heidelberg
µMLA: dose 45 mJ/cm2 and defoc 5. The nLOF is a negative resist such that only
the exposed parts stay.

• Resist development: post exposition bake of 90” on hot plate at 110 ◦, 1’ in MF319
before rinsing for 1’ in water.

• Dry etching: Reactive ion etching: base pressure of 12 µbar, 10 sccm (standard
cubic centimeters per minute) of Ar, 20 sccm of SF6 and 50 W of power. To avoids
border effect in the etching, the sample is surrounded by silicon pieces. A laser
reflectometry indicates when the niobium is etched, in 39”, to which we add an
overetch time of 11”.

• Resist removal: 15’ in remover P1331 at 50 − 60◦, rinse in two successive bath of
water for 30”. Last cleaning step with 3’ in acetone then twice 30” in IPA.

In such a fabrication process, we expect to have some uncontrolled parameters influenc-
ing the resulting resonator frequency. In order to target a frequency, we have patterned 3
resonators with various geometrical dimensions to increase the probability to have one of
them in a convenient frequency range.
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Appendix C

Measuring spin coherence time in
the signal fluctuations

In this chapter, we derive the equation Equation 9.6 used to describe the evolution of the
signal fluctuations σ(τ) =

√
Var(C(Φ, δΦ, τ)).

In our model, we express the signal as

C(Φ, δΦ, τ) = Cincoh + Cecho cos(Φ + δΦ)e−(2τ/T2)2 (C.1)

where T2 is the intrinsic spin coherence time (which we assume to decay with a Gaussian
shape) and δΦ is a random variable that follows a gaussian distribution whose standard
deviation is 2

√
2τ/T2,g, such that the probability to have δΦ = m writes as

p(δΦ = m, τ) = T2,g√
π4τ

e
−

(mT2,g)2

2(2
√

2τ)2 (C.2)

C.1 Evolution of Cecho

We first consider how the signal evolves once averaged over the random variable δΦ:

⟨C(Φ, δΦ, τ)⟩δΦ = Cincoh + CechoT2,ge−(2τ/T2)2

√
π4τ

∫ ∞

∞
cos(Φ + x)e−

(mT2,g)2

2(2
√

2τ)2 dx

= Cincoh + CechoT2,ge−(2τ/T2)2

√
π4τ

Re(
∫ ∞

∞
e−i(Φ+x)e

−
(mT2,g)2

2(2
√

2τ)2 dx)

= Cincoh + Cechoe−(2τ/T2)2 cos(Φ)e−( 2τ
T2,g

)2

(C.3)

We find the expression for Cecho(τ):

Cecho(τ) = ⟨C(0, δΦ, τ)⟩δΦ − ⟨C(π, δΦ, τ)⟩δΦ
2

= Cechoe−(2τ/T2)2
e

( 2τ
T2,g

)2
(C.4)

Cecho(τ) decays in a characteristic time shorter than T2, as measured in Figure 9.4, that
we fit with the equation

⟨Cecho(τ)⟩ = Ae−(2τ/T2,q)xq
, (C.5)

yielding a coherence time T2,q and a stretching coefficient xq in quadrature detection.
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C.2 Evolution of σ

To find a quantity that decays with a characteristic time T2, we are interested in the overall
signal fluctuations over δΦ and Φ, expressed in the variance:

σ2 = Var(Cincoh) + Var(Cecho cos(Φ + δΦ)e−(2τ/T2)2) (C.6)

To compute the coherent contribution to the variance, we start by deriving:

⟨(Cecho cos(Φ + δΦ)e−(2τ/T2)2)2⟩δΦ = C2
echoT2,ge−2(2τ/T2)x2

√
π4τ

∫ ∞

∞
cos2(Φ + x)e−

(mT2,g)2

2(2
√

2τ)2 dx

= C2
echoT2,ge−2(2τ/T2)2

2
√

2π2τ

∫ ∞

∞
e

−
(mT2,g)2

2(2
√

2τ)2 + cos(2(Φ + x))e−
(mT2,g)2

2(2
√

2τ)2 dx

= C2
echoe−2(2τ/T2)2

2 (1 + cos(2Φ)e−4( 2τ
T2,g

)2
)

(C.7)

Average in the continuum limit

By averaging over Φ in the continuum limit we obtain:

Var(Cecho cos(Φ + δΦ)e−(2τ/T2)2) = C2
echoe−2(2τ/T2)2

2 . (C.8)

Coming back to σ, it yields

σ =

√
Var(Cincoh) + C2

echoe−2(2τ/T2)2

2 . (C.9)

Average with discrete phases

Let’s consider the average over Φ ∈ [0, π/2, π, 3π/2]. Then we have:∑
Φ

⟨Cecho cos(Φ + δΦ)e−(2τ/T2)2⟩δΦ = 0,

∑
Φ

⟨(Cecho cos(Φ + δΦ)e−(2τ/T2)2)2⟩δΦ = C2
echoe−2(2τ/T2)2

2 .

(C.10)

Coming back to σ, it yields

σ =

√
Var(Cincoh) + C2

echoe−2(2τ/T2)2

2 . (C.11)

The evolution of σ is fitted with

⟨σ⟩ =
√

Ae−2(2τ/T2,m)xm + B (C.12)

yielding a coherence time T2,m and a stretching coefficient xm in magnitude detection.
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Appendix D

Carbon footprint

During my PhD, I have participated to initiatives to reduce the laboratory environmental
footprint. In this chapter, I detail the carbon footprint of Quantronics research group.
It is a work that I have done with the support of Lucille Zribi, who did the carbon
footprint of another research laboratory named "Laboratoire des Sciences du Climat et de
l’Environnement" (LSCE), and Hélène le Sueur, researcher in Quantronics.

D.1 Motivations

It all start with an observation: every year, humankind emits more Greenhouse Gas (GG).
The integrated emissions have already caused a temperature rise of more than 1◦, and this
rise is accelerating. According to the IPCC, this climate change is triggering catastrophies,
with dire human impacts. A simple climate change causality chain is proposed in Figure D.1.

We are concerned in many ways by this phenomenon. On the one hand because it is
in our interest, because we are suffering from it and we will only suffer more in the near
future. Even if we are not hit yet, we want to react and find a way to help in empathy for
the others not as lucky as us. On the hand we have a responsibility, because our research
emits GG and because, as scientists, we have a specific role to play in the much needed
society change. It is also a matter of continuing our passionate research: constraints will
gradually appear to reduce emissions throughout society, and research fields that have not
taken it into account might face serious troubles.

Scientists are getting involved to mitigate the climate change: through individual
choices that allow them to be in line with their values but also through collective responses
that ignit change at a wider scale. In particular, scientists in France have gatherer into an
association and a research group to promote the reduction of research GG emissions [lab].

Even if we are willing to curb our GG emissions, where to start? In Quantronics, we
have realized our carbon footprint to quantify our emissions in order to undertake then
the right actions to efficiently reduce our GG emissions. Furthermore, the carbon footprint
allows to have a support for discussions and debates within the whole SPEC laboratory.

D.2 Method

The carbon footprint computation principle is straightforward: we gather all the data
associated to our research activities, then find in reference databases the most relevant
emission factor and realize the product of the two figures. This computation is represented
in Figure D.2

There is a choice to make in term of scope for our carbon footprint, with a balance
between considering all the relevant GG emission sources and the amount of work it
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Figure D.1: Climate change. Simplified causality chain of the ongoing climate change.
We believe that scientists have a specific role to play to mitigate it, by reducing the impact
of their research and participating to a much needed societal change. Pictures are from
[RIN].

Figure D.2: Carbon footprint method. Carbon footprint computation principle: after
collecting the relevant data in our laboratory, expressed in various units, we use emission
factors from reference databases to convert it into an equivalent mass of CO2.

represents. Based on the work of Lucille Zribi, we have chosen the few emission sources
that were relevant in the case of LSCE carbon footprint:

• the buying of equipments

• the transportation

• the energy consumption

• the laboratory buildings fabrication

The carbon footprint has been realized at the relatively small scale of Quantronics
to have an easy access to the data. However, it would be desirable to realize the carbon
footprint at a wider scale such as the SPEC laboratory to take into account a larger
audience and to propose actions at a larger scale. This is the first carbon footprint done in
Quantronics, so we decided to realize it for the year 2019, before the impact of COVID on
our research.

D.3 Results

The overall result of Quantronics carbon footprint for the year 2019, shown in Figure D.3,
is 16 tonsCO2-eq/person × year. This figure can be compared to France average carbon
footprint of around 10 tonsCO2-eq/person × year, showing that our activity emits GG
significantly. In term of emission target, the Paris agreement aims at 2 tonsCO2-eq/person×
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Transport

Infrastructure Energy

Equipment

(CO2-eq / person )

Figure D.3: Quantronics carbon footprint results. Results of Quantronics carbon
footprint done for the year 2019. The total footprint of 16 tonsCO2-eq/person × year is
split into 4 types of emission source: equipment (10 tonsCO2-eq/person × year), transport
(2.5 tonsCO2-eq/person × year), energy (2.5 tonsCO2-eq/person × year), infrastructure (1
tonsCO2-eq/person × year).

year by the year 2050. To convert this overall figure into concrete actions, one need to
have a closer look to how it decomposes.

The larger GG emission source is the buying of our equipment, with 10 tonsCO2-
eq/person × year. However, this figure has a very high uncertainty. Indeed, the emission
factor expressed in kgCO2-eq / e that we are using are very generic, with label such as
"laboratory device". In principle, if this factor is representative of the average emission of
devices in a laboratory and if the set of data is spread over a large number of devices, then
the result should be by and large relevant. But more than half of the money spent to buy
equipment in the year 2019 by Quantronics was for a single dilution cryostat, for which we
have no idea if the emission factor "laboratory device" is relevant.

The GG emission of transportation is around 2.5 tonsCO2-eq/person × year. For
transportation, we have taken into account the dayly commuting as well as the travel
for conferences, and found a very interesting result: close to 90% of the transportation
emissions are due to travel for conferences, and almost 100% of this travel emissions are due
to the use of planes. This is understandable provided the very large number of kilometers
traveled for conferences (around 14000 km per person in average for the year 2019, even
though there is a large disparity from researcher to researcher), as well as provided that
plane and train are the main two options to go to conferences and that the emission
factor of train (in France, ∼ 0.005 kgCO2-eq / km) is way smaller than the one of plane
(∼ 0.2 kgCO2-eq / km).

The GG emission of energy consumption is also around 2.5 tonsCO2-eq/person × year.
We consider here both the electrical consumption as well as the heating done with gas,
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Difficulty

Impact

Awareness (seminars, climate fresk…)

Carbon footprint Taskforce

Carbon footprint internship
Equipment inventory

Reduce aviation for conference

Thermal renovation

Reduce energy waste

∘ winter, ∘ summer

Reduce number of experiments

Figure D.4: Actions to reduce our carbon footprint. Graph representing the impact in
term of emission reduction and the difficulty to set up of various actions. The propositions
have colors to distinguish different type of actions: awareness, practice, investment, research
intensity.

both giving a similar result close to 1.25 tonsCO2-eq/person × year. It is worth to keep in
mind that this was obtained considering France electrical production that has relatively
low emissions (∼ 0.05 kgCO2-eq / kWh). The electrical consumption has been measured
for the whole SPEC laboratory (∼ 2 GWh for the year 2019) and divided equally between
its members, yielding to ∼ 13 MWh / person.

Eventually, the building fabrication GG emission, spread over 50 years by convention,
corresponds to 1 tonsCO2-eq/person × year, with ∼ 1250 tonsCO2-eq emitted for its
fabrication.

D.4 Propositions

Based on this analysis, we can put forward a few propositions to curb our emissions.
First, we should keep improving our knowledge of our carbon footprint. We have

advocated for the realization of an internship within SPEC laboratory dedicated to perform
the carbon footprint of the whole laboratory. This proposition has been accepted already,
and an internship aims at realizing the carbon footprint of SPEC for the year 2022. This
ongoing work calls for refining the work, using for instance tools from Labo 1p5 [lab]. Also,
it is crucial to have carbon footprints done over the years to have access to the emissions
trend.

Second, this work has been the opportunity to get the laboratory involved about this
issue. In particular, a carbon footprint task force has been set up to organize the reduction
of our emission.
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Eventually, based on the carbon footprint results, we propose a few concrete propositions
that aim at reducing our laboratory emissions, such as:

• performing an equipment inventory over the whole SPEC laboratory and organizing
the sharing of equipment

• monitoring the electrical consumption at refined scale, to find and reduce the signifi-
cant waste

• setting the temperature within the building at more reasonable values, such as 19◦

in winter and 28◦ in summer

• reducing the use of plane to travel to conferences

These propositions would have an impact on various aspect of our professional life: comfort,
investment, research intensity... This raises the big question of how to debate, to decide
and to enforce decisions that impact our professional life.
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Titre : Spectroscopie de résonance de spin électronique des ions de terres rares dans la scheelite détectée par 
fluorescence micro-ondes, à une température de l’ordre du millikelvin 

Mots clés : résonance magnétique, résonance de spin électronique, circuits supraconducteurs, fluorescence, 
ions de terres rares 

Résumé : La spectroscopie de Résonance de Spin 
Electronique (ESR) est une méthode de 
caractérisation applicable à une grande variété de 
systèmes de spin. Cette méthode, généralement 
basée sur la Détection Inductive (ID) de l'écho de 
spin, a une faible sensibilité, permettant seulement la 
détection de grands ensembles de spin. Améliorer la 
sensibilité tout en gardant la variété des possibilités 
d'application est souhaitable pour caractériser les 
propriétés des petits ensembles de spin. 
Cette thèse explore une nouvelle méthode de 
détection ESR : la Détection par Fluorescence (FD) - 
récemment développée dans le groupe Quantronics. 
Nous l'appliquons à la spectroscopie des ions de 
terres rares dans la scheelite en utilisant un dispositif 
de détection de photons à micro-ondes unique, à 
une température de l’ordre du millikelvin. 
L'expérience utilise un résonateur supraconducteur 
couplé magnétiquement à l'ensemble de spin 
résonnant, afin de manipuler et de détecter le signal 
de spin. Nous présentons des spectres FD-ESR à 
grande échelle montrant le signal d'une grande 
variété d'espèces de spin, ce qui indique la généralité 
de cette méthode de détection. Comme la FD donne 
un accès immédiat à la fluorescence de spin, elle 
appelle une meilleure compréhension de la courbe 
de relaxation de spin. 

En nous concentrant sur les ions Erbium, nous 
modélisons la dynamique de l'ensemble des spins 
comme la somme des contributions des spins 
individuels et nous effectuons des simulations qui 
reproduisent quantitativement le signal de 
fluorescence sur trois ordres de grandeur de la 
force de l'impulsion d'excitation. La comparaison 
de l'ID et de la FD dans des conditions similaires 
d'excitation de spin confirme un gain de sensibilité 
avec la FD pour la détection de spin, atteignant un 
facteur 15 à la plus faible force d'excitation 
explorée. Cette plus grande sensibilité nous permet 
de mesurer les décalages de fréquence causés par 
une contrainte mécanique sur un petit sous-
ensemble de spin, et d'étudier sa dépendance avec 
l'angle du champ statique. Grâce à l'homogénéité 
du couplage du sous-ensemble de spin, nous 
observons des oscillations cohérentes de spin. Bien 
que la FD soit sensible aux photons incohérents, 
nous utilisons une séquence de trois impulsions 
pour réaliser la FD des échos de Hahn. Nous 
caractérisons le temps de cohérence du spin en 
utilisant la FD, et nous démontrons une méthode 
pour contourner la limitation du temps de 
cohérence du spin due au bruit du champ 
magnétique. Enfin, nous montrons qu'il y a 
également un gain de sensibilité avec la FD par 
rapport à l'ID pour la détection des échos. 

 

 

  



 

 

 

Title : Electron spin resonance spectroscopy of rare earth ions in scheelite detected by microwave 
fluorescence at millikelvin temperature 

Keywords : magnetic resonance, electron spin resonance, superconducting circuits, fluorescence, rare earth 
ions 

Abstract: Electron Spin Resonance (ESR) 
spectroscopy is a characterization method applicable 
to a wide variety of spin systems. This method, 
usually based on the Inductive Detection (ID) of spin 
echo, has a low sensitivity, restricting the detection to 
large spin ensembles. Improving the sensitivity while 
keeping the generality of application is desirable to 
characterize small spin ensemble properties. 
This thesis explores a new ESR detection method   
Fluorescence Detection (FD) - recently developed in 
Quantronics group. We apply it to the spectroscopy 
of rare earth ions in Scheelite using a Single 
Microwave Photon Detector device, at millikelvin 
temperature. The experiment uses a superconducting 
resonator magnetically coupled to the resonant spin 
ensemble, in order to manipulate and detect the spin 
signal. We report large-scale FD-ESR spectra showing 
signal from a wide variety of spin species, proving the 
generality of this detection method. As FD gives 
immediately access to the spin fluorescence, it calls 
for a better understanding of spin relaxation curve. 

Focusing on Erbium ions, we model the spin 
ensemble dynamics as the sum of single spin 
contribution and perform simulations that 
quantitatively reproduce the fluorescence signal 
over three orders of magnitude in excitation pulse 
strength. The comparison of ID and FD in similar 
spin excitation conditions confirms a sensitivity 
gain with FD for spin detection, reaching a factor 
15 at the lowest excitation strength explored. This 
higher sensitivity allows us to measure the 
frequency shifts caused by mechanical strain on a 
small spin sub-ensemble, and to study its 
dependence with the static field angle. Thanks to 
the spin sub-ensemble coupling homogeneity, we 
observe spin coherent oscillations. Although FD is 
sensitive to incoherent photons, we use a three-
pulse sequence to perform FD of Hahn echoes. We 
characterize the spin coherence time using FD, and 
demonstrate a method to get around the limitation 
in spin coherence time due to magnetic field noise. 
Eventually, we show that there is also a sensitivity 
gain with FD compared to ID for echo detection. 
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