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I. 9

I.  INTRODUCTION

Although the microscopic behavior of electrons in conductors is strongly affected by quantum

mechanical effects, the macroscopic behavior of usual electronic circuits is classical : voltages

and currents obey Kirchhoff rules, and their evolution is determined by the current-voltage

relations of the various elements. The search for electronic circuits exhibiting quantum

properties in their macroscopic behavior arose when Caldeira and Leggett realised that

electronic circuits were the best candidates to test for a possible limit of validity of quantum

mechanics at the macroscopic level [1]. They explained quantitatively how dissipation, which

is unavoidable in a macroscopic system, usually prevents the observation of a quantum

behavior. Nevertheless, they showed that for a Josephson junction placed in a superconducting

ring, dissipation can be made small enough to observe quantum tunneling of the flux

threading the ring. Quantum tunneling out of a metastable flux state has indeed been observed

in these systems [2]. Furthermore, observation of quantum tunneling in a slightly different

system where the Josephson junction is biased with a current source, was found to be in good

agreement with the predictions, once the effect of residual dissipation is taken into account

[3]. The next step in this new field of macroscopic quantum mechanics then clearly appeared

to be the realisation of a coherent superposition of two quantum states which differ at the

macroscopic level. This extreme quantum situation is called macroscopic quantum coherence.

Despite numerous attempts, it could not be achieved in the above Josephson systems because

a static coherent superposition of two flux states is much more fragile with respect to residual

dissipation than quantum tunneling of flux [4].

In this work I will describe experiments done on a new “quantum” electronic component : the

superconducting single electron transistor. The device consists of two nanoscale series-

connected superconducting tunnel junctions (see Fig. 1). A tunnel junction consists of two

metallic electrodes separated by a thin insulating layer (typically 1 nm thick). Since the

electrode between the two junctions is isolated from the rest of the circuit, we call it the

“island”. The principle of this device is based on a tunable coherent superposition of two

island states whose charges differ by 2e, a difference which affects the macroscopic behavior

of the device. The advantage of dealing with charge variables instead of flux variables is due

to a very fundamental asymmetry : the typical dissipation felt by a charge variable is smaller

than that felt by a flux variable in a ratio of the order of Z0/RK = 2α << 1, where Z0 = 1/ε0c ≈
377 Ω is the impedance of the vacuum, RK = h/e2 ≈ 25.8 kΩ is the resistance quantum and

α = e2/4πε0hc ≈ 1/137 is the fine structure constant (see Refs. 4 & 5 in the case of flux and

charge, respectively).
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10 Introduction I.

Vg

gate

source drainisland

Vb

Zload S S S

I

Fig. 1. Schematic representation of a superconducting single electron transistor and its bias
circuit. The transistor itself consists of three superconducting electrodes (rectangles marked
S) separated by tunnel barriers (represented by the hatched rectangles) and a gate capacitor.
The middle electrode is called the island, while the other elements are named by analogy with
a field effect transistor (FET). The biasing circuit is represented by an ideal voltage source Vb
in series with a load impedance Zload. The gate voltage source Vg is supposed ideal.

JJJJJuuuuunnnnnccccctttttiiiiiooooonnnnnsssss

IIIIIssssslllllaaaaannnnnddddd
SSSSSooooouuuuurrrrrccccceeeee DDDDDrrrrraaaaaiiiiinnnnn

GGGGGaaaaattttteeeee

NNNNNooooonnnnn-----sssssuuuuupppppeeeeerrrrrcccccooooonnnnnddddduuuuuccccctttttiiiiinnnnnggggg llllleeeeeaaaaadddddsssss

Fig. 2. Scanning electron micrograph of a sample. The sample fabrication will be described
in Chap. V. The junctions are formed at the overlap of two aluminum films. The insulating
tunnel barrier is made by oxidizing the first aluminum layer prior to the deposition of the
second layer. The non-superconducting copper leads participate in the impedance Zload of the
electromagnetic environment of the transistor. They provide a relaxation mechanism for
unpaired electrons. This relaxation is essential for the observation of macroscopic quantum
coherence.
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I. Introduction 11

Vg

C,EJC,EJ

C,EJ

a) b)

Cg

Island

Fig. 3. a) Symbolic representation of a small area superconducting tunnel junction. The
relevant macroscopic parameters which characterise the junction are its capacitance C and
its Josephson coupling energy EJ. b) Schematic electrical diagram of the superconducting
single electron transistor at zero bias voltage and without environmental impedance. The
tunnel junctions (supposed identical) are connected in series thereby defining an isolated
island (enclosed by dashes).

A gate electrode capacitively coupled to the island controls the mixing of charge states in the

island : it arbitrates the competition between the electrostatic charging energy of the island

which tends to impose the charge of the island, and the Josephson coupling energy which

tends to mix charge states in the superconducting electrodes and particularly in the island. The

maximum supercurrent which can flow through the device depends on the relative weights of

the quantum superposition of charge states in the island. Hence, the measurement of the

maximum supercurrent of the transistor constitutes an observation of macroscopic quantum

coherence in the island.

In the following we describe more precisely how the gate voltage controls the macroscopic

quantum superposition and we explain the possible difficulties associated with the observation

of the macroscopic quantum coherence.

A convenient scale for the electrostatic energy cost of charging the island is the electrostatic

energy EC = e2/2CΣ of one extra electron on the island, where CΣ is the total capacitance of

the island. The capacitance CΣ is dominated by the capacitances of the two junctions.

Nowadays junctions made using electron-beam lithography (see Fig. 2) commonly have areas

of the order of 100 nm×100 nm resulting in capacitances in the fF (10-15 F) range. This yields

a charging energy EC of the order of 1 K.kB. For thermal fluctuations not to spoil the operation

of a transistor made with such junctions, one must lower the temperature much below 1 K.

Such temperatures (10-100 mK) are routinely achieved in a 3He-4He dilution refrigerator.

A second fundamental energy scale in the transistor results from an interplay between

superconductivity and tunneling. This effect is named after Josephson who discovered it in
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12 Introduction I.

1962 [6]. We will first describe the behaviour of a single superconducting tunnel junction

(Fig. 3a). It will serve as a basis to the understanding of the transistor. Charge carriers in the

superconducting electrodes of the junction are Cooper pairs. The states of a single junction

can be indexed by the number k of Cooper pairs having crossed the tunnel barrier. At zero

voltage across the junction, all these states are degenerate in electrostatic energy (Fig. 4a).

Classically, a current flowing through the device would result from a succession of transitions

between k-states. Josephson showed that quantum tunneling between the electrodes of the

junctions induces an elastic coupling between the k-states whose matrix element is −EJ/2
where EJ is known as the Josephson coupling energy, a quantity which depends on the

transparency of the tunnel barrier. This coupling is symbolised by arrows in Fig. 4a. The

situation is identical to the one found in the tight binding description of a one-dimensional

crystal with one atom per unit cell : the electrostatic energy plays the role of the energy of the

orbitals, while the Josephson energy is equivalent to the hopping energy. We can apply the

Bloch theorem as in the crystal. Therefore, a good quantum number will be the phase δ across

the junction which is the conjugate quantity of k. The eigenstates of the system are

characterised by a well-defined value of δ, which in the k-states picture corresponds to a

coherent superposition of an infinite number of states : the number of Cooper pairs having

crossed the junction is completely undetermined quantum mechanically. The eigenenergies of

the system form a band parametrised by δ, with energy E(δ) = −EJ cosδ (Fig. 4b). The

existence of such a band enables a supercurrent flow (that is a current with no voltage drop)

through the junction. The theoretical maximum supercurrent (hereafter called the critical

current) the junction can transmit is proportional to the width of the band.

The transistor can be described in terms very similar to those we used here for the single

junction. The states of the transistor can be indexed by the combination of the number k of

Cooper pairs having crossed the device and the number p of excess Cooper pairs on the island

(Fig. 5a). At zero bias voltage on the transistor the energies of the states of the system are

degenerate with respect to k. If one starts in the ground state of the island, there is a minimal

electrostatic energy cost U E Q eC g= −4 1 2( mod )  associated to the entrance or exit of a

Cooper pair in the island, where Qg = CgVg is what we call the gate charge. This electrostatic

energy can be tuned between 0 and 4EC by varying the gate voltage Vg, with a periodicity

corresponding to adding one Cooper pair on each plate of the capacitor Cg. The behaviour of

the system is thus 2e-periodic in Qg. If we suppose that E EJ C~< , in a first approach we can

consider only the two states of lowest electrostatic energy in a given Qg-period. These two

states differ by one Cooper pair in the island. The classical succession of electrostatic energy

levels of the system corresponding to a current flow at zero bias voltage, as a function of k, is

shown in Fig. 5b. The Josephson couplings are still symbolised by arrows, and the junctions

are assumed to have the same Josephson coupling energy EJ. The system is again analogous to

a one-dimensional crystal but now with two atoms per unit cell. Thus, in our simplified
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I. Introduction 13

description of the transistor which neglects the influence of the bias circuit (we have supposed

Vb = 0, Zload = 0), we can still apply the Bloch theorem. The phase δ across the source and

drain which is the conjugate quantity of k (see Fig. 5c) is a good quantum number. The

eigenstates of the system now form two bands parametrised by δ (Fig. 5b). The width of the

bands depends on the relative strength of U and EJ. Hence, the transistor is a (maybe unique)

example of a device whose quantum band structure can be modulated by simply changing the

gate voltage : as U is changed from 0 to 4EC by varying the gate voltage, the width of the

bands varies between EJ (half that of a single junction) and EJ
2/2EC. As long as the system

stays in the lowest band, the physics of the transistor is that of a single Josephson junction

with a gate-voltage tunable effective Josephson coupling. This modulation of the effective

Josephson coupling translates into a modulation of the maximum supercurrent (see Fig. 6 &

7). This justifies the name of “transistor” given to the device : it can be considered a

superconducting field effect transistor.

−π −π /2 0 π /2 π

δ
-1 0 1 2

electrostatic +
Josephson energyelectrostatic

energy

k

-EJ
20

a) b)

k, δ

Fig. 4. a) Electrostatic energy states of a single Josephson junction indexed by the number k
of Cooper pairs having crossed the tunnel barrier. The states are coupled by the Josephson
coupling energy as symbolised by the arrows joining adjacent states. The description is
analogous to that of a 1-D crystal with one atom per unit cell in the tight-binding model. b)
Translational invariance of a) can be used to diagonalize the system in the δ representation
where δ is the phase difference across the junction. The variable δ is canonically conjugated
with the variable k.
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14 Introduction I.

−π −π /2 0 π /2 π

δ
-1 0 1 2

electrostatic +
Josephson energy

electrostatic
energy

lowest excited state

ground state

k

-EJ
2

U

b) c)

p=k1-k2

k=(k1+k2)/2, δ=δ1+δ2

k1,δ1 k2,δ2

Vg

θ δ δ
=

−1 2

2a)
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I. Introduction 15

Fig. 5. (previous page) a) Variables which can be used to describe the state of the system. The
state of each junction can be specified in terms of ki (i = 1,2) the number of Cooper pairs
having crossed each junction or δi the phase across the junctions. From these four variables
we define four other variables which are more convenient for describing the state of the whole
transistor. These variables are canonically conjugate two by two: (i) k, the number of Cooper
pairs having crossed the whole transistor and δ the total phase difference across the
transistor, and (ii) p, the number of excess Cooper pairs in the island and θ the phase of the
superconducting condensate in the island. b) Electrostatic energy states of transistor, for the
two lowest electrostatic energy states of the island as a function of the number k of Cooper
pairs having crossed both junctions. The ground state and the first excited state differ by one
Cooper pair in the island (∆p = ±1). The Josephson coupling energy (supposed the same for
both junctions) is symbolised by the arrows joining adjacent states. The description is
analogous to that of a 1-D crystal with two atoms per unit cell. c) As in Fig. 4, translational
invariance of b) can be used to diagonalize the system in the δ . We have now two bands. The
amplitude of the bands depends on the relative magnitude of EJ and U which itself can be
adjusted by varying the gate voltage. The switching property of the transistor is based on this
modulation of the band structure by the gate voltage.

-1.0 -0.5 0.0 0.5 1.0
-20

-10

0

I s

10

20

I (
nA

)

V (mV)

Fig. 6. Experimental current-voltage characteristic of one of our samples (# 13) biased by a
nearly ideal current source. Data points on the zero-voltage axis correspond to the
superconducting state of the transistor. When the driving current is increased above the
switching current Is , the voltage across the  transistor suddenly increases. The value of the
switching current is modulated by the gate voltage (see Fig. 7).
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16 Introduction I.

As we explained in the beginning of this introduction, the quantum character of the transistor

lies in the variable p indexing the number of Cooper pairs in the island and its conjugate

variable, the phase θ of the superconducting condensate in the island (Fig. 5a). These

variables obey an Heisenberg uncertainty relation of the type δθ δ. > 1p ~  [7]. When U is tuned

to its maximum by adjusting the gate voltage, the electrostatic energy cost of changing p is

significant and this nearly suppresses quantum fluctuations of p. Of course, at the same time,

θ is completely undetermined quantum-mechanically. In this situation the bands of the

transistor are narrow, and the maximum supercurrent is weak. On the contrary, when U = 0, p

fluctuates between the two values corresponding to the lowest electrostatic energy level : δp =

1 and δθ is reduced. In this situation, the state of the transistor has no classical description : it

is in a coherent superposition of states. The width of the bands are now maximum and the

critical current of the transistor is also maximum. Thus, from the point of view of p and θ, the

gate voltage controls the “squeezing” of the fluctuations of p. The larger the squeezing, the

smaller the critical current of the device.

The behaviour of the transistor is shown in Fig. 7 where we plot the variations of the maximal

experimental supercurrent (hereafter called the switching current) of one of the samples we

have fabricated, as a function of the gate charge. This switching current is compared with the

maximum supercurrent given by the theory (see Fig. 7). Our results shown in Fig. 7 constitute

the first observation of the modulation predicted by Likharev who first discussed the set-up of

the transistor nearly a decade ago [8]. During a long time experiments could not confirm these

predictions [9,10,11]. There were indeed reasons to suspect that some fundamental problems

could prevent the observation of these predictions. One can think of two types of problems :

i) The first type of problems concerns the possibility of defects in the superconducting order.

In the description of the transistor we have presented, we have made a crucial assumption

which was not correctly justified : we implicitly invoked the BCS theory of superconductivity

[12] to assume that the electrons in the island were all paired (and therefore, in even number)

at low temperature. The BCS theory of superconductivity is known to be rigorous in the

thermodynamic limit of a large system. In small islands such as that of the transistor, one

cannot predict what will be the influence of disorder, impurities, boundaries etc. on the states

of the superconducting system : there might be available states of any parity at any energy in

the island. Furthermore, even if one follows the BCS theory literally (i.e. assuming the validity

of the thermodynamic limit in a finite non-ideal system), there are excited states of the

superconductor in which the electrons are not all paired, i.e. with an odd electron number in

the island. Considering these excited states, Matveev et al. [13] showed that when the

charging energy EC is greater than the gap of the superconductor in the island, the state of

maximum quantum superposition in the island of the transistor is metastable and may well be

unobservable in practice. Finally, even if we suppose that the lowest energy states of the

island are really those of even parity, is it possible practically to place and keep the system in
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Fig. 7. Low temperature switching current (dots) and the critical current of a transistor (top
curve, no fitting parameters), as a function of the gate charge Qg = CgVg  for sample #13. The
critical current which is the theoretical maximal supercurrent would correspond to the
switching current at T=0. The data we have obtained in our experiments are the first to
reproduce faithfully the variations of the critical current. Moreover, for this particular
sample, the difference between the experimental data and the maximum achievable
supercurrent is unprecedentedly small for an unshunted small junction system. This close
agreement was obtained by implementing a specially designed electromagnetic environment
for the transistor. The remaining difference is explained by a hot-electron effect : the
experimental data is in good agreement with a calculation of the switching current where the
temperature of the electromagnetic environment is taken to be 50 mK (dashes). The heating of
electrons in this sample results of Joule effect in a resistance in series with the transistor. See
Chap. V & VI for further details.

these states? In other words, won’t external perturbations unavoidably disturb the system in a

real experiment?

ii) The second type of problem is related to the electromagnetic environment of the transistor.

The effect of the dissipation on the macroscopic quantum coherence of charge states is

analysed in Ref. 5, where it is shown to be hardly observable for usual circuits. However, the

description of the transistor we have made appeals to the notion of Josephson coupling. This

notion is known to be perfectly valid for a large-area superconducting tunnel junction where

the capacitance is such that EC << EJ : the capacitance of the junction shunts the
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18 Introduction I.

electromagnetic environment of the junction which is then irrelevant (the impedance of the

environment can be taken equal to zero). On the contrary, for small junctions, one cannot a

priori disregard the role of the environment and the theory of Josephson coupling must be

reexamined. Another important issue is the way the experimentally measured quantity is

related to the prediction concerning the critical current of the transistor : The critical current

only sets an upper limit for the intensity of the supercurrent flowing through the transistor. In

systems of large junctions it is known that the environment has an influence on the

experimental critical current : when dissipation is increased, one observes a transition from

the regime of macroscopic quantum tunneling of the phase to the classical regime of thermal

activation over a barrier [3]. How does the environment influence the effective maximum

supercurrent in a small-junction system? What is the “best” environment to perform the

experiment if one wishes the largest possible supercurrent?

In this work, we address all these problems both theoretically and experimentally, and we

bring answers to most of the above questions.

Finally, in this work we will also show that the transistor is more than just a switch for the

supercurrent (i.e. at V = 0) : its quantum character yields a rich behaviour at finite voltage as

well. For example, we will demonstrate the existence of a hierarchy of “resonant Cooper pair

tunneling” processes which has been predicted [14,15] and whose first order has recently been

observed by Haviland et al. [16]. We will also show evidences for Zener tunneling between

the two lowest bands of the transistor. These quantum effects must be separated from the

more classical Shapiro steps which we have also observed, both with external irradiation, and

without (self-induced Shapiro steps).

Organisation of this work

In Chap. II we describe the quantum mechanics of a tunnel junction in an electromagnetic
environment treated as a perturbation. For a superconducting tunnel junction we find that the
electromagnetic environment renormalizes the Ambegaokar-Baratoff [17] value of the
Josephson coupling energy.

In Chap. III we develop a model of the transistor based on the Josephson Hamiltonian. We
first justify the use of the Josephson Hamiltonian by a microscopic analysis of charge transfer
in the transistor. Then, using a phase representation of the Hamiltonian of the transistor, and
keeping only a finite number of charge states of the island, we show that it behaves as a
tunable Josephson junction. We derive the gate-voltage dependence of the critical current
using a simple two-band model which we extend and compare to a three-band model. We then
describe rapidly the principle of the “poisoning” of the supercurrent by quasiparticles. Finally
further extend our theoretical description of the transistor by presenting an analytic calculation
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I. Introduction 19

of the "resonant Cooper pair tunneling" current which is responsible for the gate voltage
dependent resonances appearing in the current-voltage characteristic of the transistor.

In Chap. IV we introduce the notion of the generalised current-voltage characteristic of a
Josephson junction to explain the relationship between the critical current and the
experimentally measured switching current of small-area Josephson junctions. Our main result
is the understanding of the crucial role of the dissipation on the magnitude of the switching
current of small unshunted junctions.

Our experimental techniques are described in Chap. V. We focus in particular on the
fabrication of the samples and on the experimental set-up.

In Chap. VI we present our experimental results. We first give an overview of the current-
voltage characteristic of the transistor. We then discuss the following effects concerning the
switching current :

• Effect of the dissipation on the magnitude of the supercurrent,
• Effect of charge noise on the switching current histograms,
• Poisoning of the supercurrent by quasiparticles.

These effects can be quantitatively accounted for by the theory developed in Chap. II, III and
IV. We finally describe effects observed in the current-voltage characteristic at finite voltage :

• Resonant Cooper pair tunneling,
• AC Josephson effect under irradiation and self-induced AC Josephson effect,
• Zener tunneling between bands of the transistor.

Our results on the first effect agree semi-quantitatively with theory. We give a qualitative
explanation of the last two effects.

In the conclusion, we summarize the results obtained, we draw the scope of this work and we
point out possible future directions.

The thesis includes two appendices :
Appendix A consists of a reprint of a paper on the poisoning of the supercurrent (Phys. Rev.
Lett., 72, 2458 (1994)).
Appendix B presents a table of parameters and miscellaneous information on the samples
involved in the experiments.
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II.A.1 Electrons in metals 21

II. QUANTUM MECHANICS OF A TUNNEL
JUNCTION IN AN ELECTROMAGNETIC

ENVIRONMENT

A. Quantum description of circuits

1. Electrons in metals

The problem of electrons in a metal is an N-body problem which cannot be solved exactly.

Fortunately, we do not need to know the exact structure of the electronic states of the metal to

model its macroscopic dynamics. All we need to know are the excitations of the system above

the ground state. The typical energies we will consider are the energy of thermal fluctuations

kBT, potential energies eV associated with voltage drops V, electrostatic energies EC… All

these energies will be much less than the Fermi energy EF which in metals is of the order of the

electron-volt. For such low energies, the excitations are well separated into two kinds (see Fig.

1) :

i) Long wavelength collective excitations of electromagnetic nature such as surface charge, and

the associated currents. These excitations propagate at the speed of light.

ii) Short wavelength collective excitations inside the metal with k ≈ kF which are of kinetic

nature. They are the electronic part of what electrical engineers call heat. These kinetic

excitations can be described by the Fermi-liquid theory developed by Landau [1]. He

showed that in the vicinity of the Fermi surface these kinetic excitations can be put in

correspondence with those of a system of free fermionic particles hence their name :

“quasiparticles”. Because of the screening of charge in a metal, these quasiparticles have no

electrostatic charge in the usual sense. There is no long range electric field which is

associated with a quasiparticle, and this is consistent with the fact that quasiparticles behave

like free fermions. The quasiparticles propagate at the Fermi velocity vF = hkF/m* where m*

is the effective mass of the quasiparticles. This velocity is typically 106 ms-1.

In most circumstances the long wavelength excitations can be ignored and one can treat

currents by assigning a charge -e to electron-like quasiparticles. In this work we must go

beyond this simple scheme.

The separation of excitations described here breaks down when one dimension of the metallic

circuit becomes comparable to the screening length, which is of the order of the inter-atomic

distance, or at high energies. We will stay away from these limits in this discussion.
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22 The Tunnel Junction and its Environment II.A.2

surface plasmon
bulk plasmon

static
charge c

static
charge

ωp

 ∼10
15

Hz

frequency
ω

EC/h
~10

10
Hz

velocity c velocity vF

kF

electromagnetic excitations

R S| | | T| | |

quasiparticle excitations
R S| | | T| | |

wave vector
k

su
rfa

ce
pl

as
m

on
s

quasi-electronquasi-hole

vF
vF

bulk
plasmons

Fig. 1. Schematic representation of the excitations of a metallic wire (top panel), and their
frequencies as a function of the wave vector of the excitation (bottom panel). The lattice of
ions is represented by the network of + symbols and the electronic fluid by the grey shade.
The variations of the density of the electronic fluid are represented by the darkness of the
grey shade. Short wave-vector excitations are separated into two types. The first type which
we call “surface plasmons” corresponds to the usual currents and charges in the wire; they
propagate at the velocity of light. The static charge is a degenerate k = 0 surface plasmon.
The second type consists of bulk plasmons which are much higher in energy : they are not
relevant for the energies we consider. Excitations with wave vectors of the order of kF are
Landau's quasiparticles of the Fermi liquid theory. They are microscopic uncharged
excitations of the metal which propagate at the Fermi velocity.

2. Quantum state of a metallic electrode and of an electrical circuit

The above considerations lead us to describe an excitation state of a metallic electrode by a ket

|em〉|qp〉 in the Hilbert space Emetal =  Eem ⊗ Eqp, where Eem is the Hilbert space for all the

electromagnetic degrees of freedom, and Eqp the space of quasiparticle states which is usually

the only one considered in the theory of electric transport.
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II.A.3 Quantum mechanics of electromagnetic degrees of freedom in a circuit 23

In the case of an electrical circuit, the total Hilbert space is also a tensorial product

E E Ecircuit em
circ

qp
circ= ⊗ . In this case, E E Eqp

circ
qp qp

N= ⊗ ⊗1
K  is itself the tensorial product of the

quasiparticle Hilbert spaces for the various elements of the circuit. On the contrary, Eem
circ

cannot generally be divided in the same way because different parts of the circuit can interact

via electromagnetic fields. It will rather be separated into spaces corresponding to the different

modes of the fields.

3. Quantum mechanics of electromagnetic degrees of freedom in a
circuit

In this section we explain how to form a Hamiltonian operator in the space Eem
circ . We suppose

that the circuit is a network of non-dissipative discrete dipoles. This is not a restriction since

any linear element, dissipative or not, (e.g. a resistor, a transmission line) can be modelled by a

network of infinitesimal discrete elements (see Ref. 2 and Sec. B.1.a).

Let us first describe the circuit using the classical Hamiltonian formalism. Currents (i) and

voltages (v) are not adapted for this formalism. In a given branch of the circuit, we rather

define

Q t i t t
t

( ) ( )= ′ ′
−∞z d ,

the charge having flown through the branch and the generalized flux

Φ( ) ( )t v t t
t

= ′ ′
−∞z d .

We then write the electromagnetic energy E(Q,Φ) in the branch as a function of Q and/or Φ
(e.g. E = Q²/2C or E = Φ²/2L for a capacitor or an inductor, respectively). Then we sum up the

energies of the N branches of the circuit

E E Qtot i i i
i

= ,Φb g
=
∑

1

N

.

This is not yet a classical Hamiltonian because the variables Qi, Φi are not independent. To

obtain a Hamiltonian, we further need to eliminate some variables by making use of the

Kirchhoff's relations obeyed by the Q's and Φ's. These relations include constants which

correspond to initial conditions of the variables. The number of such independent relations will

determine the final number of variables in the Hamiltonian. The elimination procedure is not

unique. Depending on the elimination procedure, we will obtain different Hamiltonians

H({ Qk} ,{ Φk}) depending on different sets of variables. These Hamiltonians are related to one

another by a canonical transformation. For a given choice of the Hamiltonian H, among the 2R

remaining variables, the variables Qk and Φk pertaining to a particular branch are canonically

conjugate variables :
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24 The Tunnel Junction and its Environment II.B.

& & , ,Φk
k

k
k

H

Q
Q

H
k= = − ∈∂

∂
∂

∂Φ
1K Rl q .

The above Hamilton equations reproduce the standard electrical equations of the circuit for the

usual orientation convention of dipoles

 i
AB

v V VA B= −

With this convention, flux is a position-like quantity and charge is momentum-like.

At this point, the quantization procedure is straightforward. Variables become operators

Q Qi i

i i

→

→

$

$Φ Φ

and canonical conjugate operators obey the commutation relation

$ , $Φ i iQ i= h .

Since from now on we will be dealing only with the operators $ , $Φ i iQ  we will drop the

circumflex mark on these operators. It is sometimes more convenient to use the equivalent

dimensionless operators obtained by introducing the fundamental constants e and e/h :

k = Q/e             ϕ = eΦ/h,

which are the operators corresponding to the number of transferred electrons and the phase

across the element. It is very important to stress here that the spectrum of k (and Q) is a priori

continuous. This is because the electrons form a fluid in the conductors and it is possible to

displace this fluid by an arbitrarily small amount.

B. Tunneling of electrons

We now come to the description of an essential ingredient of our experiments : the tunnel

junction. As already explained, a tunnel junction consists of two metallic electrodes separated

by a thin insulating layer. In such a junction, what tunnels through the barrier are real charged

electrons, not quasiparticles. The reason for this is that the charge of the tunneling electrons

cannot be screened inside of the insulator. A tunnel process can be seen as follows : a

quasielectron incident on the barrier undresses itself of its positive screening cloud as it

penetrates the barrier, and dresses up again in the other electrode. Since a charge -e is

transferred in the process, tunneling couples quasiparticle and electromagnetic degrees of

freedom. It is essential that the Hamiltonian used to describe the junction and its
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II.B.1 Description of the junction + environment system 25

electromagnetic environment correctly treats this coupling in order to reach a consistent

description of our circuits.

1. Description of the junction + environment system

We consider here a single junction in an arbitrary linear electromagnetic environment. This

environment can contain other junctions which we will treat here as capacitors (this

corresponds to neglecting the possibility of simultaneous tunneling events [3]). Let us first

define the general form of the electromagnetic environment of the junction.

a) GENERAL ELECTROMAGNETIC ENVIRONMENT FOR A TUNNEL JUNCTION

In great generality we can assume that the junction is biased by several ideal voltage and/or

current sources through a linear circuit (Fig. 2 a). Using Thévenin's theorem (Fig. 2 b), this

junction environment can be reduced to an ideal voltage source Vs  in series with an impedance

Zs(ω). We then separate the junction's capacitive and tunnel functions because the junction's

capacitance participates in the electromagnetic environment : the junction is decomposed as the

parallel combination of a “pure tunnel element” and a capacitor of capacitance C. The circuit is

equivalent (Fig. 2 c) to a pure tunnel element in series with an effective impedance

Z
Z

j CZ
s

s

( )
( )

( )
ω

ω
ω ω

=
+1

and a voltage source

V
C V

C C
s s

s

=
+

where

C j Zs s= F
H

I
K→

−
lim ( )
ω

ω ω
0

1

is the series capacitance of Zs(ω) which is possibly infinite (so-called low impedance

environment case in Refs. 4,5,6).
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26 The Tunnel Junction and its Environment II.B.1

Vs Zs(ω)

C

V1I1

Linear
Black Box

V Z(ω)

Cm

Lm

C0 C1 C2

L1 L2

a) b) c)

d)

Fig. 2. a) A tunnel junction in an arbitrary linear environment, biased by multiple current
and/or voltage sources. b) From Thévenin's theorem the environment is equivalent to a
voltage source Vs in series with an impedance Zs. The junction is formally split into the
parallel combination of a capacitor C and a “pure tunnel element” represented by the double
T symbol. c) The electromagnetic environment of the pure tunnel element is equivalent to an
impedance Z (equal to the capacitance of the junction in parallel with Zs) in series with a
renormalized voltage source V. d) Finally, the impedance seen by the pure tunnel element is
decomposed into an infinite number of LC oscillators, and the voltage source is treated as a
precharging of the capacitor C0.

Finally, we use the fact that an arbitrary impedance can be decomposed as an infinite set of LC

oscillators evenly distributed in frequency [2] (Fig. 2 d). The parameters of the oscillators are

given by the capacitances Cm (m = 0,1,…,∞) and inductances Lm (m = 1,2…,∞) formally

defined by the relations

Z
C

j

C

j

C

j

m
L C

m

m

m

mm

m
m m

( ) lim limω
ω ω ω η ω ω η

ω ε

η ε
= +

− +
+

+ +
L

N
M
M

O

Q
P
P

R
S
|

T|

U
V
|

W|

= =

→ →

− − −

=

∞

+ ∑
0 0

0
1 1

2
1 1

2
1

1

1

b g b g

The real part of the impedance then appears as the spectral density of the set of oscillators :
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II.B.2 Description of tunneling 27

Re ( ) limZ Zm m m
m

ω π ω δ ω ω
ε

= −
F

HG
I

KJ→ =

∞

∑2 0 1

b g (1)

where Z L Cm m m=  is the mode impedance.

In this decomposition of the impedance, the series capacitance C0 of Z(ω)1

C j Z C Cs0
0

1

= F
H

I
K = +

→

−
lim ( )
ω

ω ω ,

corresponding to the zero-frequency mode is singled out and it will play a particular role

hereafter.

The voltage source V is easily incorporated in this description of the environment of the

junction. It is modelled by an infinitely large capacitor C with an infinitely large charge Q such

that V = Q/C. This capacitor C is connected in series with C0 so it is equivalent to having only

C0 (which is possibly infinite too) charged up to

Q0 = C0V+Q*, (2)

where Q*  is an initial condition constant.

2. Description of tunneling

We now turn to the description of tunneling through the pure tunnel element that we have

introduced in the previous section. We introduce the flux ΦT and the charge QT of the tunnel

element :

ΦT

QT
left

electrode
right

electrode

Electrons tunneling through the barrier will be handled in a perturbative approach. The idea is

that if the two sides of the junction were far away, the appropriate Hamiltonian for the

quasiparticle part of the system would simply be the sum of the Hamiltonians Hqp
L  and Hqp

R

describing the excitation states of the left and right electrode respectively

H H H

H a a H b b

qp
tot

qp
L

qp
R

qp
L

qp
R

r r r
r

= +

= =∑ ∑ ′ ′
′

ε εσ σ
σ

σ σ
σ

l l l

l

†

,

†

,

                                               
1 This capacitance is often noted CΣ in the literature. We prefer to use here C0 for coherence of notation.
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28 The Tunnel Junction and its Environment II.B.2

The operators a a
l lσ σ
† and  (b br r′ ′σ σ

† and ) are the creation and annihilation operators for

quasiparticles of spin σ in the eigenstate l (spin σ ' and eigenstate r) of the unperturbed

Hamiltonian HL (HR, respectively).

When electrons are allowed to tunnel between the two electrodes, we simply add a coupling

operator of the form [4]

HT
i

r r
r

T T a b h c= +∑e ϕ
σ σ

σ
l l

l

†

, ,

. .

where l and r are used to index states to the left and right side of the barrier, σ is the spin

index, and ϕT is the phase across the tunnel element. This coupling operator is called the

“tunneling Hamiltonian”2. This Hamiltonian couples states of the system differing by one

electron transferred through the barrier. For example, acting on a given state of the system, the

a brlσ σ
†  term destroys a quasiparticle on the left side and creates a new one on the right side.

We suppose that the factor T
lr which measures the strength of the coupling is independent of

spin (no magnetic impurities in the barrier). The eiϕT factor is an operator that shifts QT by e,

implementing the transfer of the charge -e of the electron. From the commutation relation

between the tunnel element's electromagnetic operators QT and ϕT we have

e e− = +i
T

i
T

T TQ Q eϕ ϕ .

We see here how the tunneling Hamiltonian couples electromagnetic and quasiparticles degrees

of freedom.

In principle the T
lr can be calculated from the knowledge of the wavefunctions on both sides

of the junctions and of the barrier geometry. In practice, we cannot and we do not want to

reach such a microscopic description of our systems. We rather try to describe our systems

using a few macroscopic phenomenological parameters. We will see that such a macroscopic

description is possible for our tunnel junctions : all we need to know is a single

phenomenological parameter which is proportional to the second moment of the T
lr

distribution versus energy. Thus, contrarily to what one would think at first glance, our

predictive power is not reduced to zero by this lack of microscopic knowledge.

a) DOMAIN OF VALIDITY , APPROXIMATIONS

The description of tunneling adopted here is based on the hypothesis that the states in the left

and right electrode are not affected by the coupling term. This is evidently a limit of very weak

                                               
2 This denomination can be misleading because, as we explained in sec. A.3, a Hamiltonian can only be written

for the total system (junction + environment). By analogy with the classical description given in sec. A.3, we

would rather call the coupling operator a (non-diagonal) energy operator. The coupling operator really becomes

"a Hamiltonian" (i.e. part of the total Hamiltonian) after the elimination of superfluous variables in the total

energy of the system has been performed.
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II.B.3 Hamiltonians for the electromagnetic environment + tunnel junction system 29

Φ0

Φn
C

Qn
C

Qn
L

Φn
L

ΦT

QT

Φ1
C

Q1
C

Q1
L

Φ1
L

Q0

Fig. 3. Convention of orientation used for the charges and fluxes.

coupling. This weak coupling hypothesis allows the use of the Fermi golden rule to evaluate

transitions induced by HT. This approach is well suited for our junctions but it would not be

applicable to barriers of even moderate transparency.

3. Hamiltonians for the electromagnetic environment + tunnel junction
system

Following the prescriptions we gave in §A.3 we write the total energy operator of the junction

+ environment system as a function of the fluxes and charges of all the branches

E
Q

C

Q

C L
H

m
C

m

m
L

mm
T qp

tot= + + + +
=

∞

∑0
2

0

2 2

12 2 2

e j e jΦ
H

where the QC's refer to charges of the capacitor branches and ΦL's to fluxes of the inductor

branches of the oscillators. We will transform this energy into an Hamiltonian H for the system

by eliminating superfluous variables.

a) KIRCHHOFF'S LAWS

For the orientations specified by Fig. 3, Kirchhoff's laws yield
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30 The Tunnel Junction and its Environment II.B.3

Q t Q t Q t m

Q t Q t Q

t t m

t t t Constant

T m
C

m
L

T

m
C

m
L

T m
L

m

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

= − − ∀

= − +

= ∀

= + +
=

∞

∑

0 0

0
1

0

Φ Φ

Φ Φ Φ

(3)

where ΦT and QT refer to the tunnel element and Φ0 and Q0 refer to the source C0. We have

supposed that at t = 0, when the source is connected, the oscillators were not excited. The

initial value Q0(0) of the charge Q0 of the source capacitor is fixed by Eq. (2).

b) FIRST FORM OF THE HAMILTONIAN

By using the third and fourth Kirchhoff equation we can write the Hamiltonian of the system as

H = Hem + HT + Hqp

where

H
Q

C

Q

C L

H T a b h c

em
m
C

m

m
C

mm

T
i

r r
r

= + +

= +
=

∞

∑

∑

0
2

0

2 2

12 2 2

d i d iΦ

e ϕ
σ σ

σ
l l

l

†

, ,

. .

Note that according to the fourth Kirchhoff equation, the phase ϕT  = eΦT /h in the tunneling

Hamiltonian has been replaced by the operator

ϕ ϕ=
=

∞

∑ n
n 0

where the ϕn n
Ce= Φ h are the phases across the capacitors, conjugate to the charges Qn

C. We

see that with this choice, only the quantities pertaining to the capacitors are left, those relative

to the inductors and the tunnel element have been eliminated. The Hamiltonian Hem is that of

harmonic oscillators, plus a quadratic term in Q0. With this writing of the Hamiltonian, an

eigenstate of the environment is specified by giving the occupation numbers Nm of the

oscillators and Q0. An eigenvector of the environment will be noted

|ψenv〉 = |Q0〉|N1,N2,…,Nm,…〉

It is sometimes practical to use the bosonic creation and annihilation operators c cn n
† and  of the

harmonic oscillators. They are given by

1

2

1

2

2
2

c c
r

i
c c r k

n n
n

n

n n n n

+ =

− =

†

†

d i

d i

ϕ
(4a)
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II.B.3 Hamiltonians for the electromagnetic environment + tunnel junction system 31

where

r
Z

R

Z
L

C

n
n

K

n
n

n

=

=

π
,

(4b)

and where RK = h/e
2 is the quantum of resistance. Using these operators, the Hamiltonian of

the environment can be written

H
Q

C
hem n

n

= +
=

∞

∑0
2

0 12

where

h N

N c c

L C

n n n

n n n

n n n

= +

=

=

hω

ω

1
2

1

c h,

.

† , (4c)

c) OTHER CHOICE OF VARIABLES FOR THE HAMILTONIAN

To illustrate the fact that the expression of the Hamiltonian is not unique, let us indicate

another simple and interesting choice of variables. Elimination is now performed using the first

and second lines of the Kirchhoff laws (3). We obtain

H = Hem + HT + Hqp

where

H
Q Q

C

Q Q

C L

H T a b h c

em
T T m

L

m

m
L

mm

T
i

r r
r

T

=
−

+
−

+

= +
=

∞

∑

∑

0
2

0

2 2

1

0

2 2 2

( )

. .†

, ,

b g d i d iΦ

e ϕ
σ σ

σ
l l

l

Here, along with the operators QT and ϕT of the tunnel element, only the quantities pertaining

to the inductors are left. The Hamiltonian Hem is that of harmonic oscillators shifted by QT,

plus a quadratic term in QT -Q0(0). An eigenstate of the environment would still be given by a

ket of the same form as in the previous section

|ψenv〉 = |QT〉|N1,N2,…,Nm,…〉

but the charge factor now has a different meaning.

If the squares are expanded in the latter Hamiltonian Hem, one obtains after factorisation of

linear and quadratic terms in QT
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32 The Tunnel Junction and its Environment II.B.4

H
Q

C

Q

C L
Q

Q

C

Q

C
Q

Cem
m
L

m

m
L

mm
T

m
L

mm
T

mm

= + +
L

N

M
M
M

O

Q

P
P
P

− +
L

N
M
M

O

Q
P
P

+
=

∞

=

∞

=

∞

∑ ∑ ∑0
2

0

2 2

1

0

0 1

2

0

0

2 2 2

0 1

2

( ) ( )d i d iΦ

Besides the constant Q0(0)2/2C0, we recognise the Hamiltonian of the oscillators, a term of the

form -QTU (where U is a voltage) and an effective charging energy. The voltage U can be

decomposed as U = V0 + U, the sum of the static voltage V0 = Q0(0)/C0 and the fluctuating

total voltage across the oscillators U Q Cn
L

nn= ∑ =
∞ 21 . The effective charging energy itself can

be re-interpreted as the bare charging energy of the junction, owing to the relation :

1 1 1 1 2 1

0 0 1 0 0C C C C
Z

Cmm mm=

∞

=

∞ ∞
∑ ∑= + = + =zπ

ω ωd Re ( )

where C is the capacitance of the sole junction. Thus, dropping the constant, we rewrite

H h Q
Q

Cem n
n

T
T= − +

=

∞

∑
1

2

2
U .

In this formulation, the coupling of the oscillators to the quasiparticles is due to two terms of

the total Hamiltonian : HT and QTU.

4. Tunneling rate, tunnel resistance of a junction

To illustrate the above considerations, we will now derive the tunneling rate of electrons

through a junction in an arbitrary linear electromagnetic environment. As previously, if the

circuit contains other tunnel junctions, we treat them as capacitors. Thus, our calculation will

fail to describe tunnel events occurring simultaneously on several junctions3. The tunneling rate

is then used to compute the I-V characteristic of a normal-metal junction.

a) CALCULATION OF THE TUNNELING RATE

We will use here the second form of the Hamiltonian given in Sec. 3.c above, where we keep

the variables ϕT and QT of the tunnel element as independent degrees of freedom. A state of

the total system writes

Ψ =

=

em qp qp

Q N N N n n

L R

T m p
L

q
R

1 2, , , , , , , ,K K K K K K

where nL,R∈{0,1} are the occupation numbers of the quasiparticle states in the left and right

electrode.

The rate of electron transfer through the junction is given by Fermi's golden rule

                                               
3  These events involve higher orders of the tunneling Hamiltonians and they can be neglected for our purpose.
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II.B.4 Tunneling rate, tunnel resistance of a junction 33

Γi f T f if H i E E→ = −2 2π δ
h

d i

where |i〉 and |f〉 are the initial and final state of the system and where Ei,f are the total energies

(electromagnetic plus quasiparticle) of the initial and final states. Using the decomposition of

the states |i〉,|f〉 into electromagnetic and quasiparticle degrees of freedom we write

f H i f i f T i f i f T iT em
i

em qp qp em
i

em qp qp
T T= + −e eϕ ϕ †

where the operator

T T a br r
r

= ∑ l l

l

σ σ
σ

†

, ,

acts only on the quasiparticle space.

Let us now compute the rate for an electron going from the left electrode to the right

electrode. The T † term does not contribute since it transfers in the wrong direction. The total

rate is obtained by summing over all the possible initial and final states
r

h
Γ = × + − −∑2 2 2π δϕf i f T i E E E Eem

i
em qp qp

i f
i
em

i
qp

f
em

f
qpTe

,
e j

As already mentioned, eiϕT shifts QT by e, thus QTf must equal QTi+e for the rate not to vanish.

At zero temperature the oscillators are in their ground state. In the case of experiments with

nanojunctions the usual electromagnetic environments are such that the dominant 〈fem|eiϕT|iem〉
term is the one where all the oscillators remain in the ground state4. In this simple case we can

calculate

∆E E E
e C V Q Q

C

e

C
em

f
em

i
em i

= − = −
+ −

+
0

0

2

02

*d i

which simply reduces to ∆Eem = -eV when C0 = ∞.

The factor involving T can be rewritten using the Fermi functions fL,R giving the occupancy of

the energy levels as a function of the temperature

f T i T f fqp qp r
r

L R r

2 2
1= −∑ l

l

l

, ,

( ) ( )
σ

ε εb g

thus,

                                               
4 The case of arbitrary impedance and temperature can also be treated exactly.  See for instance Ref. 5. The

result is that the tunneling rate can be expressed as

r

Γ ∆= − ′ − ′ − ′zz
1

12e R
f f P E

T
R L

em( ) ( ) ( )ε ε ε ε ε εb g d d

where P(E) is the probability of transfering the energy E to the electromagnetic environment. The function P(E)

can be calculated from the impedance and the temperature.
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34 The Tunnel Junction and its Environment II.B.4

r

h
l

l

l l
Γ ∆= − − −∑2

1
2π ε ε δ ε ε

σ
T f f Er

r
L R r r

em

, ,

( ) ( ) ( )b g

This summation will be dominated by a small fraction of T
lr terms, those corresponding to

pairs of quasiparticle states on both sides which have a strong overlap under the barrier. To go

further we replace the distribution |T
lr|2 by its average value |T|2 which we suppose

independent of energy5 and we integrate over the energy levels:

r

h

h

h

Γ ∆

∆ ∆

∆

∆

= ′ − ′ − ′ − ′

= + + −

= + −

= + −

zz

z

z

z

2
1

2
1

2
1

1
1

2

2

2 0 0

2

π ρ ε ρ ε ε ε δ ε ε ε ε

π ρ ε ρ ε ε ε ε

π ρ ρ ε ε ε

ε ε ε

T g f f E

T g E f E f

T g f E f

e R
f E f

L R L R
em

L
em

R L
em

R

L R
em

T

em

a f a f b g

d i a f d ib g

d ia f

d ia f

( ) ( ) ( )

( )

( )

( )

d d

d

d

d

where the ρ are the quasiparticle density of states on each side, not including spin degeneracy

and g = 2 is a factor accounting for the spin 1/2 of the electrons. To write the third expression

we have replaced the densities of states by the densities ρ0 at the Fermi level. In the last

expression we have introduced the so-called tunnel resistance of the junction

R
R

T g
T

K

L R

=
4 2 2 0 0π ρ ρ

(5)

where RK = h/e² is the quantum of resistance. The name of “tunnel resistance” is justified

below.

b) VOLTAGE BIASED JUNCTION, TUNNEL RESISTANCE.

When the environment impedance has no series capacitor (C0 = ∞) a current can flow through

the junction in response to the applied voltage V:

I e
eR

f eV f
T

= − − = − −z( ) ( )
s r

Γ Γd i a fb g
1 ε ε εd

The remaining integral involving Fermi functions on the right hand side gives eV, independently
of the temperature. Thus we recover an “ohmic” law

I
V

RT

=

for the normal tunnel junction, hence the name of “tunnel resistance” given to RT. One should

be cautious, however, that charge transport in a tunnel junction is different from that in a

resistor, yielding in particular a different noise spectrum [8]. Also, it should be remembered

                                               
5 This replacement corresponds to making the assumption of instantaneous tunneling [7].
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II.C.1 Tunnel coupling between two superconducting electrodes 35

that RT was defined from averaged quantities. Thus, in sufficiently small systems, deviations

from the ohmic law can appear, revealing microscopic details of the barrier. Our junctions

however are very well described by this ohmic law.

As announced previously, we do not need to bother about the specific matrix elements of the

tunnel Hamiltonian : we have obtained a single, easy to measure, macroscopic

phenomenological parameter which correctly describes the junction for our purposes. This will

remain valid even when the junction becomes superconducting, as we shall see later.

c) LINK WITH THE LANDAUER FORMULA

The latter result can be related to the similar one given by the Landauer formula, using the

somewhat different language of scattering. This formula expresses the conductance of the

junction in terms of transmission probability of incident wave packets [9]

G
e

h
gT n

n

=
=

∑
2

1

T

N

where N is the number of incident channels on the junction and Tn is the transmission of the nth

channel. Defining T = ΣTn /N , the average transmission per channel, and identifying GT =1/RT,

we obtain

N T = 4 2 2 0 0π ρ ρT L R

which links the average transmission coefficient to the average matrix element of T.

C.  Josephson coupling

1. Tunnel coupling between two superconducting electrodes

When the two electrodes of a tunnel junction are in their superconducting ground state, the

electrons form Cooper pairs, and there are no quasiparticles. This situation prevails at very low

temperature and at voltages lower than 2∆/e where ∆ is the superconducting gap (we assume

that the electrodes are made from the same metal. The general case would not be much more

complicated). The tunneling Hamiltonian which in the normal state coupled states of the

system at the first order in perturbation theory, can now only couple states at higher orders

since creation of quasiparticle is not energetically allowed. We want to evaluate the coupling

induced by the tunneling Hamiltonian between two generic states |Α〉 and |B〉 of the

junction + environment system, limiting ourselves to the second order in HT. We thus have to

evaluate the sum over all intermediate states |i〉
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36 The Tunnel Junction and its Environment II.C.1

W B H i
E E

i H AAB T
i

T
i A B

=
−≠

∑ 1

0,

(6)

where E0 = (EA+EB)/2. This expression [10] is valid as long as WAB remains much smaller than

the minimum value of the energy difference (E0-Ei). In other words EA and EB must always be

somewhat smaller than the smallest Ei which is twice the superconducting gap. Hence, this

calculation of the coupling will only be valid in a sub-space of states of low energy. In the

following, we will denote by P a projector onto this subspace. The projector can be formally

written

P
i

z

z H
=

−z
1

2 0π
d

C

,

where C is a contour in the complex plane which encloses the part of the real axis on which lie

the energies of the states we project onto, and H0 is the Hamiltonian of the system without the

perturbation (i. e. without the tunneling Hamiltonian).

In the remaining part of the chapter we will use the representation of the Hamiltonian of the

junction in its electromagnetic environment which was introduced in Sec. B.3.b., where we use

only the degrees of freedom of the capacitors. Similarly to what was done in the normal case,

we write the tunnel Hamiltonian as HT = Teiϕ+T †e-iϕ, where

ϕ ϕ

σ σ
σ

=

=
=

∞

∑

∑

n
n

r r
r

T T a b

0

l l

l

†

, ,

the ϕn being the phases of the capacitors of the environment.

Then for a given intermediate state |i〉 in the sum (6), we have:

B H i
E E

i H A

E E
B T i i T A B T i i T A

B T i i T A B T i i T A

T
i

T

i

i i i i

i i i i

1

1
0

0

−
=

−
+ +

+

e e e e

e e e e

- -

- -

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

{

}

† †

† †

The last two terms vanish unless |A〉 = |B〉 in which case they give a contribution to the

correction in energy of |A〉 due to the perturbation HT. On the contrary the first two terms can

only contribute when |A〉 ≠ |B〉 and they are responsible for the coupling. Each of these two

terms transfers a charge of 2e through the junction, but not in the same direction ; they are

complex-conjugated. We then write the energy denominator as a time integral :

1

0

0

0E E

E E t t

i

i

−
= − −

−L

N
M

O

Q
P

+∞

z exp
b g

h h

d
.
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II.C.2 Josephson's calculation 37

which permits to rewrite WAB as

W B H AAB J=

where

H
t

T T h cJ

Ht
i

Ht
i

Ht

= − +
−+∞

z
d

e e e e e
h

h h h2 2

0

ϕ ϕ . . (7a)

is called the Josephson Hamiltonian. As already mentioned, this expression of HJ is meaningful

only in a subspace of low energy states. This writing has the great advantage that it can be

factored into the contributions of the charge, oscillators and quasiparticles degrees of freedom.

To perform this factorisation we decompose the states of the system into charge (|Q0〉),
oscillator (|Ψ〉) and quasiparticle (|Ξ〉) part, and the Hamiltonian H0 into the corresponding

parts :

H H H H

H
Q

C

H
Q

C L

H H H

Q

Q

m
C

m

m
C

mm

qp
L

qp
R

0

0
2

0

2 2

1

2

2 2

= + +

=

= +

= +
=

∞

∑

Ψ Ξ

Ψ

Ξ

Φd i d i

The integrand of (7a) becomes a tensorial product

e e e e e e e e e e e e e
H t

i
H t

i
H t H t

i
H t

i
H t H t H t H tQ Q Q

T T2 2 2 2 2 20 0h h h h h h h h hϕ ϕ ϕ ϕ
− − −L

N

M
M

O

Q

P
P

⊗
L

N

M
M

O

Q

P
P

⊗
L

N

M
M

O

Q

P
P

Ψ Ψ Ψ Ξ Ξ Ξ
~ ~

(7b)

We have also decomposed the operator ϕ into ϕ0+~ϕ  which act on the zero-frequency and

finite-frequency modes (~ϕ ϕ= ∑ =
∞

nn 1 ) of the environment, respectively.

2. Josephson's calculation

We will first recover Josephson's results [11]. This calculation of the Josephson coupling

corresponds to the case where the environmental degrees of freedom (including charge) can be

neglected and when only the quasiparticles need to be considered. Furthermore, since we

couple states with no quasiparticles, there is no energy in the final and initial states. Thus we

can drop the exp(Ht/2h) terms, and only one matrix element needs to be calculated :

H
t

T T h cJ
i

Ht

= − +
−+∞

ze
d

e2

0

0 0 0 0ϕ
h

h . . (8)
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38 The Tunnel Junction and its Environment II.C.2

where |0〉 denotes the vacuum state for the quasiparticles. The vacuum state for the

quasiparticles is also referred to as the BCS ground state. Inserting the closure relation, the

integrand can be written

0 0T Ti

Ei t

i

i

Ξ Ξ
Ξ

e

−

∑ h . (9)

Let us first compute the matrix elements

0 0T Ti iΞ Ξ

These matrix elements correspond schematically to the process described in Fig. 4. In the

intermediate step we necessarily have created two excitations of the superconductors, one on

each side. These excited states are obtained by applying the Bogoliubov fermionic quasiparticle

operators on the vacuum of quasiparticles |0〉 [12]. We will note L = ( , )l l

(respectively,R = ( , )r r ) a pair of time-reversed electronic states in the left (resp. right)

electrode of the junction. In this notation, the index l (r) of the electronic state incorporates

initial state

Barrier

intermediate state final state
Energy

EF+∆

EF
R = r r,a fL = l l,c h

Fig. 4.  Schematic representation of the second order tunnel process responsible for the
Josephson coupling in a superconducting tunnel junction. This coupling between ground
states of the system results from the elastic transfer of two electrons across the junction. This
transfer can be decomposed into two steps, corresponding to the sequential transfer of two
electrons between two pairs of time reversed states L R= =( ) ( , ),l l and r r , with the overline
indicating the time-reversed state. In the diagram, ovals represent pairs of time-reversed
quasi-electron states. In the ovals, a full (open) dot symbolises an occupied (empty) quasi-
electron state. This representation corresponds to the projection of the BCS state on a state of
given total number of electrons in the system. The four possible states of the two pairs
involved in the process are drawn, their energy being indicated by their position on the
vertical axis. The actual state of a pair is indicated by the use of black colour, while the other
accessible states are dimmed. In this picture, the name of “Cooper pair” can only be given to
a full or empty oval, while the half-occupied ovals are called “quasiparticle excitations” or
broken Cooper pairs. In the first step of the transfer, a full pair breaks on the left side. One
electron of the pair crosses the barrier and fills an empty electronic state on the right side :
this breaks the empty pair on the right side. The resulting intermediate state has two
quasiparticle excitations of opposite spin, one on each side. In the second step, the second
electron crosses the barrier and recombines with its companion electron on the right side.
Both pairs return to the ground state upon completion of this second transfer.
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II.C.2 Josephson's calculation 39

both the indexing of the electronic trajectory and the electron spin and the overline indicates

time-reversal symmetry. The Bogoliubov quasiparticle creation and annihilation operators on

the left (resp., right) side for a quasiparticle in state p with energy εp are noted α αp p
† and

(respectively, β βp p
† and ). These operators are related to the ordinary quasiparticle operators

through the transformation

α

α

β

β

l l l

l l l

† †

† †

† †

† †

= −

= +

= −

= +

u a v a

u a v a

u b v b

u b v b

r r r

r r r

L L

L L

R R

R R

(10)

involving the BCS u and v coherence factors.

In the first step of the process, under the action of the term of HT containing b ar
†

l
 on |0〉, an

electron of the left side tunnels through the barrier. The intermediate state expressed in terms

of Bogoliubov operators is α β
l

† †
r 0  with an energy ε

L
+ε
R

. The projection of the state created

by b ar
†

l
 on this intermediate state yields v u

L R

∗ ∗  (we used anticommutation properties of the

fermionic operators a and b).

In the second step, the electron l  on the left crosses the barrier under the action of the

T b ar rl l,
†  term of HT and recombines with the previous one to give the final state (|0〉). The

action of b ar
†

l
 on the intermediate state yields v u

R L
0  (here again anticommutation rules

were used). Finally we project onto |0〉, and collecting all the factors, this process gives:

T T u v u v
T

r r
r

l l

l

, ,
,

L L R R

L R

∗ ∗ =
2 2

4

∆
ε ε

.

To obtain the last expression we have made use of the relation

u v u vp p p p
p

∗ ∗ ∗= =( )
∆

2ε

and of the time-reversal symmetry of HT.

We can now sum all the contributions to (9) coming from the different intermediate

quasiparticle states, including spin index, with their proper energy-time exponential

T tr

r

l

l

h,

, ,

2 2

4

∆
ε ε

ε ε

σ L R

L R∑ − +
e

b g
(11)

To go further, we replace the |T
l,r|² by their average value |T|² as in the case of the normal

metal junction. Summation over all states is replaced by integration over energy with the BCS

density of excited states

ρ ε ρ ε

ε
a f =

−
2 0 2 2∆

.

Here ρ0 is, as previously, the normal-metal density of states at the Fermi level, not including

spin degeneracy, and the factor of 2 is counting for the two branches of excitations. We can

rewrite (11) as:

te
l-0

05
34

35
8,

 v
er

si
on

 1
 - 

9 
N

ov
 2

01
0



40 The Tunnel Junction and its Environment II.C.3

∆
∆ ∆

∆

2
0
2 2

2 2 2 2
g T

t
ρ

ε ε ε ε

ε ε
ε ε

d d
L R L R

L R

L R

exp

,

− +

− −
≤ ≤∞
zz

b g h
,

where g = 2 is the spin degeneracy of the intermediate state. The double integral factors itself

and each factor yields K0(∆t/h), where K0 is the modified Bessel function of the second kind.

We finally get for the integrand of (8):

∆ ∆2
0
2 2

0
2g T K tρ ha f (12)

Thus, the Josephson Hamiltonian writes in this case

H g T
t

K t h cJ
i= − +

+∞

ze
d2

0
2 2

0
2

0

0 0ϕ ρ∆ ∆ ∆
h

ha f . .

The remaining integral yields π²/4. This result is usually written (forgetting the projector on the

vacuum of quasiparticles)

H
E

h c EJ
J i

J= − = −
2

2e + . . cos2ϕ ϕ

thereby defining the Josephson coupling energy EJ

E g TJ = π ρ
2

0
2 2

2
∆ . (13)

a) AMBEGAOKAR-BARATOFF RELATION

By making use of (5), we obtain an important relation linking EJ and RT, the tunnel resistance

of the junction defined in the normal-state :

E
h

e R
J

T

= ∆
8 2 . (14a)

This result is often expressed in a different way, using the current I0 = 2eEJ/h which, we will

see, is the critical current of the junction. The latter equation is then equivalent to

I
eRT

0 2
= π ∆

(14b)

which is known as the Ambegaokar-Baratoff relation [13].

3. Effect of an electromagnetic environment on the Josephson coupling

a) CHARGE CONTRIBUTION

We now evaluate the charge factor of the integrand (7b).
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II.C.3 Effect of an electromagnetic environment on the Josephson coupling 41

e e e e e

Q t

C i

Q t

C i

Q t

C
0
2

0
2

0
2

4 2 40 0 0 0 0h h hϕ ϕ
−

Inserting eiϕ0e-iϕ0 and e-iϕ0eiϕ0 on the left and on the right, respectively, and using the fact that

eiϕ0 translates Q0 by e, we can rewrite this as

e ei it

C
Q e Q Q eϕ ϕ0 0

2

1

2

1

20
0

2
0
2

0
2

exp
h

+ − + −L
NM

O
QP

R
S
T

U
V
W

b g b g

Working out the algebra the operator Q0 vanishes, yielding the simple result

e e2 0i
E tC

ϕ h

where EC = e²/2C0 is the charging energy of a single electron on the capacitance C0. This

charging energy is non zero only when Z(ω) has a finite series capacitance. This latter case

corresponds to a circuit having an isolated island connected to the junction, EC being the

charging energy of a single electron on this island.

The latter result could have been obtained more simply by noting that the electrostatic

contribution to the energy denominators of (6) gives, whatever the states considered, the

constant

E E
e

C
EQ

i
Q

C0

2

02
− = = .

b) MODIFICATION OF THE COUPLING IN PRESENCE OF AN ISLAND

The result of the last paragraph, along with (12) can be used to evaluate the Josephson

Hamiltonian (7) in the absence of oscillators in the environment. The presence of an island

simply amounts to a renormalization of EJ :

E E F
E

J J
C= F

H
I
K

0

∆
(15)

where the notation EJ
0 is used for the Ambegaokar-Baratoff value of the Josephson coupling

energy (14a) and where the function F is defined by

F x y xyK y( ) =
+∞

z
4
2 0

2

0π
d e a f. (16)

This Laplace transform of K0
2 can be expressed in terms of special functions :

F x
x

F x K x( ) , , ; , ;= F
H

I
K + F

H
I
K

2
111

2
2 3 2

3
2

3
2 4 4

2 2

π π

where 3F2 is the generalised hypergeometric function and K is the complete elliptic integral of

the first kind.
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42 The Tunnel Junction and its Environment II.C.3

A numerical evaluation of F is plotted in Fig. 5. We see that it diverges for x = 2. In this region

however, the hypotheses for the calculation of the coupling are not satisfied any longer : the

energy of the intermediate states is not far enough from the energy of the initial and final states.

Thus, quite paradoxically, in presence of charging effects the Josephson coupling energy is

enhanced as compared to the Ambegaokar-Baratoff value. This is because in this case the

electrostatic energy of the intermediate step is lowered due to the concavity of the electrostatic

potential, and it reduces the energy denominator of (6).

We can evaluate the actual correction to the Josephson coupling brought by the charging in

our experiments. In the experiments we have conducted we had EC ~< 1 K and ∆ was the gap of

aluminum which is about 2 K. The argument of F thus remained under 0.5. The corresponding

enhancement of EJ is then of the order of 10-15%.

The result we obtain here extends a calculation previously published by Matveev et al. [14].

c) ELECTROMAGNETIC CONTRIBUTION

We now decompose the oscillator factor in (7b) into a product of factors corresponding to

each oscillator :

0 1 2
0

1

2

3

F(x)

x

Fig. 5. function giving the renormalized Josephson coupling in presence of a charging energy
term.
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II.C.3 Effect of an electromagnetic environment on the Josephson coupling 43

e e e e e e e e e e
H t

i
H t

i
H t h t

i
h t

i
h t

n

n

n

n

n

n
Ψ Ψ Ψ

2 2 2 2h h h h h h
~ ~ϕ ϕ ϕ ϕ

− −

= ∏ (17)

where we have used the notations hn and ϕn for the Hamiltonian and the phase of the nth

oscillator as defined by (4). Using the commutation rules of the bosonic creation and

annihilation operators c cn n
† and  of the harmonic oscillators, each factor in (17) can be

transformed to

e e e e e e e
ch sh

h t
i

h t
i

h t
i

t
r t

n

n

n

n

n
n

n

n n2 2
2

2h h hϕ ϕ ϕ ω
ω

−

= (18)

This expression cannot by used directly in the Josephson Hamiltonian because it would always

diverge as t→ +∞. This divergence is an artefact of the calculation because we have allowed

states with an arbitrary number of photons, which is in contradiction with the hypothesis of

coupling only states of low energy. To satisfy this hypothesis, we must impose that all the

oscillators of frequency higher than a cut-off frequency ωc << ∆/h are in their ground state in

both the final and initial states. For these oscillators, the factors we must compute in (17)

reduce to

0 0 0 0

0 0

2 2

2 1

n

h t
i

h t
i

h t

n n
i

h t
i

n

n
i

n
r

n

n

n

n

n

n

n

n

n n
nt

e e e e e e e e

e e
e

h h h hϕ ϕ ϕ ϕ

ϕ
ω

− −

−

=

=
−d i

(19)

where |0n〉 is the vacuum of photons for the nth oscillator. For the oscillators of low frequency

(ω < ωc), Eq. (18) can be linearized in ωnt for the calculation of the Josephson Hamiltonian

because K0
2(∆t/h) then decreases on a much shorter time scale. This amounts to stopping the

integration over time at a few h/∆ to remove the divergence caused by an arbitrarily high

number of photons in these low frequency modes. At this point one notices that the same linear

terms are obtained by linearizing (19), so that this high frequency term incidentally also gives

the correct answer for the low frequency oscillators. Another way to see this result is to say

that it simply corresponds to neglecting the small energy E0 in the denominator of (6), which is

a good approximation as long as E0 << 2∆. Taking advantage of these remarks, (17) can be

written

P P P P ri r

n

i
n

t

n

n n n
nt

e e e e
e2 1 2 1ϕ ϕ ω

ω− −
−

∏ ∑≈ −
L

N
M
M

O

Q
P
P

d i
e j

~
exp

Going to the continuous limit, the discrete sum on modes is replaced by an integral over

frequency (see Eq. (1)) :

r G t
Z

Rn
t

n

t

K

n1 2
1

0
− → =

−−
∞ −

∑ ze d
eω

ω

ω
ω

ω
e j

d i
( )

Re ( )
(20)

and (17) writes
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44 The Tunnel Junction and its Environment II.C.3

P Pi G te e ( )2 ~ϕ .

The function G(t) we have found here is closely related to the phase-phase correlation function

J(t) introduced in Refs. 4 & 5 in the context of the Coulomb blockade of tunneling. More

precisely, we have G(t)= −J(−it).

d) MODIFICATION OF THE JOSEPHSON HAMILTONIAN BY THE ENVIRONMENT

Collecting results obtained in a) and c) one can write the restriction of the Josephson

Hamiltonian to the subspace of low-energy states in the form:

PH P E P PJ J= − cos2ϕ

where P is the projector onto this subspace and where EJ is a renormalized Josephson coupling

energy :

E E
t

E t G t K tJ J C= +
+∞

z0
2 0

2

0

4

π
∆ ∆d

h
h hexp ( ) a f (21)

where G(t) is defined by (20) and EJ
0 is the Ambegaokar-Baratoff value of the coupling (14).

e) SINGLE-OSCILLATOR ENVIRONMENT

In this paragraph we apply the result we have just obtained to the case where the environment

consists of a single oscillator. In this case the function G(t) simply writes

G t
Z

RK

t( ) = − −π ω1 ed i

where Z = (L/C)1/2 and ω = (LC)-1/2. The Josephson coupling is given by (21) which now writes

E E
t Z

R
K tJ J

K

t= −
L

N
M

O

Q
P

−
+∞

z0
2 0

2

0

4

π
π ω∆ ∆d

1 e
h

hexp d i a f .

Since K0
2 acts as a window of width h/∆ in the integral, this expression admits simple limits in

the cases where hω << ∆ or hω >> ∆ :

E

E

F Z RJ

J

K
0 1

=
>>
<<

R
S
T

π ω
ω

b g if 

if 

h

h

∆
∆

The function F that appears here is that which gives the renormalization of the Josephson

coupling by a charging energy (16). Reciprocally, here, the effect of the environmental

impedance can be interpreted as a renormalization of the charging energy of the circuit.

f) APPLICATION TO THE SINGLE ELECTRON TRANSISTOR

To illustrate further the calculation we have made, we now apply it to the case of a

superconducting single electron transistor connected in series with a resistor (Fig. 6a). This is a
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II.C.3 Effect of an electromagnetic environment on the Josephson coupling 45

V

R C

C

R

a) b)

Fig. 6. a) Realistic description of the electromagnetic environment of the superconducting
single electron transistor in some of our experiments. b) Schematic representation of the
impedance seen by a pure tunnel element (symbolised by the cross) of the transistor. The
symbol C designates the capacitance of the junctions and R is the resistance of the normal-
metal leads of the transistor.

realistic description of the configuration we had in several of our experiments (see Chap.

V&VI). The electromagnetic environment seen by each junction of the transistor is well

described in a lumped element model. A pure tunnel element of the transistor sees the

capacitance of its junction in parallel with the series combination of the capacitance of the

other junction and the resistance (Fig. 6b).

The impedance Z(ω) seen by the pure tunnel element is then

Z
R i R C C

RC
( )ω

ω ω

ω
=

− +

+

2

2

2

4

d i

a f
. (22)

The real part of this impedance is

Re ( )Z
R

RC
ω

ω
=

+4 2a f

and the series capacitance, which is the capacitance of the island, is given by

C i Z C0
0

1

2= F
H

I
K =

→

−
lim ( )
ω

ω ω .

For the impedance (22) the function G(t) can be expressed in terms of the special functions

cosine-integral and sine-integral

G t
R

R

t t t t t

K
( ) cos sin= + − + −F

H
I
K

L
NM

O
QP2 2

γ
τ τ τ

π
τ τ

Log ci si

where γ = 0.577216… is Euler's constant and where

τ π=
2

R

R EK C

h
,
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46 The Tunnel Junction and its Environment II.C.3

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

(2
R

K 
/R

)G
(t

)

t /τ

Fig. 7. Plot of the function G(t) for the impedance seen by a tunnel element in the
superconducting single electron transistor.

EC being defined as e²/2C0, the charging energy of an electron on the island of the transistor. A

plot of the function G(t) is given in Fig. 7. The renormalized Josephson energy can then be

calculated numerically for any value of R/RK and EC/∆ (see Fig. 8). The value of EJ/EJ
0 for

R=0 is determined by the plain charging effect renormalization F(EC/∆) (see Sec. 3.a & b, Eq.

(15)). The saturation of the renormalized coupling observed at large values of R is also easily

explained : for ∆R >> RKEC we can make a short-time expansion of G(t) in (21). For this

purpose we can go back to the definition (20) and linearize the exponential

G t
Z

R

t

R
Z

t

R C

tE

t

K

K K

C

( )
Re ( )

Re ( )

=
−

≈ = =

∞ −

∞

z

z

2
1

2 2

4

0

0

d
e

d

ω
ω

ω

ω ω π

ωd i

h
.

Thus, for large resistances (∆R >> RKEC) we obtain a Josephson coupling

E E F EJ J C= 0 2 ∆b g
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0 1 2
1.0

1.2

1.4

1.6

 EC /∆=0.1

 EC /∆=0.5

 EC /∆=1

E
J 

/E
J0

R /RK

Fig. 8. Renormalization of the Josephson coupling energy (with respect to the Ambegoakar-
Barratoff value EJ

0) as a function of the resistance in series with the transistor, for different
values of the charging energy. The value at R = 0 is given by the function F(EC/∆) previously
defined (Eq. (16)) while the asymptotic value is F(2EC/∆).

similar to the zero-resistance value but with a doubled effective charging energy. The short-

time expansion of G(t) corresponds to the limit where the capacitance of the second junction of

the transistor does not have time to change its charge during the virtual state of the Josephson

tunneling process, due to the RC delay. The relevant charging energy is then that of a single

junction, e²/2C. This limit where only the capacitance of the junction counts is reminiscent of

the “local rules” obtained in the context of Coulomb blockade for a normal-state junction [15].

Note that the high-resistance asymptotic value is not defined if EC > ∆ since F diverges for

arguments greater than 2.

For most of the samples we fabricated, we had EC ≤ ∆/2 and R/RK in the 10-4. In one

experiment however, we had increased this resistance to R/RK ≈ 1.5%. Combining this value

with the measured ratio EC/∆ = 0.29, this gives a renormalization of EJ of about 8.5%.

Conclusion

In this chapter we have calculated the Josephson Hamiltonian for low-energy states of the

junction + environment system in presence of an arbitrary environment impedance Z(ω). The
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48 The Tunnel Junction and its Environment II.C.3

essential result of this chapter is that the form of the Josephson Hamiltonian originally

computed by Josephson when Z(ω) = 0 is preserved, with simply a renormalization of the

Josephson coupling energy given by Eq. (21). For states of the environment of higher energy

or for high charging energy, the perturbative approach we have used here fails. In these cases,

it seems that the structure itself of the Josephson Hamiltonian is modified.
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III.A. Microscopic description of charge transport in the transistor 51

III.  THEORY OF THE SUPERCONDUCTING
 SINGLE ELECTRON TRANSISTOR

In this theoretical treatment of the transistor we will limit ourselves to temperatures T << ∆/kB

at which thermally excited quasiparticles in the superconductor can be neglected and to bias

voltages such that V << 2∆/e. In this voltage range, the electrical sources cannot provide the

energy necessary to break Cooper pairs in a single pair tunneling process. Thus, the main

charge transport process through the transistor will be the transfer of Cooper pairs. In Sec. A

we describe charge transfer from the point of view of the single electron tunneling Hamiltonian

to justify the use of the individual Josephson Hamiltonians of the junctions in the rest of the

chapter. In Sec. B, we show that at zero voltage, the whole transistor can be treated as an

effective Josephson junction with a gate voltage dependent effective Josephson energy. In Sec.

C we discuss the possibility of the presence of one quasiparticle in the circuit and its

consequences. Finally, in Sec. D, we analyse the behaviour of the system at finite but low

voltage.

A. Microscopic description of charge transport in the
transistor

For the whole transistor, the single electron tunneling Hamiltonian can be written (see Sec.

II.B)

H H H

H

H

T T T

T
i

si s i
s i

T
i

id i d
i d

T a b h c

T b c h c

= +

= +

= +

∑

∑

1 2

1 1

2 2

1

2

e

e

ϕ
σ σ

σ
ϕ

σ σ
σ

†

, ,

†

, ,

. .

. .

where the operators a, b, c and a†, b†, c† are the annihilation and creation operators for the

quasielectrons and quasiholes in the source, the island and the drain of the transistor,

respectively, and T1,2, ϕ1,2 are the tunnel coupling matrices and the phases of each junction of

the transistor. Starting from the single electron tunneling Hamiltonian, we can try to evaluate

the effective Josephson coupling of the transistor in the same way as we did for the single

junction (see Sec. II.C). To stay at the lowest order in perturbation theory, we will consider

only processes in which no more than two Cooper pairs are broken at the same time. For the

quasiparticle part of the tunneling Hamiltonian, these processes can be separated into two

types which both decompose in four steps (see Fig. 1) :

Type A. The first step consists in breaking a Cooper pair on the left side and transferring an

electron to the island. In the second step, the quasiparticle in the island is transferred to the

right electrode. At this point the island is neutral, and the system has two quasiparticles in it.
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52 Theory of the Transistor III.A.

The third and fourth step repeat the first and second to achieve the transfer of a whole pair. In

this type of processes it is also possible to swap the first and second and/or the third and fourth

steps (using an occupied pair in the island).

Type B. The first step is the same as previously. The second step now consists of transferring

the second electron of the broken pair in the island and to recombine the quasiparticles into the

ground state. In this intermediate step, there are no quasiparticles in the system but the island is

charged. The third and fourth steps are analogous to the first and second but involve the

second junction. In this second type of process, the first two and last two transfers can be

swapped. The only effect of this swapping is to change the electrostatic energy in the

intermediate state.

Even though type A processes seems favoured because their second intermediate state is highly

degenerate, their total amplitude is drastically reduced because they require transferring exactly

the same quasiparticle state through both junctions. In our disordered islands, it is extremely

unlikely that a single state has a significant coupling to both source and drain electrodes. In the

following we will neglect this possibility and focus on type B pair transfer. The situation could

be quite different in a clean system like a 2-dimensional electron gas (assuming it could be

made superconducting, though).

In the type of transfer we retain here, we can regroup electronic transfers two by two and

speak in terms of two Josephson tunneling of Cooper pairs instead of four electron tunnel

events. Taking advantage of this remark, in the next section we will obtain the effective

coupling of the transistor by diagonalization of a Hamiltonian where only Josephson transfers

are considered.

Fig. 1. (next page) Two generic types of fourth-order processes in the tunneling Hamiltonians
to transfer a Cooper across the transistor. Electronic states including spin index are indexed
by a letter and time-reversed states are indicated by an overline. The convention used to
represent the states of the superconductors is the same than that of Fig. 4 of Chap. II, except
that only the actual state of pairs is drawn, instead of the four accessible states. Only the
quasiparticle energy is taken into account, not the charging energy of the states. Type A
processes where the same quasiparticles must tunnel through the two barriers are very
unlikely in our experiments.
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III.A. Microscopic description of charge transport in the transistor 53
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R
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54 Theory of the Transistor III.B.1

B. Phase representation of the transistor ;
effective Josephson coupling

In this section we make the hypothesis that the environment of the transistor is such that we

can use the renormalized Josephson Hamiltonian introduced in Sec. II.C. We will here only

consider internal degrees of freedom of the transistor.

1. Good quantum variables for the transistor

It is easy to convince oneself that the transistor has two internal degrees of freedom (for a

general discussion of this problem see Ref. 1). For example we can choose to index the state of

the transistor by the numbers k1 and k2 of Cooper pairs having crossed the left and right

junction, respectively. However we anticipate that like in a single Josephson junction neither of

these will be a good quantum number. The electrostatic energy rather favours states with a

given n = 2(k1-k2) measuring the excess number of electrons on the island.

Since the junctions are superconducting, another possibly good choice of variables could be

the phases differences1 δ1 and δ2 of the junctions, which are conjugate variables of k1 and k2,

respectively. Again, these are not good quantum numbers because the phase θ = (δ1−δ2)/2 (θ
is the conjugate of n) of the superconducting wave function in the island will have large

quantum fluctuations since n tends to be fixed. A better suited variable is δ = δ1+δ2. The

conjugate variable of δ is k = (k1+k2)/2, measuring the number of Cooper pairs having flown

through the transistor.

Given this set of variables, with the phases defined using the superconducting flux quantum

h/2e, we have the commutation relations

δ δ θ δ

δ θ δ θ
1 1 2 2 2

0

, , , ,

, , , ,

k k n k i

n k n k

= = = =

= = = =

                                               
1In the following the phases operators are noted by the Greek letter δ and are defined by reference to the

“superconducting” flux quantum Φ0 = h/2e as opposed to the phases ϕ we have used in Chap. II which were

defined with respect to the flux quantum h/e. The notation we use here follows the usual convention in the

context of Josephson junctions. The dimensionless number of charge operator k is also taken relative to the

charge 2e of Cooper pairs. This double change of units preserves the commutation relation [δ, k] = i. With this

new definition of the phase, the Josephson Hamiltonian writes HJ=-EJcosδ instead of -EJcos 2ϕ.
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III.B.2 Form of the Hamiltonian 55

n1=2k1

δ1

n2=2k2

δ2

n=n1-n2

θ=(δ1-δ2)/2

k=(k1+k2)/2
δ=δ1+δ2

Fig. 2. Pairs of conjugate variables in the transistor. The sysmbols k's refer to Cooper pair
numbers, n's to electron numbers, Greek letters to phases defined using Φ0 = h/2e, the
superconducting flux quantum. The variables we choose to describe the transistor are n, the
excess electron number in the island and δ, the total phase difference across the transistor.

Following the above considerations, we introduce the basis of states |n,δ〉 of the transistor

indexed by the values of n and δ that we anticipate to be the good quantum numbers in the

problem. It will sometimes be useful to use an alternate basis indexed by the values of n and k.

These sets of states are Fourier transformed pairs:

n n k

n k n

i k

k

i k

I

, ,

, ,

δ
π

π
δ δ

δ

δ

=

=

∑

z −

1

2

1

2

e

d e

where I is a 2π-long interval.

2. Form of the Hamiltonian

From the previous sections, the Hamiltonian of the transistor itself can be written as:

H = Hel + HJ1 + HJ2 + Hqp.

The first term Hel = EC(n-ng)2 is the electrostatic Hamiltonian of the circuit in which

EC = e2
/(2CΣ) denotes the electrostatic energy of a single electron on the island, while

ng = CgVg/e is the charge (in units of e) on the gate capacitor induced by the gate voltage Vg,

which is our control “knob” over the transistor (CΣ and Cg denote the total capacitance of the

island and the gate capacitance, respectively). In writing Hel we have assumed that the gate

capacitance is negligible compared with the junctions capacitances. The second and third terms
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56 Theory of the Transistor III.B.2

are the Josephson coupling Hamiltonians of the two junctions. These terms can be written (see

Sec. II.C) :

H E

H E
J J

J J

1 1 1

2 2 2

= −
= −

cos

cos .

δ
δ

Here EJ1,2 are the Josephson coupling energies of junction 1 and 2, respectively. We will first

suppose that EJ1 = EJ2 = EJ since our junctions are fabricated to be nominally identical (the

general case is treated in Sec. 4). By making use of the relations between δ1, δ2, θ and δ, the

Josephson Hamiltonians can be rewritten as

H E

H E

H H E

J J

J J

J J J

1

2

1 2

2

2

2
2

= − +

= − −

+ = −

cos ,

cos ,

cos cos

θ δ

θ δ

δ θ

a f

a f

The last term of the Hamiltonian accounts for the internal degrees of freedom of the supercon-

ductors:

Hqp j j j
j

= ∑ε γ γ† .

In this expression γj
† and γj are the Bogoliubov quasiparticle creation and annihilation

operators and εj, the energy of the quasiparticle. In the present section (B), we will assume that

all the electrons in the superconductors are paired (i.e. there are no quasiparticles). In that

case, at T = 0, Hqp can be dropped. Of course, only even-n states can be considered with this

hypothesis of perfect parity. We further assume for simplicity, that the island, when neutral, has

an even number of electron (if this were not the case, this would only induce a unit shift on the

variable ng).
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III.B.3 Two-band model of the transistor 57

-2 -1 0 1 2 3 4
0

1

2

3

4

5

E/EC

ng

n=4n=2n=0n=-2

Fig. 3. Electrostatic energy levels of even-n states for the transistor, versus the dimensionless
gate charge. The energy diagram is periodic in the gate charge. As a first approximation, one
can describe the transistor by retaining only the two lowest electrostatic states at any given
gate charge.

3. Two-band model of the transistor

At T = 0 we are only interested in the lowest energy bands. Also, since in practice we have

E EJ C≤ , we can compute these bands by neglecting n-states whose electrostatic energies are

above a few EC. As the Josephson Hamiltonians couple states whose n differ only by two

electrons, the simplest possible approach to compute the ground band is to retain only the two

states |n,δ〉 of lowest electrostatic energy and to make a linear superposition out of them. To

do so we will divide the ng domain into intervals of the form 2q ≤ ng < 2(q+1), where the two

lowest n-states are n = 2q and n = 2(q+1) (see Fig. 3). We diagonalize the Hamiltonian in the

subspace spanned by these two lowest states. There is however a problem at the boundaries of

these intervals where the lowest electrostatic energy state becomes coupled to two degenerate

states and one of them is not taken into account in the diagonalization. These degeneracies can

be treated correctly in the restricted space spanned by the three lowest electrostatic energy

states of each interval, but this necessitates the diagonalization of a 3×3 matrix, resulting in

complicated expressions. This treatment is made in Sec. 4. The two-level approach is
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58 Theory of the Transistor III.B.3

−π −π /2 0 π /2 π

δ
-1 0 1 2

electrostatic +
Josephson energy

electrostatic
energy

n=2

n=0

k

EJ
2

a) b)

Fig. 4. Analogy of the two-state model of the transistor with a 1-D crystal with two atoms per
lattice period. The Josephson coupling (thin lines in the left panel) is equivalent to the
exchange energy. The Bloch theorem ensures that δ, the conjugate variable of k, is a good
quantum number. The eigenstates of the system form bands parametrized by δ.

nevertheless useful as a first approximation to the essential features of the device and their

qualitative discussion.

a) ANALOGY WITH A 1-D CRYSTAL

This restriction of keeping only two states in solving the problem brings us to a simpler, well-

known problem : a 1-D crystal in the tight binding model as already mentioned in Chap. I (see

Fig. 4). We are faced with a problem which is equivalent to finding electronic states in a 1-D

crystal with two atoms per unit cell. Here n labels the atoms in the unit cell and the variable δ
plays the role of the wave vector. The electrostatic and Josephson energies are equivalent to

the energies of the orbitals and hopping energy, respectively.
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III.B.3 Two-band model of the transistor 59

b) DIAGONALIZATION OF THE HAMILTONIAN

In the domain where 0 ≤ ng< 2 the even-n states of lowest electrostatic energy are |0,δ〉 and

|2,δ〉. In this basis, the matrix of the Hamiltonian writes:

H
E n E

E E n

C g J

J C g

=
− −

− −

L

N

M
M
M

O

Q

P
P
P

( ) cos

cos ( )

2

2

2

2
2

δ

δ

The system can be treated as a fictitious spin 1/2 in a magnetic field. Let us define the energies

M E n n

D E n

J E

C g g

C g

J

= − +

= −

=

2 2 2

2 1

2

d i

d i

cos
δ

 where M and D are the mean and half difference of the electrostatic energies of the states

|0,δ〉 ≡ |↑〉 and |+2,δ〉 ≡ |↓〉, and J the coupling energy. We can rewrite the Hamiltonian as

H M h= −
r r
.σ

with
r

r

h J D

x y z

=

=

, ,

, ,

0a f

d iσ σ σ σ

where σx, σy and σz are the Pauli matrices. Introducing the angle 2α between 
r
h zand $ , the unit

vector in the z direction, the eigenstates and eigenenergies are given by

ψ α α

ψ α α

0

1

= A + B = − +

= A − B = + +

cos sin

sin cos

E

E

0
2 2

1
2 2

M D J

M D J

For any given value of ng, and by analogy with the Bloch states in a crystal, we will call these

eigenenergies, energy bands for the variable δ (see Fig. 4). The position, shape and amplitude

of the bands depend on the value of ng (see Fig. 5). The treatment we have applied is valid only

in the domain where 0 2≤ ≤ng  but, since the electrostatic energy diagram is periodic in ng,

the eigenenergies of the total Hamiltonian must be periodic with ng, with period 2, each

interval of the form 2q ≤ ng ≤ 2(q+1) corresponding to a different set of two lowest

electrostatic energy states. To extend the solution we have found, we simply duplicate it to

cover the whole range of ng values. The bands are also 2π-periodic functions of δ (they involve

δ only through cos²δ/2).
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-2
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0
1

2
-2π

-π
0

π
2π0

1

2

3

4

E/EC

δ
ng

Fig. 5.  3D plot of the energy bands as functions of δ and ng calculated for EC = 2EJ. Note
that the bands touch at points where ng is an odd integer and δ = π mod 2π. This degeneracy
is non-generic : it is lifted if the two Josephson energies of the junctions are not rigorously
equal as usually happens in the experiments. The band separation is then |EJ1 – EJ2| (see Sec.
4).

c) EFFECTIVE JOSEPHSON COUPLING

The energy-phase relation in the ground band (E0(δ,ng)) is the equivalent for the transistor of

the –EJcosδ relation for the single Josephson junction. Its functional dependence even has very

similar properties. For example, its extrema sit at δ = 0 and δ = π. To carry this analogy further

we introduce the notation:

E0 0 0δ δ, ,n E n f ng g gd i d i d i=

where

E n D E Dg J0
2 21

2
( ) = + −e j

is the effective Josephson coupling energy of the transistor and the function f0 is such that

f n f ng g0 0 0 2, ,πd i d i− =
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III.B.4 Three-band model 61

-2 -1 0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

0.03
0.1

0.3

EJ/EC=12E
0 
/E

J

ng

Fig. 6. Ratio of the effective Josephson energy of the transistor to the single-junction
Josephson energy as a function of the gate charge, for the two-charge-states-model. The cusp
occurring at even integer values of ng is an artefact of the model which neglects the
degeneracy of charge states that exists at these gate charges. The essential features of the
transistor are well captured however : the effective Josephson energy presents sharp peaks of
height EJ/2 centred around odd integer values of ng. The width of these peaks is of the order
of EJ/EC.

which is equivalent to the cosine of the single junction. The strength of the effective Josephson

coupling for different values of EC at a given EJ is plotted in Fig. 6.

As far as interband transitions are neglected, the transistor behaves essentially as a single

Josephson junction. The band E0(δ) can then be considered as a potential for the phase δ. For

the typical electromagnetic environment of a transistor one can furthermore show that the

phase behaves as a classical variable [2]. The superconducting state of the transistor

corresponds to a static solution for δ.

4. Three-band model

As announced previously, we can improve the two-band model of the transistor by going to a

three-band model. This will complicate the calculations, but the equation of the bands remains

analytic. To be complete, we will furthermore consider here the general case where the two

junctions have different Josephson coupling energies.
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62 Theory of the Transistor III.B.4

In the domain where -1 ≤ ng ≤ 1 the even-n states of lowest electrostatic energy are n = 0, ±2,

with the n = ±2 being degenerate at ng = 0. This degeneracy was neglected in the two-band

model, but it can be treated correctly in the restricted space generated by the three lowest

states, |-2, δ〉, |0, δ〉 and |2, δ〉. In this basis, the matrix of the Hamiltonian writes:

H

E n E e E e

E e E e E n E e E e

E e E e E n

C g J
i

J
i

J
i

J
i

C g J
i

J
i

J
i

J
i

C g

=

− − − +

− + − − +

− + −

L

N

M
M
M
M

O

Q

P
P
P
P

− +

+ − − +

+ −

( )

( )

( )

,

2 0

0 2

2 1
2 1

2
2

2

1
2 1

2
2

2 2 1
2 1

2
2

2

1
2 1

2
2

2 2

δ δ

δ δ δ δ

δ δ

e j

e j e j

e j

and the secular equation takes the form of a polynomial of third degree in E:

E E n E E n E E n a E E nC g C g C g C g− − −F
H

I
K − +F
H

I
K − − + =2 2 2 22 2 2 8 2 0e j d i d i e je j ,

where

a E E E EJ J J J= + +1

4
21

2
2

2
1 2 cosδd i.

This equation is exactly solvable. Introducing intermediate quantities:

λ µ θ µ
λ

= + +F
HG

I
KJ

= + −F
HG

I
KJ

= −2

3

16

3

1

3

8

3

128

3

1

9
2 2 3 2

3 2
a E n aE E nC g C C g; and Arccos 

2
,

the three roots are given by:

Em g g Cn n E
m

mδ λ θ π
, cos , ,2d i

a f= +F
H

I
K

+ + +F
H
G

I
K
J =8

3
4

2 1

3
0 12 with .

Exactly as in the two-band model, these eigenenergies form bands parametrized by δ, whose

positions, shapes and amplitudes depend on the value of ng (see Fig. 7). The treatment we have

applied is valid only in the domain where -1 ≤ ng ≤ 1 but, since the electrostatic energy diagram

is periodic in ng, the eigenenergies must be periodic with ng, with period 2, each interval of the

form 2q-1 ≤ ng ≤ 2q+1 corresponding to a different set of three lowest electrostatic energy

states. To extend the solution we have found, we simply duplicate it to cover the entire range

of ng values. The bands are still 2π-periodic functions of δ (they involve δ only through cosδ).
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2π0
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E/EC

δ
ng

Fig. 7. 3D plot of the bands of the transistor calculated with the three band model, for an
average Josephson coupling energy of the two junctions EJ = EC/2 and a relative difference
between the two Josephson energies ∆EJ/EJ = 20%.

EFFECTIVE JOSEPHSON COUPLING

As in the two-band model, the energy-phase relation in the ground band (m = 0) is equivalent

to the –EJcosδ relation of the single Josephson junction. We keep the notation:

E0 0 0 0 0 0 2δ δ π, , , ,n E n f n f n f ng g g g gd i d i d i d i d i= − =with  .

where f0 plays the role of the cosδ in the single Josephson junction and E0(ng) represents the

effective Josephson coupling energy of the transistor. The strength of the effective Josephson

coupling for different values of EC/EJ, in the case of identical junctions (EJ = EJ1 = EJ2) is

plotted in Fig. 8 along with the predictions of the two band model, for comparison. The

present model predicts an effective Josephson coupling about twice as large as the two-band

model at ng = 0. This discrepancy is due to the fact that the two-band model neglects one of

the two available excited charge state in the vicinity of ng = 0.
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64 Theory of the Transistor III.B.5

-2 -1 0 1 2
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EJ/EC=12E
0 
/E

J

ng

Fig. 8. Ratio of the effective Josephson coupling of the transistor to the single junction
Josephson coupling, as a function of the gate voltage. Full heavy lines are the results of the
calculation for the three band model for identical junctions, for various EJ/EC. The light
dashed lines are the results obtained by the two band model which does not treat the
degeneracy occurring at even integer values of ng. We see that the simple two-band model
underestimates by a factor of ≈ 2 the effective Josephson coupling at even integer values of
ng, while its predictions on the amplitude and the width of the peaks are essentially correct.

5. Critical current of the transistor

When a current I is driven through the transistor, one must add an extra term −2πδI/Φ0 to the

Hamiltonian Hel introduced in Sec. 2 [3]; this amounts to tilting the potential in which the

phase evolves. The critical current IC of the transistor is the maximum theoretical supercurrent

that can flow through the transistor. It corresponds to the critical tilting of the band for which

local minima of the potential disappear, thus removing the possibility of static solutions for δ.

The critical current is given by the relation:

I n n E n
f

nC g g g gd i d i d i d i= R
S
T

U
V
W

= R
S
T

U
V
W

2 2

0

0

0
0

0π ∂
∂δ

δ π ∂
∂δ

δ
δ δΦ Φ

Max Max
E

, ,

To simplify the notations, we introduce a function ε(ng) such that

I n n E nC g g gd i d i d i= +2
1

0
0

π ε
Φ

( )
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III.B.5 Relation with the superconducting "electron box" 65

The last equation links the effective Josephson coupling and the critical current of the

transistor. This equation is similar to the single junction equation, for which we have ε ≡ 0. For

the two-band model we also find ε(ng) ≡ 0. This happens because the maximum of the

derivative of f0 is exactly 1 independent of the value of ng, just as for the cosine in the case of

the single junction. This exact relation between the effective Josephson energy and the critical

current of the transistor breaks down when more charge states are taken into account in the

diagonalization of the Hamiltonian (Max{∂f0/∂δ} ≠ 1 in this case ; it is not even analytic for

the three-band model). However for any reasonable set of parameters for which the approach

we have used here is valid (E E EJ J C1 2, ~< ), we find numerically that ε(ng) << 1. Thus the

equation linking the critical current and the Josephson coupling energy of the single Josephson

junction

I EC J= 2

0

π
Φ

remains “numerically true” to a high degree of accuracy for the transistor at any gate charge,

with the definition of the effective Josephson coupling energy that we have adopted.

6. Relation with the superconducting “electron box”

In the absence of current, the superconducting SET can be considered as a superconducting

single electron box [1,4] (the two junctions of the transistor in parallel are equivalent to the

single junction of the box. See Fig. 9). The absence of current corresponds to setting δ = 0 in

all the results previously obtained.

In the box experiment, one measures the charge of the ground state of the island. In the vicinity

of ng = 1, we keep only the two states n = 0 and n = 2, as in the two-band model. The ground

state of the box is then |Ψ0〉 = cosα|0〉 + sinα|2〉 where cos2 2 2α = +D D EJ  (we use here the

b)

Cg

"Box"

Vg

charge Q

Superconducting
single electron box

Vg

C,EJ

a)

Island

C,EJCg

Transistor at I=0

⇔ 2C,2EJ

Fig. 9. At zero current, the transistor is equivalent to the superconducting single electron box.
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66 Theory of the Transistor III.B.5

notation D = 2EC(1−ng) already used in Sec. 3.b.). The charge is given by

Q e

D

D EJ

= 2 2 = 2sin0
2 2Ψ α

= −
+

1
2 2

With the same notations, the critical current of the transistor is given by (we use here the two-

band model which is sufficient since ng ≈ 1)

Φ0
0

2 2

2

1

2π
I n E n D E DC g g J( ) ( )= = + −e j

The two quantities are obviously related. Indeed, one can compare the fluctuations of the

charge in the island 〈Q2〉 − 〈Q〉2 = EJ
2
/(EJ

2 + D2) with the critical current IC of the transistor as

a function of the gate charge : they both present a peak whose width is of the order of EJ/EC

(see Fig. 10). This clearly shows that the measurement of the critical current of the transistor

constitutes an observation of the charge fluctuations in the island : the greater the charge

fluctuations, the greater the supercurrent. A recent experiment also reported a similar

observation in a device where the charge fluctuations were controlled by a flux [5].

In Fig. 10 we have also plotted the derivative d〈Q〉/dng of the average charge of the island

0

1

2

EJ /EC = 0.3

〈 Q
 〉

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

EJ /EC

ng

 (E J /2E C )(d〈Q 〉 /dn g )

 〈Q 2 〉  − 〈Q 〉2

 2E 0 /E J = I C /I Cmax

Fig. 10. Top panel: charge of the island of a superconducting single electron box, for a ratio
EJ/EC = 0.3. Bottom panel : the derivative of the charge of the island of the box (full line),
the fluctuations of the charge in the island of the box (dotted line) and the critical current of
the transistor (dashes) all present a peak of width of the order of EJ/EC. Both experiments
observe, in a different manner, the coherent charge superposition inside the island.
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III.C. Duality with the dc squid 67

which would be obtained in a lock-in measurement of the charge of the island. This derivative

is proportional to the power 3/2 of the charge fluctuations.

In conclusion, both the superconducting single electron box and the transistor demonstrate the

same macroscopic quantum coherence in a different manner. Note however that the box

experiment is in principle better suited to test the predictions of quantum mechanics [4] since

its data can be interpreted directly [6], whereas in the transistor the critical current is not

measured directly (see Chap. IV). At the time of this writing, experimental results on the

superconducting box have not yet been published [7].

7. Duality with the dc squid

The transistor is in some sense the dual device of the DC SQUID. The correspondence is given

in the following table :

SUPERCONDUCTING SINGLE

ELECTRON TRANSISTOR
DC SQUID

junctions in series junctions in parallel

island loop

modulation of IC by a charge modulation of IC by a flux

period 2e period Φ0=h/2e

sensitive detector for electrometry sensitive detector for magnetometry

high input impedance (capacitor) low input impedance (transformer)

Note however that the shape of the modulation of the critical current with respect to flux in a

DC SQUID  is different from the modulation of the critical current with the gate charge of the

transistor. This is because both devices see a low impedance environment. The shape of the

modulation of the critical current of the SQUID would be similar to that of the transistor if the

SQUID was in a high impedance environment. Another difference between the SQUID and the

transistor is that there is no equivalent of a flux transformer for charges (one can only make a

capacitive divider, not a multiplier).

C. Poisoning of the supercurrent

The simple description of the transistor we have adopted here neglects the possibility to have

unpaired electrons in the island and is essentially that which was first given by Likharev [8].

Matveev et al. [9] were the first to realise that quasiparticles could have a dramatic influence

on the critical current of the transistor. We will here briefly go over their reasoning.
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68 Theory of the Transistor III.C.

We assume the validity of the B.C.S. theory of superconductivity [10,11] in the small island of

the transistor. Then, each odd-n (n =  electron number in the island) state is degenerate with

respect to the quasiparticle configuration. The minimum configuration energy of each odd-n

state is ∆, the energy gap of the superconductor. If we plot the configuration + electrostatic

energy of the lowest of the odd-n states with the energy of the ground even-n states, as a

function of the gate voltage (see Fig. 11, top panel) we see that for ∆ < EC, the state of lowest

energy in the vicinity of odd integer values of ng, is an odd-n state. At zero temperature, in

these ranges of ng it is favourable for a quasiparticle to enter the island in order for the system

to be in its ground odd-n state. This odd-n state is Josephson-coupled to other odd-n states.

Thus, odd-n states also form bands and can carry a supercurrent. The modulation of the critical

current of the odd-n ground band with ng is shifted by ∆ng = 1 with respect to that of the even-

n ground band (see Fig. 11, bottom panel). If we assume that the system occupies the lowest

available configuration + electrostatic energy state, we predict a modulation of the critical

current with sharp “holes” in the vicinity of odd integer values of ng (Fig. 11, bottom panel).

These holes occur at places where we had predicted peaks of the supercurrent in absence of

the quasiparticles, hence the name of “poisoning” of the supercurrent given to this effect. The

depth and the width of the holes depend on the ratio ∆/EC as shown in Fig. 12. When ∆ > EC ,

odd-n states are unstable, no poisoning occurs, the modulation of the critical current is that

predicted in Sec. B, with maxima at odd integer values of ng. When the gap is zero, the

modulation of the supercurrent is e-periodic, very weak, and the maxima of the critical current

are displaced by ±1/2 with respect to the large ∆ case.
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III.C. Poisoning of the supercurrent 69
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0.0
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1.0
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(n

g)
/I

Cm
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∆/EC

1

2

-2 -1 0 1 2

n= 3n= -3 n= -1 n= 1

n= 2n= -2 n= 0

E
/E

C

Fig. 11. Top panel : Each parabola is the electrostatic + configuration energy of states of the
transistor for a given number n of electrons in the island, plotted as a function of the gate
charge. Parabolas of the lowest odd-n states (dashed lines) are higher by ∆ than those of the
even-n states (full lines). In the case where ∆ < EC depicted here, odd-n states are the lowest
states of the system in the vicinity of odd integer values of ng. Bottom panel : modulation of
the critical current of the transistor with respect to the gate charge for the ground band
formed by the even-n states (thin full line) and odd-n states (thin dashed line). A ratio
EJ/EC=0.3 was used for the calculation. If the transistor follows the state of lowest energy on
the top panel, we predict a modulation of the critical current as indicated by the thick line.
We see that the entrance of a quasiparticle in the island suppresses the supercurrent peak,
hence the name of “poisoning” given to the effect.

At finite temperatures, things are more complicated because of the entropic effect associated

with the degeneracy of the odd-n states. In former experiments [12,6] we have demonstrated

that the equilibrium occupation probability of odd-n states in a small superconducting island is

governed by the odd-even free energy difference introduced by the Harvard group [13].

Predicting how this odd-even free energy difference will manifest itself experimentally in the

transistor requires a precise description of how the measurements are performed. We will

return to this problem in Chap. VI.

te
l-0

05
34

35
8,

 v
er

si
on

 1
 - 

9 
N

ov
 2

01
0



70 Theory of the Transistor III.D.
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Fig. 12. Modulation of the critical current of the transistor as a function of gate voltage for
different values of the ratio ∆/EC, showing the poisoning effect. A ratio EJ/EC=0.3 was used
for the calculation.

D. The superconducting single electron transistor at finite
voltage : resonant Cooper pair tunneling

When the transistor is biased at a finite voltage V << 2∆/e, the I-V characteristic is determined

by both its internal structure and the electromagnetic environment : when a Cooper pair goes

through the transistor, the energy 2eV provided by the source can either excite the oscillators

of the environment or the levels of the internal structure of the transistor. These latter

excitations manifest themselves as resonances whose positions in voltage depend on the gate

voltage and the charging energy. The process responsible for these resonances is known in the

literature as the “resonant tunneling of Cooper pairs” [14,15,16,17]. In the following we

calculate analytically these resonances within a double perturbative approach with respect to

the Josephson coupling and the environment.
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III.D.1 Description of the system at finite voltage 71

1. Description of the system at finite voltage

The representation of the Hamiltonian of the transistor + environment system we will use here

is based on the one we gave in Sec. II.B.3.c for a single junction. We can write the

Hamiltonian as

H H H Hel J env= + +

where

H E n nn ekV

H H H E

H
ek Q

C L

el C g

J J J J

env
m

m

m

mm

= − −

= + = −

=
−

+
=

∞

∑

2

1 2

2 2

1

2 2

2
2

2

2 2

d i

b g b g

cos cos
δ θ

Φ

(1)

and where we use the notations n, θ, k, δ, EC and ng introduced in Sec. III.B.1 for the

transistor, and Qm, Φm, Cm, Lm (m = 1,…,∞) introduced in Sec. II.B for the oscillators of the

environment. We assume that the junctions are identical. The state of the transistor (including

here the voltage source) belongs to the space spanned by the kets |n, k〉 introduced in Sec.

III.B.1 while the state of the environment oscillators belongs to the space spanned by the kets

|N1,…, N∞〉 where the Ni are the occupation numbers of the harmonic oscillators. A state of the

total system is then described as a tensorial product of the state of the transistor and that of the

environment.

a) UNPERTURBED ELECTROSTATIC STATES OF THE TRANSISTOR AT FINITE

VOLTAGE

At finite voltage, the k-degeneracy of the |n, k〉 states with respect to the electrostatic energy is

lifted because each pair gone through the transistor lowers the total energy of the circuit by

2eV. As in the case of zero bias voltage, we can restrict our analysis to gate charges ng∈[0,1].

The other values of ng can be treated straightforwardly using the properties of symmetry and

periodicity of the Hamiltonian with respect to n and ng. We will first consider only the states

having the two lowest island charges : |n = 0, k〉 and |n = 2, k+1/2〉 where k is an arbitrary

integer. At zero voltage, these states have an electrostatic energy E(n) = U(n/2 mod 2)

independent of k, where U = 4EC(1-ng) (Fig. 13a). At finite voltages the k degeneracy is lifted

and the states have the energies E(n,k) = E(n)−2ekV : the electrostatic energy levels form a

double staircase as a function of k (Fig. 13b&c).
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72 Theory of the Transistor III.D.1

b) ROLE OF THE JOSEPHSON AND ENVIRONMENT PERTURBATIONS ; QUALITATIVE

DESCRIPTION OF THE RESONANT COOPER PAIR TUNNELING

The effects of the Josephson and environment Hamiltonians on the unperturbed states we have

just described will be very different from one another. The Josephson Hamiltonian alone

preserves the discrete character of the states of the transistor while the coupling to the

environment states confers a finite width and a finite lifetime to the states of the transistor. To

take into account the difference in nature of these two perturbations, we will treat them on a

different footing. We will first find the states of the transistor when only the Josephson

coupling is considered. We then calculate the current which results from the transitions

between these states induced by the coupling to the environmental degrees of freedom.

Without doing any calculation, it is possible to understand qualitatively the effect of the

perturbations and the process of resonant Cooper pair tunneling. At voltages V higher than

U/e (Fig. 13c), every state is unstable and decays towards the following. This decay is very

similar to the process which gives rise to a current in a single junction at finite voltage (see

Chap. IV).
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III.D.1 Description of the system at finite voltage 73

a)   V=0

U

c)   V>U/eb)   0<V<U/e

k

electrostatic
energy

E

2
J

n=0

n=2

n=0

n=2

Fig. 13. Electrostatic energy levels of the |n,k〉 states for three voltages. The thin arrows
represent the Josephson coupling. a) V = 0, corresponding to the superconducting state of the
transistor. States with one extra pair in the island (n = 2) are separated from the ground state
by the gate voltage dependent energy U = 4EC(1-ng). b) For voltages 0 < V < U/e the n = 0
states are metastable and each n = 2 states can decay toward two states. The relaxation is due
to the coupling of the electromagnetic degrees of freedom with the electronic degrees of
freedom.  c) For V > U/e, every state is unstable and decays into the next one. The current
through the transistor is the result of the sequential tunneling of Cooper pairs through each
junction. This case is very similar to that of a single Josephson junction at finite voltage.

At voltages V lower than U/e (Fig. 13b)  the situation is more complicated and is very different

from that of a single junction. At these voltages the states |0, k〉 are metastable, while the

|2, k + 1/2〉 states can now decay towards either |0, k〉 or |0, k + 1〉. The metastable |0, k〉 states

can still decay towards |0, k' > k〉 states via virtual states (co-tunneling process). These

processes are particularly important when the states |0, k〉 and |2,k+m+1/2〉 are nearly

degenerate (see Fig. 14a, in the case m = 1), that is when eV ≈ U/(2m +1). At this point the

two states we consider are coupled by high-order Josephson coupling : there can be a resonant

transfer from |0, k〉 to |2,k+m+1/2〉. This latter state being unstable, the superposition will

decay towards either |0, k+m〉 or |0, k+m+1〉 and the process can then start over again. This

reasoning predicts resonances in the I-V characteristic at voltages V = U/(2m+1)e (see Fig.

15a) which have been called “Cooper pair tunneling resonances”. The situation is reminiscent

of the “radiative cascade” in atomic physics, where an atom placed in a resonant laser field can

absorb and re-emit photons in a cyclic manner [18]. The treatment we perform in the following

is inspired from that of the radiative cascade [18].
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74 Theory of the Transistor III.D.1

|Ψu〉
|Ψd〉

2eV

kk0 1 2 3

n=0

n=2

electrostatic
energy

n=0

n=2

n=0

n=2

n=0

electrostatic+
Josephson energy

Fig. 14. a) Electrostatic energy levels of the transistor at a voltage near U/3e. The thin full
lines represent the Josephson coupling between the states. At this voltage, the states separated
by 1 1/2 unit along the k axis are nearly degenerate. A higher-order Josephson coupling lifts
this degeneracy. This high-order coupling can be handled perturbatively by the means of an
effective Hamiltonian in the subspace spanned by two nearly degenerate states, as indicated
by the dotted capsules. In these subspaces, the high order Josephson coupling can be
replaced by an effective coupling as indicated by the thin dashed line joining the states. Each
coupling arrow we have drawn has a corresponding decay channel due to the possibility of
inelastic transition in the environment. b) After diagonalization of the effective Hamiltonians
we are left with quasi-eigenstates among which photon-induced transitions (arrows) are
possible. The current in the transistor corresponds to the cascade fromed by these transitions.

Fig. 15. (next page) a) Electrostatic energy levels as a function of V for the states indexed by
n = 0 and n = 2 and k∈[-10,10]. At zero voltage, the states with n = 2 have the energy
U = 4EC(1-ng). The dotted lines indicate the positions of the level crossings (which occur at
eV/U = inverse of odd integer numbers). b) Numerical eigenenergies of the system when the
Josephson coupling is taken into account. A value of EJ = 0.3U was used in the calculation.
Outer states and high order crossings are not well calculated because of the finite size of the
matrix used in the calculation (21 levels). We see that the eigenenergies at zero voltage re-
construct the band structure already obtained (see Sec. III.B). At finite voltages the Josephson
coupling turns level crossings into anticrossings. Moreover, these anticrossings are displaced
toward higher voltages by the effect of the Josephson interaction. The dotted lines are the
positions of the resonance given by a second-order perturbation theory calculation (see text).
The figure shows that it is possible to treat each anticrossing locally as the anticrossing of a
two level system. This is implemented by a 2×2 effective Hamiltonian for pairs of levels that
come into resonance.
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76 Theory of the Transistor III.D.2

2. Effect of the Josephson perturbation

We will now make an approximate diagonalization of the Josephson plus electrostatic

Hamiltonian. The idea of our calculation is to treat the Josephson Hamiltonian as a

perturbation to the lowest relevant order in the theory of perturbations. This amounts to

keeping the minimal coherence in the system. The eigenbasis is obtained by block

diagonalization of the perturbed Hamiltonian : we separate the total Hilbert space into 2-

dimensional subspaces spanned by pairs of unperturbed states which come into resonance

(level crossings in Fig. 14a). In each of these subspaces we write an effective Hamiltonian

which is then easily diagonalized.

range of validity of the method and extensions

The 2×2 effective Hamiltonian for the two unperturbed states we want to block-diagonalize is

meaningful only when the two eigenstates we obtain are well separated from the others. This

excludes the cases where the electrostatic energy U becomes comparable or smaller than the

Josephson coupling energy. This happens for a large Josephson coupling but also for any

Josephson coupling near ng = 1 since U vanishes for this gate voltage2. Also, when eV is

comparable or smaller than the interlevel coupling energy EJ, there is no way to treat the

Josephson Hamiltonian perturbatively and the situation is more complex.

When our simple 2×2 block diagonalization fails, it is still possible to find numerically an

eigenbasis of the perturbed Hamiltonian. This eigenbasis must be periodic in k (period 1) and in

energy (period 2eV). It can be obtained by making a numerical diagonalization of the perturbed

Hamiltonian with a sufficiently large number of unperturbed states for the side effects to be

negligible. This is the approach used in Ref. 16.

a) EFFECTIVE HAMILTONIAN OF A PAIR OF NEARLY DEGENERATE STATES.

We consider the states |a〉 = |n = 0, k〉 and |b〉 = |n = 2, k+q/2〉, where q is an odd integer. We

suppose the voltage V such that their electrostatic energies are nearly degenerate, i.e.

qeV U≈ .

We will use the notation Dk
q to designate the subspace of states spanned by

{ |0, k〉, |2, k+q/2〉}. We call P the projector on the subspace Dk
q and Q its complementary

projector (P+Q = 1). If the states we consider are well separated from the others, we can use

an effective Hamiltonian in Dk
q [18]:

                                               
2  However, if one ignores the possibility of Zener tunneling between bands (see Sec. VI.C.4), the ng = 1 case

can be treated simply because the transistor then behaves similarly to a single junction
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III.D.2 Effect of the Josephson perturbation 77

H
E R E R E

R E E R E
eff a aa ab

ba b bb
=

+
+

L

N
M

O

Q
P

( ) ( )

( ) ( )

where the Rij(E ) are the matrix elements of the restriction PR(z)P of the displacement

operator [18]

R z H H
Q

z H
H H

Q

z H
H

Q

z H
HJ J

el
J J

el
J

el
J( ) = +

−
+

− −
+K

to the subspace Dk
q calculated for the average energy E E Ea b= +( ) 2, with Ea = 0 and

Eb = U -qeV. Here, the Hamiltonian Hel is the unperturbed Hamiltonian and HJ is treated as a

perturbation,

H U
n

eVk

H J k k k k h c

el

J
k

= −

= − + + − +∑

( mod )

, , , , . .

2
2 2

0 2 0 21
2

1
2

where we have introduced the notation J = EJ/2, EJ being the Josephson coupling energy of

the two supposedly identical junctions. We will calculate the matrix elements of the

displacement operator at the leading order in the perturbation.

If q > 1, the displacement in energy Raa(E ) and Rbb(E ) of the states is non zero only in

second order in the perturbation while the effective coupling Rab(E ) is non zero at order q in

the perturbation.

We now introduce further approximations. Since we want to calculate resonances which will

occur on a narrow voltage range, we will compute the matrix elements of the displacement

operator at the expected voltage of the resonance and neglect their voltage dependence in the

remaining part of the calculation. The voltage at which the resonance appears is determined by

the equality

E R E E R Ea aa b bb+ = +( ) ( ) (2)

which should in principle be solved self-consistently, since E  and Eb depend on the voltage of

the resonance. The leading correction to the position of the resonance can be obtained by

computing the matrix elements of the displacement operator using the unshifted position of the

resonance V = U/qe, for which we have E = 0.

Within these approximations the matrix elements of the displacement operator at the lowest

order in the perturbation are then given by

R R
J

U

q

q

R R
J

U

i

q
i

bb aa

ab ba

q

q
i

q

( ) ( )

( ) ( ) mod .

0 0
2

1

0 0 2

2 2

2

1

1

1

1

= − =
−

= = −F
H
G

I
K
J−

−

=

−

∏
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78 Theory of the Transistor III.D.2

Inserting these values in (2), we obtain the position of the resonance, at the leading order in the

perturbation

V
U R

qe

U

qe

J

eU

q

q

J

eU
q

bb=
+

= +
−

+
F

HG
I

KJ
2 0 4

1

2

2

4

3

( )
O (3)

instead of simply U/qe in absence of the perturbation.

In order to shorten the notations in the following we introduce

Jq = -Rab(0)

D
E

Rq bb= +
2

0( )

(note that Dq is voltage-dependent via E ) so that the effective Hamiltonian can be written

H
E D J

J D
eff q q

q q
= −

L

N
M

O

Q
P−

2
1

If q = 1, |a〉 and |b〉 are coupled at order one in the perturbation, but the displacement of the

levels is still of the second order. We can use the same writing of the Hamiltonian as in the

general case by letting J1 = J and D1 = E /2+J2
/U.

b) DIAGONALIZATION OF THE EFFECTIVE HAMILTONIAN

We can now use the effective Hamiltonian for the states |a〉 and |b〉 to obtain the eigenstates of

the system in this subspace. The effective Hamiltonian is rewritten as

H
E

D Jeff
q q= +

−
L

N
M

O

Q
P−

2

2 2

2 2
2 2

1
cos sin

sin cos

α α
α α

with

cos2

2

2 2

2 2

α

α

= +

= +

D D J

J D J

q q q

q q qsin
(4)

The eigenstates of the system with their associated eigenenergy are given by

ψ α α

ψ α α

d d q q

u u q q

a b
E

D J

a b
E

D J

= + = − +

= − = + +

cos sin

sin cos

E

E

2

2

2 2

2 2

(5)
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0

Rbb

energy

voltage

2Jq

|b〉
|a〉

|Ψd〉

|Ψu〉

|b〉
|a〉

Raa

Fig. 16. Eigenenergy levels of the effective 2×2 Hamiltonian near the resonance (The mean
energy of the levels has been subtracted). The dotted lines are the energy levels without the
perturbation.

3. Effect of the environment ; transition rates

We now consider the effect of the coupling of the eigenstates of the electrostatic plus

Josephson Hamiltonian with the oscillators of the electromagnetic environment. We will

suppose that the environment is a weak perturbation of the system (i.e. it has an impedance

much lower than h/e
2). The coupling to the continuum of states of the environment will give

an imaginary part to the energies of the eigenstates of the electrostatic plus Josephson system.

This imaginary part of the energy will generate transitions between the states that were

calculated in the previous section (see Fig. 14b) and a current will result from these transitions.

To obtain this current, we first need to calculate the rates of the numerous possible transitions

between the pairs of states that we have obtained in the previous section. We suppose that the

voltage is near Vq (Eq. (3)), so that the system is approximately diagonalized in the subspaces

Dk
q. We first consider the general case where q > 1 (the case q = 1 is easily obtained by

simplifying the general treatment). Each quasi eigenstate of the subspace Dk
q can decay into

each of the quasi eigenstates of the subspaces D Dk q
q

k q
q

+ − + +( ) ( )1 2 1 2and  (see Fig. 17). Due to

the relatively high energy of these transitions (the voltage is not low by hypothesis), we neglect

the reverse transitions for which the environment would have to provide the energy. There are

also transitions of lower energies within the quasi eigenstates of the subspace Dk
q for which we

take into account the possibility of “upward” transitions.
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80 Theory of the Transistor III.D.3

a) EXPRESSIONS FOR THE TRANSITION RATES.

We will now derive the expression of the transition rates. By expanding the squares in the

Hamiltonian Henv (1) of the environment, the coupling of the environmental degrees of

freedom to the transistor's degrees of freedom takes the form of a term 2ekV, where V is the

total voltage across the oscillators of the environment, i.e. across the impedance Z(ω) seen by

the transistor (see Sec. II.B.3.c). Thus, the transition rate Γif between any two states |i〉 and |f〉
of the system is given by Fermi's golden rule [19]

Γif iff ek i S= 1
22

2

h
V ( )ω , (6)

where ωif = (Ei -Ef)/h and SV(ω) is the quantum spectral density of the fluctuations of the

voltage V across the transistor at the frequency ω. This spectral density of noise is related to

the impedance Z(ω) seen by the transistor via the fluctuation-dissipation theorem [19]:

S Z
k TB

V
( ) Re ( )

exp
ω ω ω

ω
=

− −
2

1

h

hb g
(7)

where T is the temperature of the electromagnetic environment. In the following we will

suppose that the impedance of the environment at the frequencies that are considered here can

be described by a resistance R << RK = h/e
2 and we will note ρ = R/RK.

We can derive an alternate expression for the transition rate (6) in the following way :

Γif if
if

if

if

if

f ek i
S

f H ek i
S

=

=

1
2

1

2
2 2

2

2 0
2

2

h
h

h

h h

ω
ω

ω

ω

ω

d i
d i

d i

V

V

( )

,2
( )

where H0 = Hel + HJ. Then, we use the fact that

2 20
0ek H ei

H
i I, = =∂

∂δ
h

where I is the current operator which can be expressed as

I
e

E

e E
k k k k h c

J

J

k

=

= + + + + −∑

2

2
2

4
0 2 2 0 11

2
1
2

h

h

sin cos

, , , , . .

δ θ

n s

Thus, we obtain an alternate expression for the transition rate

Γif
if

if

f I i
S

= 2
2

V( )ω

ωhd i
(8)
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III.D.3 Effect of the environment ; transition rates 81

The two expressions (6) and (8) of the transition rates are rigorously equivalent. However,

when applied to the calculation of a transition rate between the approximate eigenstates we

have found in Sec. 2, one of them might give a zero rate while the other gives a non-zero rate.

This discrepancy is due to the neglect of components of order EJ/eV or smaller in the

approximate eigenstates. When higher order components are taken into account, expressions

(6) and (8) give the same result. In the following we use the expression of the rate which gives

a non-zero rate at the lowest order in the calculation of the eigenstates.

b) INTRA-DOUBLET TRANSITION RATES.

We now calculate the transition rates γ and γ ' between the two quasi eigenstates |Ψd〉 and |Ψu〉
of a doublet (see Fig. 17). With the notations and the results (5) of Sec. 2b, expression (6)

yields

γ π ρ=
+ − − +

2 1

1 2

2 2

2 2 2 2h

q J

J D J D k T

q

q q q q Bexpe j

The second rate γ ' is easily obtained from the detailed balance symmetry obeyed by the two

rates :

γ γ γ' exp exp= −
−

= −
+E Eu d

B

q q

Bk T

J D

k T

2 2 2

(9)

where T is the temperature of the environment.

c) INTER-DOUBLET TRANSITIONS

We use here the expression (8) to compute the transition rates between the quasi-eigenstates of

different doublets. Using the expressions (5) of the quasi-eigenstates, we compute the squares

of the matrix elements of the current figuring in (8) for the various transitions :

Γ Γ

Γ

Γ

dd uu

du

ud

eJ

eJ

eJ

± ±

±

±

F
H

I
K

F
H

I
K

F
H

I
K

, : cos sin

: sin

: cos

2

2

2

2
2 2

2
4

2
4

h

h

h

α α

α

α

where α is defined by (4), and J = EJ/2, as previously. In the following we neglect the

differences in the transition energy for the Γ − rates and we take the average energy (q-1)eV for

all of them. Similarly, we take the energy (q+1)eV for the Γ + rates. We further neglect the

Boltzmann exponential in the denominator of (7), which is consistent with our neglect of the

upward transitions between doublets. We thus obtain the final expression for the rates
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82 Theory of the Transistor III.D.4

|Ψu〉
|Ψd〉

2eV

Γdu
+ γ γ '

energy

(q-1)eV

Γuu
+Γud

+Γdu
- Γdd

- Γuu
- Γud

- Γdd
+

Fig. 17. Different decay processes of the quasi-eigenstates of a doublet and labelling of the
rates of the processes.

Γ Γ

Γ

Γ

dd uu

du

ud

J

q eV

J

q eV

J

q eV

± ±

±

±

= =
±

=
±

=
±

2 2

1

2 2

1

2 2

1

2
2 2

2
4

2
4

π ρ α α

π ρ α

π ρ α

h

h

h

( )
cos sin

( )
sin

( )
cos

4. Calculation of the current

We now define the probability pk
d (pk

u) that the ground (excited) eigenstate |Ψd〉 (|Ψu〉) of the

doublet Dk
q is occupied. We further define the total probability for the system to be in a

ground or excited state of a doublet

P p

P p

d k
d

k

u k
u

k

=

=

=−∞

+∞

=−∞

+∞

∑

∑

which of course verify Pd +Pu = 1.

The equation of evolution of these probabilities is given by

& &P P P Pd u ud ud u du du d= − = + + − + + ′+ − + −Γ Γ Γ Γγ γd i d i

Thus, the stationary value of the probabilities is given by

P Pd u
ud ud

ud ud du du

= − =
+ +

+ + + + + ′

+ −

+ − + −1
Γ Γ

Γ Γ Γ Γ
γ

γ γ
.
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III.D.4 Calculation of the current 83

From this point the current is easily obtained by summing the rates multiplied by the probability

that their initial state is occupied and by the charge the process carries through the transistor.

For each rate, the transferred charge through the transistor is given by :

Γ Γ

Γ

Γ

dd uu dd uu

du du

ud ud

q e

q e

q e

qe

qe

± ± ± ±

± ±

± ±

= = ±

= ±

= ±
= −

′ ′ =

, : ( )

: ( cos )

: ( sin )

: cos

: cos

Q Q

Q

Q

Q

Q

1

2 1

2 1

2

2

2

2

α

α
γ α

γ α

Finally, the steady-state cascade of transitions gives a current

I P

P

q d dd dd du du dd dd du du

u uu uu ud ud uu uu ud

= + + + + ′ ′ +

+ + + +

− − − − + + + +

− − − − + + + +

Γ Γ Γ Γ

Γ Γ Γ Γ

Q Q Q Q Q

Q Q Q Q Q

γ

γ10

which can be slightly simplified using the fact that P Pd u uu dd uu dd+ = = =± ± ± ±1, Γ Γ and Q Q  :

I P Pq dd dd dd dd d du du du du u ud ud ud ud= + + + + ′ ′ + + +− − + + − − + + − − + +Γ Γ Γ Γ Γ ΓQ Q Q Q Q Q Q Qγ γ (10)

The case q = 1 can be treated in the same way by suppressing the processes corresponding to

the Γ − rates above.

a) I-V CHARACTERISTICS

To compute the I-V characteristics of the sample we simply add the currents Iq corresponding

the various q = 1, 3, 5… This is of course not a good approximation as soon as the different

resonances begin to overlap. This approximation is quite reasonable in most situations since the

resonances are naturally well separated in voltage ; it does fail however near ng = 1 and V = 0,

but our diagonalization is not valid anyway in this range of parameters. In Fig. 18 we plot an I-

V characteristic obtained in this manner for two values of the Josephson coupling. One

immediately notices the qualitative difference between the q = 1 “resonance” and those of

q > 1 : the q = 1 resonance takes the shape of a rounded step. This step marks the onset of the

sequential tunneling of Cooper pairs, as occurs in a single Josephson junction (see Fig. 13c). It

is also clearly visible that the width of the resonance depends extremely rapidly on the value of

the Josephson coupling for the high order resonances. This happens because this width is given

by Jq ∝ (EJ/U)q.
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84 Theory of the Transistor III.D.4

0.0 0.5 1.0 1.5
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q=3
q=1

J/U=.22I
/π

ρ I
0

eV/U
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1
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3

4
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6 q=7

q=5

q=3
q=1

J/U=.1

Fig. 18. Theoretical I-V characteristic of a transistor. The curves were obtained using Eq.
(10). Only the first excited charge state of the island is taken into account here, and the
resonances of order higher than q = 7 have not been calculated. Two values of the Josephson
coupling-charging energy ratio are considered. The q = 1 resonance is barely visible in both
case : it is more a rounded step than a resonance. The other resonances are asymmetric in
shape. Their width diminishes rapidly with increasing order of the resonance, and with
decreasing strength of the Josephson coupling. The effect of energy-level displacement is
clearly visible on the change in the q = 3 resonance when going from the top to the bottom
panel.

To further reproduce what is seen is the experiments we must also add the resonances due to

the crossing of the n = 0 state with the n = -2 state which is the second charge state of the

island in the domain ng∈[0,1]. For this charge state we have U = 4EC(1+ng) in the calculations

of the resonances. The result of summing all these processes is shown in Fig. 19, for gate

charges ng∈[-0.5,0.95].

The positions of the resonances in the V-ng plane are shown in Fig. 20, in the case were

EJ << EC. The resonances fall on lines diverging from the V = 0, ng = (odd integer) points,

where the switching current of the transistor is maximum. One can think of the peaks in the

supercurrent modulation with the gate voltage as resulting of the build-up of all the resonances

due to the resonant Cooper pair tunneling.
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III.D.5 Application : determination of the charging energy of the transistor 85

0 1 2 3 4 5 6
0

1
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4
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6

7

8

9

10

ng=0

2I
/π

ρ I
0

eV/EC

Fig. 19. Simulated I-V characteristics for different gate charges. The gate charge ranges from
ng = -0.5 (bottom trace) to ng = .95 (top trace), the ng = 0 trace is indicated by an arrow on
the right hand side. We have used the model described in the text but using this time the first
two excited charge states of the island and a ratio EJ/EC = 4/5. Also, for each of these charge
states we have calculated the resonance only up to the q = 5 level crossing

5. Application : determination of the charging energy of the transistor

The crossing of the resonances visible in Fig. 19 at ng = 0 is of great practical importance : it

allows a precise determination of the charging energy of the transistor. These resonance

crossings corresponds to the degeneracy of the n = ±2 levels at ng = 0. In particular, the

crossing of the resonances of order q = 3 is particularly well suited for this purpose because it

is clearly seen in the experiments (see Sec. V.C.) and much more precise than the smooth

shoulder made by the q = 1 resonance. According to Eq. (2), this particular crossing of

resonances at ng = 0 occurs at the voltage V such that

eV
E E

E
C J

C
≈ +

4

3

3

32

2

which is easily inverted to yield
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86 Theory of the Transistor III.D.5

0.0 0.5 1.0

1

3

 q=1
 q=3
 q=5
 q=7

ng

eV/4EC

Fig. 20. Positions of the current peaks due to resonant Cooper pair tunneling of order
q = 1,3,5,7 in the V-ng plane, for a EJ << EC . The supercurrent peak of the transistor can be
thought to result of the accumulation of these resonances near V=0.
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32
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3

( )

( )

e j

O

The correction brought by the Josephson coupling can be evaluated with the independently

determined value of EJ given by the Ambegaokar-Baratoff formula. In our experiments it never

exceeded 1% of the dominant term. This was also of the order of precision we had on the

position of the crossing of the resonances. The correction could thus be ignored. Let us stress

the practical importance of this determination of the charging energy : the charging energy is

usually obtained by fitting the temperature dependence of the I-V characteristic of the

transistor in the normal state. This method is tedious (it takes hours) and gives a typical

accuracy on the value of the charging energy of the order of 10%. With the method described

in this section we could obtain rapidly (no changing of the temperature was required) an

accuracy of a few percent on the charging energy (see Chap. VI.).

te
l-0

05
34

35
8,

 v
er

si
on

 1
 - 

9 
N

ov
 2

01
0



III.D.5 Application : determination of the charging energy of the transistor 87
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IV.A.1 Description of a typical experimental set-up 89

IV. SWITCHING CURRENT OF SMALL
 JOSEPHSON DEVICES

At T = 0 the Josephson coupling energy in the superconducting single electron transistor

(SSET) should manifest itself as a zero-voltage supercurrent branch in the I-V characteristic of

the device. However, small Josephson junctions have Josephson coupling energies so low

(typically a fraction of a Kelvin) that it is not possible experimentally to reach a regime where

thermal fluctuations can be neglected. Under these conditions supercurrent flow in these

experiments tends to be suppressed. In the past, this question has been well studied both

experimentally and theoretically for resistively shunted junctions [1,2]. However, in our

experiments, like in most experiments seeking to observe quantum fluctuations of the phase,

the transistor was “unshunted” : the two junctions were biased at dc by a nearly ideal current

source. We have observed a well defined “superconducting branch” (i.e. at nearly zero

voltage) and a hysteretic behaviour. A parameter of great practical importance in this case is

the maximum supercurrent one can drive through the transistor which we call the switching

current.

In the following, we present a comprehensive approach of the problem of a Josephson junction

imbedded in a classical arbitrary electromagnetic environment and we elucidate the question of

the relationship between the switching current of an unshunted junction and its critical current.

Most of the analysis readily applies to the more general problem of Josephson devices like

SQUIDs and SSETs.

A. Theoretical aspect of the measurement
 of a Josephson junction

1. Description of a typical experimental set-up

In typical experiments, a Josephson junction is biased using a dc current source I and one

measures the dc voltage V = 〈V(t)〉 across the junction. A schematic of the experimental set-up

is shown in Fig. 1a. We use linear quadrupoles Q1 and Q2 to describe the electromagnetic

properties of the leads (possibly containing filtering elements) connecting the junction to the

current source and to the voltage measuring apparatus. The junction itself is described as a

capacitance cj in parallel with a pure tunnel element. Using Norton's theorem, the dipole seen

by the pure tunnel element can be replaced by a dc current source Ib in parallel with an
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90 Switching Current of Small Josephson Devices IV.A.1

admittance1 Y(ω) (Fig. 1b). In this description the properties of the electromagnetic

environment of the tunnel element are entirely contained in the admittance Y(ω).

After solving the dynamics of the system in this representation, going back to the dc currents

and voltages in the original {I, V} representation is simply a matter of applying a linear

Ib Y(ω) v(t)b)

I

I0

Q1 V(t)a)

c)
c

y(ω)

v(t)

i(t)

I0

i(t)

Q2
cj

Ib v(t) I0

i(t)

in(t)

Fig. 1. a) Typical set-up used to measure the current-voltage characteristic of Josephson
junctions. The leads containing filtering elements which connects the junction to the bias
source I and to the voltage measuring apparatus (voltage V(t)) are described by the
quadrupoles Q1 and Q2. The electrical behaviour of the junction itself is modelled by a
capacitance cj in parallel with a pure tunnel element whose critical current is I0. By use of
Norton's theorem, the set-up is equivalent to b), where the electromagnetic environment of the
pure tunnel element is entirely contained in the admittance Y(ω). The admittance Y(ω) can be
formally separated into the parallel combination of a capacitor c and another admittance
y(ω) as indicated in c). The thermal noise generated by the admittance is modelled by the
noise current source in(t).

                                               
1 Since we describe here a current bias of the junction with a parallel connection of electrical elements (see Fig.

1b & c), it is more convenient to use admittances rather than impedances. The admittance Y(ω) we introduce
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IV.A.2 Equations of dynamics for the system 91

transformation on IJ = 〈i(t)〉 and V = 〈v(t)〉, the average values of the current flowing through

the junction and the voltage across the junction, respectively.

The admittance Y(ω) can further be decomposed as the parallel combination of a capacitance c

and an admittance y(ω) given by

c
Y

j

y Y jc

=

= −
→∞

lim
( )

( ) ( )

ω

ω
ω

ω ω ω

The capacitance c is the junction's own capacitance cj increased by some extra capacitance

brought by the leads. The thermal noise generated by the dissipative part of the admittance

y(ω) is described by a noise current source in(t) in parallel with the admittance. The spectral

density of this noise source is

S k T yi Bn
( ) Re ( )ω ω= 4 .

2. Equations of dynamics for the system

We now want to analyse the dynamics of the circuit represented in Fig. 1c. The impedance

seen by the junction at high frequency is in practice always of the order of the vacuum

impedance Z0 ≈ 377 Ω which is much below RK ≈ 25.8 kΩ. This permits us to treat the phase δ
of the junction as a classical variable [3]. Kirchhoff's law applied to the circuit of Fig. 1c gives

I i t i t v t y cv tb n+ = + − +
+∞

z( ) ( ) ( )~( ) &( )τ τ τd
0

(1)

where ~( ) ( )y t y j t= z−∞
+∞1

2π
ωω ωe d  is the inverse Fourier transform of y(ω), i(t) is the current

flowing through the tunnel junction and v(t) is the voltage across the junction. The current i(t)

flowing through the junction is given by the Hamilton equation

i t
E E

fJ( )
( )

( )= = ′1

0 0ϕ
∂ δ

∂δ ϕ
δ

where ϕ0 = Φ0/2π = h/2e and δ itself is a dynamic quantity. In the latter equation

E(δ) = EJf(δ) is the equation of the lowest energy band of the effective junction, EJ is the

Josephson coupling energy and f(δ) and f '(δ) are periodic even and odd functions of amplitude

2 (f(δ) = −cosδ for a single junction, see Chap. III for the case of the transistor). It is useful to

introduce the critical current I0 = EJ/ϕ0 of the junction. The voltage v(t) across the junction is

related to the phase by the equation

v t t( ) &( )= ϕ δ0 .

Written in terms of δ, Eq. (1) gives

                                                                                                                                                  

here is simply connected to the impedance Z(ω) we have used in Chap. II by Y(ω) = 1/Z(ω).
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92 Switching Current of Small Josephson Devices IV.A.3

Phase

Energy

a)

Ib<Is

b)

Is<Ib<I0

c)

Ib³I0

Fig. 2. The dynamics of the phase difference of a Josephson device in presence of a driving
current is that of a particle in a tilted washboard potential. The tilt of the potential is
proportional to the driving current and the friction the particle experiences is provided by the
admittance of the environment. a) If the current is too weak, the particle can only diffuse from
well to well under the influence of thermal fluctuations. b) When the potential is tilted over a
critical value Is called the switching current, the energy gained going down the potential is on
average greater than the energy lost by friction and the particle runs away, leading to a finite
voltage state. The value of the switching current depends greatly on the damping of the
particle : the lesser the damping, the lower Is. c) For a current greater than the critical
current I0 the tilted potential no longer has any local minima : there cannot be a static
solution for the phase.

I i t I f t y cb n+ = ′ + − +
+∞

z( ) ( ) &( )~( ) &&

0 0 0 0δ ϕ δ τ τ τ ϕ δd . (2)

The evolution of δ is identical to that of a particle of mass cϕ0
2 in the tilted potential

ϕ0(I0 f(δ) – Ibδ) (see Fig. 2), with a random force ϕ0in(t) and a friction force described by the

kernel ϕ0
2~( )y t .

3. Discussion of the solutions

A supercurrent in the junction corresponds strictly speaking to a static solution for the phase

( &δ = 0). For bias currents Ib greater than I0, the tilted potential has no local minima, and there

are only dynamic solutions for the phase, associated with a finite dc voltage across the

junction. At currents lower than I0, Eq. (2) admits static solutions corresponding to the particle

sitting at local minima of the potential. These static solutions are unstable against thermal
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IV.A.3 Discussion of the solutions 93

fluctuations and the particle will diffuse from well to well giving rise to a departure of the

supercurrent branch from the zero voltage axis. The difficult part of the problem is the

discussion of the stability of this diffusive motion. This problem can be treated numerically [4].

A weak point of this numerical approach is that it does not provide much intuition on the

behaviour of the system when the parameters vary. In the following we use an approach based

on the current-voltage characteristic of the junction in its electromagnetic environment. This

approach, which does not rely on a particular calculational technique, gives a more general

albeit only qualitative understanding of the behaviour of the system.

a) CURRENT-VOLTAGE CHARACTERISTIC OF THE JUNCTION IN ITS ELECTRO-
MAGNETIC ENVIRONMENT.

A general discussion of the stability of the dynamics can be done using the notion of current-

voltage characteristic of the junction in its electromagnetic environment. The IJ -V

characteristic is plotted in the {V, IJ} plane where V = 〈v(t)〉 is the average voltage across the

junction and IJ = 〈i(t)〉 is the average current flowing through the junction. The IJ -V

characteristic is defined as the set of points of the {V, IJ} plane where the average power

delivered by the current source Ib is equal to the average power dissipated in the admittance

y(ω). In this definition, “average” means an average over the pseudo-period T or a relevant

time for the evolution of the system followed by a thermodynamic ensemble average.

In the absence of thermal fluctuations, the motion of the phase is deterministic, and the average

power balance is obtained for solutions of the differential equation (2) for which &δ  is periodic.

The low-voltage shape of the characteristic is obtained from the standard phase diffusion

picture [3] which predicts a low differential resistance branch which meets the V = 0 axis at

T = 0. The asymptotic high-voltage behaviour of the characteristic is quite universal : at

voltages high enough, the Josephson frequency Ω = V/ϕ0 becomes larger than any other

characteristic frequency of the system, and the velocity of the phase becomes essentially

constant (&δ ≈ Ω , the phase almost does not feel the rugosity of the potential), with a slight

sinusoidal modulation at the Josephson frequency Ω. This slight modulation is responsible for

the dc current IJ flowing through the junction which can be evaluated as follows. The constant

velocity of the phase is associated with an ac Josephson current i(t) = I0sinΩt. Since the

junction is a non-dissipative element, the power dissipated in the environment by the ac

Josephson current Pac = I0
2
/2ReY(Ω) is equal to the apparent dc power P = IJV = IbV−V2Y(0)

delivered by the source to the junction [5]. This power conversion can be seen as a partial

rectification of the ac Josephson current by the junction itself combined with the admittance

Y(ω). Therefore, asymptotically we predict the shape of the characteristic to be

te
l-0

05
34

35
8,

 v
er

si
on

 1
 - 

9 
N

ov
 2

01
0



94 Switching Current of Small Josephson Devices IV.A.3

IJ

V

load line of

the source
Ib

V

instability points

load line of

the source

Is
inobservable

part

"superconducting"

branch

Ir

b)

c)

IJ

V

generic [ReY(V/F 0) V]-1

behaviour (self-rectified

AC Josephson effect)

phase

diffusion

branch

a)

2D/e

V

Ib

V

Is

Ir

quasiparticle

current rise

I0
Im T=0

T¹0

slope = -Y(0)

IJ Ib

Fig. 3. a) General shape of the current voltage characteristic of a Josephson junction, plotted
in the {V, IJ} plane, where V is the average voltage across the junction and IJ is the average
current flowing through it. b) & c) Two types of behaviour of a Josephson junction in an
electromagnetic environment depending on the relative value of the differential conductance
of the characteristic and the dc conductance of the source. Each case is plotted in the {V, IJ}
plane on the left panel and in the usual {V, Ib} coordinates on the right panel b) Non-
hysteretic behaviour. c) Hysteretic behaviour.
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IV.A.3 Discussion of the solutions 95

0 T 2T

δ0-2π

δ0

δ0+2π

δ0+4π

time

δ

Fig. 4.  The periodic evolution of the phase corresponding to a point on the characteristic of
the junction, at zero temperature and for a vanishing average voltage consists of a succession
of 2π phase jumps well separated in time. The system spends most of the time crossing the
local maxima of the tilted potential (located at δ = δ0  modulo 2π) at very small velocity.

I
I

V Y VJ = 0
2

02 Re ϕb g

Frequently, the admittance depends weakly on the frequency in this frequency range and this

gives a 1/V dependence of the current at large voltages. This of course ceases to be true as

soon as the voltage is high enough to break Cooper pairs. At this voltage the characteristic of

the junction presents a steep increase of the current, due to quasiparticles. Assuming a very

smooth shape of the characteristic, these remarks bring us to draw a qualitative IJ -V

characteristic (see Fig. 3a). Of course, if the admittance Y(ω) has particular features like

resonances, we expect to see them somehow in the characteristic [6,3].

At T = 0, the point at which the characteristic leaves the V = 0 axis is denoted by Im. The bias

current Im is the minimum current for which, in absence of thermal fluctuations, the particle

launched at a local maximum of the potential with infinitesimal initial velocity reaches the next

maximum. We will now establish that the characteristic reaches this point with a slope given by

−Y(0) (note that Y(0) is real since ImY(ω) is a continuous odd function). For a vanishing

average voltage V across the junction, the motion of the phase consists of independent 2π
jumps separated in time by an arbitrarily long interval T = Φ0/V (see Fig. 4). The average

voltage across the junction is

V t= z
ϕ δ0

2

2

T T

T

d
-

&

and the average current IY flowing though the admittance is
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96 Switching Current of Small Josephson Devices IV.A.3

I t i t t Y tY Y= =
− −z z

1

2

2
0

2

2

T TT

T

T

T

d da f e j
ϕ δ& *

~
( )

where * is the convolution product and 
~

( )Y t  the inverse Fourier transform of the admittance

Y(ω). As V → 0 the ratio IY/V is given by

lim lim

& *
~

( )

&( )

& *
~

( )

' &( )
V

YI

V

t Y t

t t

t Y t

t t
→ →∞

−

−

−∞

+∞

−∞

+∞= =
z

z

z

z
0

2

2

2

2
T

T

T

T

T

d

d

d

d

δ

δ

δ

δ

e j e j

=

= = =

=
=

−∞

+∞

−∞

+∞
z

z

d FT

d

-1t Y

t t

Y
Y

&

~

&

~

&

~

( ) ( )

' &( )

( ) ( )

( )
( )

δ

δ

δ

ω ω

δ

ω ω

ω

{ }

0 0

0
0

Here &
~
( )δ ω  is the Fourier transform of &( )δ t . Since IJ + IY = Ib, we finally obtain that

lim ( )
V

JI

V
Y

→
= −

0
0

d

d
.

Similarly, the sign of the curvature of the characteristic at zero voltage is given by the sign of

the derivative of the average power lost by friction with respect to the average voltage across

the junction. This can be justified by the following reasoning : if the average power lost by

friction decreases with increasing voltage, it induces an avalanche on the voltage which is the

sign of a hysteretic behaviour of the system. As we will show below, the hysteretic behaviour

can only exist if the differential conductance of the characteristic of the junction becomes

smaller than -Y(0) which can only happen if the curvature of the characteristic is negative at

V = 0.

The voltage scale associated with the temperature and the admittance is VT = kBT/ϕ0ReY. One

expects finite temperature characteristics to be given by a sort of convolution of the zero-

temperature characteristic with a function of width VT.

b) DYNAMIC STABILITY OF THE CURRENT-VOLTAGE CHARACTERISTIC :
HYSTERETIC AND NON-HYSTERETIC BEHAVIOUR.

Once this IJ -V characteristic is obtained, the discussion of the stability of a bias point is very

simple : a bias point is stable only if the dc conductance Y(0) of the bias source and the

differential conductance of the junction dIJ/dV verify

d

d

I

V
YJ + >( )0 0.
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IV.A.3 Discussion of the solutions 97

This criterion distinguishes the points of the IJ -V characteristic which represent stable and

unstable power equilibrium.

One can then separate the experimental behaviour of Josephson junctions in an electromagnetic

environment in two categories : (i) non hysteretic behaviour if the differential conductance of

the junction remains greater than the opposite of the dc conductance of the environment at all

voltages (Fig. 3b). This is the case for dc shunted junctions. (ii) hysteretic behaviour if the

differential conductance of the junction is smaller than the opposite of the dc conductance of

the environment on part of the voltage domain (Fig. 3c). In this latter case, starting from the

zero bias, when the bias current is increased, the system first follows a low differential

resistance branch (called the “supercurrent branch”) and then switches to a high voltage state

at the instability point. The bias current Ib at this instability point defines the switching current

Is in a hysteretic set-up. The measured value of the switching current can fluctuate around this

value due to the effect of the random noise current in(t) ; our simple approach does not predict

the amplitude of these fluctuations. When the bias current is reduced from over Is the bias

point follows the high voltage branch down to a second instability point at Ib = Ir which is

called the retrapping current.

c) STATIC HYSTERESIS

The hysteretic behaviour we have just defined is a dynamic hysteresis : it is the dynamics of the

particle already escaped from a well which is stable or unstable. This dynamic hysteresis must

not be confused with the static hysteresis of Josephson junctions often discussed in the

literature. This static hysteresis is associated with the escape of the particle out of the first well.

This escape can either happen by thermal activation over the potential barrier or by

macroscopic quantum tunneling [7]. The escape times for both of these phenomena vary

roughly exponentially with the size of the barrier. At low temperature (EJ >> kBT) and low tilt

of the potential, the escape time out of this first well can be much larger than the relevant

experimental time scale. Escape out of the first well can only occur within the experimental

time scale when the potential is tilted to a point where the height of the barrier is sufficiently

reduced. Thus, at low enough temperature, the bias current corresponding to this tilt of the

potential can become larger than the current Im, provided that Im < I0. Under these conditions,

when the particle escapes, it produces a switching of the system to a stable finite voltage state

given by the intersection of the load line of the source (drawn from the point of the V = 0 axis

at which the particle escaped) with the characteristic. This implies that at sufficiently low

temperatures the experimental behaviour of a junction can be hysteretic even though its IJ -V

characteristic is not hysteretic in the sense given in b) (case of resistively shunted junctions

with high enough quality factor), and the hysteresis cycle can be widened if the set-up is

already intrinsically hysteretic. In the case of experiments on small junctions (E k TJ B>>/ ),
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98 Switching Current of Small Josephson Devices IV.B.

activation of the particle out of the well usually happens on a time scale much shorter than the

characteristic experimental time scale and such a static hysteresis is not observed.

B. Application to non-resistively-shunted junctions

In the following we will develop our analysis of the dynamics of the system in the case where

the junction is not shunted at DC, that is where Y(ω = 0) = 0 (The case of the shunted junction

has been thoroughly studied in the past [1,2]). As we will see, for this biasing scheme the

behaviour of a Josephson junction is essentially hysteretic. For the purpose of definiteness and

simplicity, we will suppose that the admittance y(ω) can be described by the series combination

of a capacitor C and a resistor R as indicated in Fig. 5. This specific model of the

electromagnetic environment is easy to implement experimentally. In this configuration thermal

fluctuations can be modelled by a noise current source i'n(t) in parallel with the resistance. The

noise current i'n(t) verifies :

′ ′ =i t i k TR tn n B( ) ( ) ( )0 2 δδ

(δδ(t) is here the Dirac delta function, not the phase).

The equations of dynamics (equivalent to Eq. (2)) of the system shown in Fig. 5 are given by

the coupled first order differential equations :

cv I i t
u v

R
I fb n& ( ) ( )= + ′ + − − ′0 δ (3a)

Cu
v u

R
i tn& ( )= − − ′ (3b)

ϕ δ0
& = v (3c)

where we have three time-dependent variables, δ(t) the phase of the junction, v(t) the voltage

across the junction and u(t), the voltage across the capacitance C (see Fig. 5). One can

eliminate u and v between the equations to obtain a third-order differential equation in δ which

is still equivalent to (2) :

cI
b v(t) I

0

i(t)i'
n
(t) R

Cu(t)

Fig. 5. Simple model of the environment of an unshunted Josephson junction.
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IV.B.1 Large friction limit 99

RCc C c RCI f I f I RCi tb nϕ δ ϕ δ δ δ δ0 0 0 0
&&& ( ) && ( )& ( ) & ( )+ + + ′′ + ′ = + ′ . (4)

In contrast with (2), this latter equation is local in time but the price we have paid is that it is

now non-linear. In absence of the friction terms in & &&&δ δand , the “plasma frequency” of the small

oscillations of the phase at a local minima of the potential is

ω
ϕp

I

C c
=

+
0

0a f
(5)

Using this characteristic frequency we can define a quality factor Q for the motion of the phase

in the potential

Q
RC p

= 1

ω
. (6)

In the following, we further restrict our analysis to two extreme cases : a “large” friction case

(Q << 1) and a “weak” friction case (Q >> 1).

1. Large friction limit

In this section we further suppose that c << C (this is easily achieved for small-area junctions),

and that the dynamics of the phase is overdamped (Q << 1) which is equivalent to having

RC
RI

>> ϕ0

0
.

Under these assumptions, we can neglect the small capacitance c in the second term of Eq. (4).

Furthermore, at the characteristic frequency ωp, the friction term in &&&δ  in (4) is smaller by c/C

than the friction term in &δ  and it can be neglected. Thus, the small capacitance c does not

affect the results.

v(t)I0

i(t)R

U

Fig. 6. Pure Josephson element biased by an ideal voltage source trough a resistor.
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100 Switching Current of Small Josephson Devices IV.B.1

0 2 4 6 8 10
0.0

0.5

1.0

0.3
1

3

EJ /kBT=∞

IJ /I0

V/RI0

0 1 2 3 4
0.0

0.5

1.0

Imax/I0

kBT/EJ

Fig. 7. IJ -V characteristic of a highly damped Josephson junction, for different temperatures.
Inset: temperature dependence of the maximum of the IJ -V characteristic. For an ideal
current bias, this corresponds to the switching current Is.

Going back to the system of first order differential equations (3) these considerations show

that v is not a real degree of freedom of the system. The system (3) can be simplified as

ϕ δ δ0

0 0RI

RI u Ri t

RI
fb n&

( )
( )= + + ′ − ′ (7a)

RCu v u& = − (7b)

These latter equation clearly show that the characteristic evolution time of u is much larger

than that of δ. It is therefore possible to treat u as a quasistatic quantity in (7a). Equation (7b)

can subsequently be integrated using the average value of v = ϕ0
&δ  provided by the integration

of (7a). It is important to point out here that the differential equation (7a) is equivalent to that

of a Josephson junction of negligible capacitance connected in series with a resistor R and a

voltage source U = RIb + u. (see Fig. 6). This problem is solved in the literature for the single

Josephson junction (f(δ) = −cosδ) [8]. The current flowing through the junction is given by

I U T I
I E k T

I E k TJ
i J B

i J B
( , ) Im=

L

N
M
M

O

Q
P
P

−

−
0

1 η

η

b g
b g

(8)

where In is the modified Bessel function of complex order and
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IV.B.2 Weak friction limit 101

η ϕ= =U

k TR

U

RI

E

k TB

J

B

0

0
.

In this formula, U and T denote the bias voltage and the temperature, respectively. The IJ(V)

characteristic of the junction can be obtained from the relation U = V + RIJ and Eq. (8). Such

IJ(V) characteristics are plotted for several temperatures in Fig. 7. Going back to our current-

biased junction, the load line of the source is horizontal, thus the switching current is obtained

by finding the maximum of the current as a function of V

I T I U T I Vs
U

J
V

J( ) ( , ) ( )= =Max Max .

Note that this switching current depends only on the temperature, and not on the value of the

resistance R (provided damping remains large, of course).

2. Weak friction limit

We now turn to the case where the response time RC of the admittance y(ω) is much shorter

than the inverse plasma frequency (5) of the system, which corresponds to a weak damping

(RCωp<<1). In this limit we can go back to Eq. (2) and make a short-time expansion of the

convolution product :

v t y
v t

k
y

j

k
v t y

k

k

k
k

k

k k− = − =
−

=
−∞

+∞

=

∞

−∞

+∞

=

∞

z ∑ ∑zτ τ τ τ τ τ ωa f a f
a f

a f a f
a f

a f a f
a f

a f~
!

~
!

( )d d
0 0

0 . (9)

Replacing in (2) and using v = &δϕ0, one obtains a differential equation for δ

ϕ δ δ δ0
2

0c C RC I f I i tb n+ + + + ′ = +a f&& &&& ( ) ( )K

where the term in &δ  has vanished since y(0) = 0. The evolution of δ is still that of a particle of

mass (c+C)ϕ0
2 in the tilted potential EJf(δ)−ϕ0δIb but this time with a leading friction term of

the form ϕ δ0
2 2RC &&&. The expansion (9) used here can also be used for other admittances, in

particular for a resistive shunt in which case the friction also has a viscous component.

We will now determine the value of the bias current Im previously introduced in Sec. A.3.a. We

recall that it is defined as the minimum current for which, in absence of thermal fluctuations,

the particle launched at a local maximum of the potential with infinitesimal initial velocity

reaches the next maximum. For currents greater than Im, the energy gained going from one

local maximum of the potential to the next is greater than the energy lost by friction in this

movement : the particle accelerates. As the particle gains kinetic energy, the variations of the

velocity are reduced and, as a consequence, the friction experienced by the particle decreases

(the dc component of the velocity does not dissipate since y(0) = 0): there is an avalanche

effect which gives the hysteretic behaviour of the system.

Let us now give an estimate of the current Im based on the energy balance argument : at the tilt

Ib = Im, the work W of the friction force on an interval [δ0, δ0+2π] going from one local
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102 Switching Current of Small Josephson Devices IV.B.2

maximum of the potential to the next balances the energy gain 2πImϕ0 due to the tilt of the

potential. The work W is given by

W RC=
+

zϕ δ δ
δ

δ π

0
2 2

2

0

0

d &&&.

Since friction is weak, we use the free dynamics of the particle to make the approximate

replacement

&&& ( )&δ
ϕ

δ δ= −
+

′′I

C c
f0

0a f

and the kinetic energy theorem gives

&

( ) ( ) ( )
δ

δ δ δ δ
ϕ

=
− − −

+
2 0 0 0

0

I f f s

C c
mb g

a f

where sm = Im/I0. This gives

W RC
I

C c
f f f sm= −

+
F
HG

I
KJ

′′ − − −
+

z2 0
2 2 0

0

3 2

0 0

2

0

ϕ
ϕ

δ δ δ δ δ δ
δ

δ π

a f
d

0

( ) ( ) ( ) ( )

The energy balance states that W = −2πImϕ0 ; this yields an estimate of Im :

I RC
I

C cm =
+

F
HG

I
KJ

αϕ
ϕ0

2 0

0

3 2

a f
, (10)

where

α
π

δ δ δ δ δ δ
δ

δ π
= ′′ − − −

+

z
2

2 0 0

2

0

d
0

f f f sm( ) ( ) ( ) ( )

is a dimensionless coefficient of order unity which depends on Im through sm. Thus, Eq. (10)

must in principle be solved self-consistently for sm = Im/I0. However, one can show that the

current Im is much smaller than the critical current I0 :

I

I Q

C

C c
m

0
1=

+
<<α

.

This allows us to take sm = 0 to evaluate α, which yields for the single Josephson junction

(f(δ) = −cosδ) :

α
π

δ δ δ
ππ

π
= + =z

2

2
1

4

3

3
d cos cos

and thus,

I

I Q

C

C c
m

0

4

3
=

+π
.
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IV.B.3 I-V characteristics of unshunted junctions for arbitrary damping at zero temperature103

Im
Is

IJ

V

T=0

T≠0

I0

Fig. 8. Approximate form of the zero-temperature and finite-temperature IJ -V characteristic
of a weakly damped unshunted junction.

From this value of Im, the asymptotic behaviour at large voltage and the hysteretic behaviour of

the system, we can draw a tentative zero-temperature characteristic of the junction (see Fig. 8).

More work is needed to analyse precisely the temperature dependence of this switching

current, but we can try to sketch it here. The voltage scale associated to the thermal

fluctuations is VT = kBTR/ϕ0. We expect thermal fluctuations to round the IJ -V characteristic

on a voltage scale of the order of VT. The switching current Is of the junction is given by the

maximum of the rounded IJ -V curve. Given the flat aspect of the characteristic at low voltage

for weakly damped junctions (see next section), we expect a weak effect of the temperature on

Is up to a temperature of the order of QEJ/kB. If our reasoning is correct we predict that at low

temperatures Is is essentially equal to Im. If true, our reasoning also has important

consequences on the interpretation of experimental results : an apparent saturation of the

switching current at low temperature (before a maybe inaccessible ultra-low temperature

regime where a situation of static hysteresis is reached) is not necessarily the sign of quantum

tunneling.

3. I-V  characteristics of unshunted junctions for arbitrary damping at
zero temperature

We now consider a junction in a circuit corresponding to that of Fig. 5 in the case where the

capacitance c is negligible but for arbitrary quality factor Q RC R CIp= =1 0 0
2ω ϕ . In this

case, one can obtain the IJ -V characteristic at zero temperature by numerical calculation. The

characteristics are obtained by finding the stationary solutions for the motion of the phase. The

characteristics plotted for various Q form a family of curves admitting the Q = 0 curve as high

voltage asymptote in the V/RI0 reduced voltage (Fig. 9). The current Im at which the

characteristic reaches the zero voltage axis decreases when the Q is increased (Fig. 10). The
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104 Switching Current of Small Josephson Devices IV.B.

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

T=0 K
Q=0; 0.2; 0.4;

 0.8; 1.6; 3.2; 6.4

IJ /I0

V/RI0

Fig. 9. IJ -V characteristics of unshunted junctions at zero temperature, for several values of
the damping. The quality factor of the small oscillations of the system are (top curve to
bottom curve) Q = 0; 0.2, 0.4; 0.8; 1.6; 3.2; 6.4. In these coordinates, the curves all admit
the Q = 0 characteristic as high voltage asymptote.

dependence of Im with Q interpolates between the low-Q limit Im/I0 = 1−2πQ2 and the high-Q

limit Im/I0 = 4/3πQ, as shown by the inset of Fig. 10.

Conclusion

We have discussed here the stability of the dynamics of the phase of a Josephson junction using

the notion of I-V characteristic of the junction. Finding the I-V characteristic of a Josephson

junction in its environment is generally a difficult problem, but some features of the

characteristics can be found from general arguments for simple models of environments. Our

main result consists in finding the zero-temperature switching current of unshunted junctions.

We establish that it depends crucially on the damping provided by the environment of the

junction, by a purely classical effect.
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IV.B. Conclusion 105

-1 0 1

-2

0

2

lo
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(s
m

-1
-1

)

log10Q

0.1 1 10

Q

0 5 10
0.0

0.5

1.0

sm

Q

Fig. 10. Dependence of the ratio Im/I0 = sm with quality factor Q where Im is the current at
which the zero-temperature characteristic reaches the zero voltage axis. Inset: log-log plot
showing the asymptotic behaviour of sm at low and high Q. The straight lines correspond to
the limits sm = 4/3πQ and sm = 1−2πQ2 at high and low Q, respectively.
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V.A Sample fabrication 107

V.  EXPERIMENTAL TECHNIQUES

A. Sample fabrication

All the samples were prepared using the shadow mask technique [1,2], with triple-angle

evaporation [3] to produce in sequence : 1) the Al island of the transistor, 2) the Al counter-

electrode of the junctions and finally 3) the Cu normal-metal leads of the transistor which acted

as quasiparticle filters (See Fig. 1 & 2 and Sec. V.B.3). We started with either a bare oxidised

silicon substrate or a custom-made substrate with an insulated ground plane (Fig. 4) which was

used to microfabricate directly on-chip capacitors. These substrates then received two layers of

polymer from which the suspended mask was made [4]. The polymers where sequentially spun

to the desired thickness and baked. The top layer consisted of PMMA (MW : 950k), and the

bottom layer was a PMMA-MAA copolymer. This bilayer was patterned in a scanning electron

microscope, at 35 keV, at a magnification of 5000 for the smallest details and using a dose of

about 2 pC/µm2. The mask was then developed in a solution of MIBK–Propanol-2 (1:3 vol.).

The undercut in the copolymer is adjusted so that the bottom layer can suspend the smallest

details of the mask formed by the remaining top layer. The sample was then placed in an

electron-gun evaporation machine and pumped down to a pressure <10-6 mb. We first

evaporated a 20 nm-thick film of pure Al at normal incidence. The insulating layer of the tunnel

junctions was then grown by a controlled oxidisation of the Al at an O2 pressure of the order of

10-1 mb for three minutes. Next, the counter-electrodes of the junctions were formed by

evaporating 20 nm of Al  at an incidence angle of about 20°. Immediately after, we evaporated

30 nm of Cu at an angle of -20° to form the normal-metal leads of the transistor. The

deposition rate of all the evaporations was regulated at 1.0 nm/s. The sample was then

immersed a few minutes in warm (≈ 35°C) acetone to dissolve the polymers and to lift-off the

metal layers deposited onto the mask. The sample was tested by measuring its tunnel resistance

at room temperature, with an ohmmeter and a 2 MΩ resistance in series to limit the current to

less than ≈100 nA.

A plot of the computer-generated pattern used for the fabrication of the on-chip capacitively

shunted transistor is shown in Fig. 3a. The transistor itself is at the centre of the figure. An

enlargement of this area is shown in Fig. 3b. Each shade in these figures corresponds to one of

the five magnification and e-beam current steps which were used to expose the whole

transistor. A SEM picture of an actual sample is shown in Fig. 2, showing the three images of

the mask. The capacitors defined by the large house-shaped surfaces in Fig. 3a and the

underlying ground plane are 2.5 mm2 in area, they are in the leads of the transistor. The

te
l-0

05
34

35
8,

 v
er

si
on

 1
 - 

9 
N

ov
 2

01
0



108 Experimental Techniques V.A.

1 2

3

1
2
3

Al+oxidation
Al
Cu

Fig. 1. Schematic 3D view of the triple evaporation process trough a suspended mask.

Fig. 2. Scanning electron microscope picture of an actual sample, showing the three images
of the mask at a magnification of 25000. The lighter strips correspond to the copper layer.
The junctions are visible as white dots at the overlap of the strips in the centre of the picture.
The supernumerary isolated islands which result from the triple evaporation process have no
influence on the behaviour of the device.
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V.A Sample fabrication 109

1 mm

a)

1µmb)

Fig. 3. a) Computer-generated pattern sent to the scanning electron microscope to expose the
mask. The various shades correspond to different magnifications steps and current doses. b)
enlargement by a factor of 250 of the centre of a), showing the smallest details of the mask.

capacitances of the capacitors are calculated using the parameters of the Si3N4 insulating layer

(εr ≈ 7, thickness = 1.5 µm); this yields ≈100 pF per capacitor. The narrow horizontal strips

constitute two gates which could be used indifferently. Note the high degree of symmetry of

the pattern. This symmetry cancels any mutual inductance between the gates and the leads of

the transistor which were suspected to cause resonances in the electromagnetic environment in

te
l-0

05
34

35
8,

 v
er

si
on

 1
 - 

9 
N

ov
 2

01
0



110 Experimental Techniques V.B.

Imaging layer : PMMA 60 nm

Undercut layer : Copolymer  600 nm

Substrate : oxidized silicon

Ground Plane : Gold 200 nm

Insulating layer : Si3N4 1.5 µm

a) b)

Fig. 4. The two types of substrates used for the fabrication of the transistor. a) standard
oxidised silicon substrate (500 nm thermal oxide) with the two polymer layers used to make
the suspended mask. b) Improved substrate which incorporates a ground plane entering in the
fabrication of the on-chip capacitors.

a previous design of the mask. In one sample (#13), the copper layer was replaced by a spin-

glass alloy (Cu-Mn, 2%wt Mn) to increase dissipation in the environment and to prevent

proximity effect in the normal-metal (see Sec. V.B.1).

B. Experimental setup

Once fabricated, the sample was glued onto a small copper plate using silver paint. The plate

itself was mounted on an integrated circuit socket. The pads of the circuit were connected to

the pins of the socket using silver paint and copper wires. One of the sockets we have used

also was fitted with a coaxial line connected directly on-chip for the AC Josephson effect

measurements. The socket was then plugged into a connector in the dilution refrigerator. The

copper plate supporting the sample was thermally anchored to the mixing chamber using a

copper braid. Two concentric copper shields anchored to the mixing chamber of the

refrigerator surrounded the sample. All the leads running from room temperature to the sample

were made through carefully filtered coaxial lines (see Fig. 5). On each of the bias line,

measurement line and gate line, a typical attenuation of 120 dB of the microwave noise was

achieved by using microfabricated dissipative meander-line filters which were developed in our

lab and which are described elsewhere [5]. The bias line incorporated a mechanical switch in a

shielded box at 4K with which we could change the source impedance from 12 MΩ to 30 kΩ,

depending on what type of measurement was desired. The voltage across the sample was

amplified using a battery-powered low-noise pre-amplifier (Ithaco model 1201), from which it

was sent to the data acquisition apparatus. The current was not measured directly in this setup,

it was rather calculated using the input voltage at the top of the cryostat, the measured voltage

on the sample and the predetermined values of the resistors used in the bias line (see Fig. 6a).
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V.B Experimental setup 111

We did the measurements of the switching current of the transistor in the high source

impedance configuration (see Fig. 6c). Starting from the superconducting state of the

transistor, we applied a current ramp to the transistor. We determined the switching current by

measuring the time it took for the voltage across the transistor to reach a threshold value,

corresponding to the switching of the transistor to a non-superconducting state. Both the

synchronisation signal of the ramp and the signal coming from the pre-amplifier were used to

trigger a high-speed timer (Philips model PM6654C) which measured the elapsed time between

the two trigger signals. The value of the switching current was then calculated from the

parameters of the ramp and the bias line. The whole measurement of a modulation curve of the

transistor was automated : a computer program controlled the gate voltage (Keithley source

model 230) and acquired the time measurement via an IEEE link.

The other biasing mode was used to record the I-V characteristics of the sample (see Fig. 6b).

It was especially useful to observe resonances at finite voltages in regions where the current

bias scheme is unstable. This imperfect voltage bias had also the advantage of being

intrinsically stable (barring hysteresis of the sample, of course) as compared to the usual

"perfect" voltage bias. Such a bias set-up can in principle be achieved with a current amplifier

using the virtual ground technique. This virtual ground is usually implemented by a feed-back

system at ambient temperature. This type of feed-back system always realises a trade-off

between filtering of the noise in the feed-back loop and the time constant of the feed-back

which both limit the stability of the voltage on the sample. In our setup however, the more

filtering you apply, the less noise you have. The counterpart is that in our setup you are

restricted to using rather high source impedances. This is because if you use a small source

impedance the current is calculated by subtracting numbers of the same magnitude : the

absolute accuracy of all the measurements limits your precision, and, more important, the

signal-to-noise ratio decreases.te
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300 K

1 nF
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VgVb

12.1 MΩ
112 kΩ

5.20 kΩ

93.4 Ω 24.5 kΩ

3.06 kΩ

1.70 kΩ

Fig. 5. Schematic of the electrical wiring of the experiment inside of the dilution refrigerator.
All the lines consists of coaxial cables, except the twisted-pair cable going to the preamplifier
which itself is inside a screening tube. The square elements marked F are custom-made
dissipative microwave filters (see text). The bias line (driven by the voltage source Vb) could
either be used as an almost ideal DC current source (switch open) with an impedance of 12
MΩ or as a source with an impedance of ≈30 kΩ (switch closed). The configuration of the
microwave line shown here corresponds to the latest experiments (samples 9-13) where we
tried to produce fractional Shapiro steps by modulating the gate voltage (see Sec. V.C.2.b).
The low attenuation on the microwave line (left) was needed to compensate for the small
value of the coupling capacitor on-chip, but did not add any significant noise.
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Fig. 6. a) Principle of the electrical measurements performed on the samples. The voltage Vm
measured by the pre-amplifier of gain G corresponds to the voltage V across the sample plus
the voltage drop across the resistance RF of a filter. The current flowing through the sample
is obtained from the voltage drop across the resistance RS. b) The recording of an IV
characteristic was done by the acquisition of the raw voltages delivered by the ramp
generator and the pre-amplifier followed by a post-treatment on a computer. c) The recording
of the switching current data was entirely automated (see text).
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VI.A. Overview of the I-V characteristic 115

VI. EXPERIMENTAL RESULTS

A. Overview of the I-V  characteristic

Before going into the details of the experiments, let us first give an overview of the general

features present in the I-V characteristic of the transistor. The typical I-V characteristic of a

transistor is presented in Fig. 1. It resembles strongly that of two large (i.e. large capacitance,

small charging energy) Josephson junctions connected in series in that it shows a pronounced

gap for |V| < 4∆/e and a nearly vertical “supercurrent” branch at V = 0 .

-0.8 -0.4 0.0 0.4 0.8

-10

-5

0

5

10

"JQP" resonance

small voltage resonances

supercurrent branch

V (mV)

I 
(n

A
)

gap ≈ 4∆/e

Fig. 1. Main features of a typical I-V characteristic of a superconducting single electron
transistor with the main features outlined. The acronym JQP stands for “Josephson plus
Quasi-Particle”. This conduction process is described in the text. (Data from sample 13,
taken in the low-impedance bias mode).

One notices however the presence of a broad resonance in the characteristic at V ≈ 2∆/e which

corresponds in large junctions arrays to the switching of the Josephson junction with the

second smallest critical current. This resonance was first observed and analysed by Fulton and

Dolan who called its mechanism the “Josephson plus quasiparticle cyclic process” [1]. It results

from a conduction process involving the presence of quasiparticles in the island, these

quasiparticles acting as “catalyst” for electronic transfer.
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Fig. 2. Current-Voltage characteristic of a transistor with a nearly ideal current bias. One
notices the large hysteresis loop. The similarity of the JQP resonance with the 2∆/e plateau
present in the I-V characteristic of two large Josephson junctions (see Fig. 3) is much more
pronounced in this measurement of the characteristic. (Data from sample 13)

2∆/e 4∆/e

Ic1

Ic2

V

I

Fig. 3. Schematic of the I-V characteristic of two large Josephson junctions connected in
series and biased by an ideal current source. When the critical current IC1 of the weakest
junction is reached, the system switches to a voltage plateau at 2∆/e corresponding to the gap
of a single junction. When the bias current is increased further, one reaches the critical
current IC2 of the second junction and the voltage switches to 4∆/e, the sum of the gaps of the
two junctions.
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Fig. 4. An example of modulation of the switching current with the gate charge. (Data from
sample 13).

The essential difference with a system of large junctions however, is the fact that the whole

characteristic is modulated by the gate voltage. The most spectacular modulation is that of the

supercurrent branch which was not observed in early experiments on the transistor [1,2,3,4].

We call the maximum supercurrent that can flow through the transistor, the switching current

of the transistor. For a bias current exceeding the switching current, the transistor switches

rapidly to a finite voltage state, owing to its hysteretic behaviour (see Fig. 2 and Chap. IV).

The variations of the switching current as a function of gate voltage is shown in Fig. 4.

This gate-voltage modulation is 2e-periodic with respect to the charge present on the electrode

of the gate capacitor. The 2e-periodicity is a manifestation of the odd-even asymmetry of the

island of the transistor. It corresponds exactly to the 2e-periodicity of the staircase of the

superconducting single electron box experiment [5]. As we shall see, our experiments have

proven that the existence of a sizeable supercurrent branch is tightly connected to perfect 2e-

periodicity. In previous experiments on the transistor [1,2,3,4], perfect 2e-periodicity had

never been achieved and the supercurrent remained orders of magnitude smaller than

theoretical predictions, as illustrated by Fig. 5. Our experiments provide a coherent explanation

for these features and reconcile the former experiments with the theory. Our results further
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118 Experimental Results VI.A.

Fig. 5. Current-voltage characteristic of a superconducting single electron transistor of the
Delft group (reproduced from Ref. 3, with permission) for two values of the gate charge at 10
mK. The modulation of the amplitude of the supercurrent peak (leftmost resonance) is plotted
in the inset (lower curve). The modulation is e-periodic in the gate charge and the maximum
amplitude of the supercurrent (indicated by the scale of the main figure) is much lower than
the theoretical prediction ( ≈5 nA for this sample whose total tunnel resistance was 58 kΩ).
The arrow indicates the position of the "Coulomb gap for Cooper pairs" which is what we call
the first order resonant Cooper pair tunneling process (see Sec. C.1).

demonstrate the role played by the dissipation in the electromagnetic environment of the

transistor on the experimental critical current of the device. These points are explained in detail

in the following section.

We have also analysed the features of the transistor at finite but low voltages. First of all, far

enough from V = 0, the modulation with the gate charge becomes e-periodic. The cross-over to

e-periodicity occurs when the transport voltage can provide the odd-even free energy

difference, that is when V D T H e~ ( , )> . In the voltage region comprised between the

supercurrent branch and the “JQP” peak, we have analysed the mechanisms of the resonances

that appeared in the I-V characteristic. Such resonances have always been observed previously

in the characteristics of the transistors (see e.g. Fig. 5), but their variations with the gate

voltage remained unexplained. Some resonances were moving with the gate voltage while

others were only changing in amplitude but none could unambiguously be associated to a given

phenomenon. By controlling the electromagnetic environment of the transistor we have

established that fixed resonances are “parasitic” resonance in the impedance of the

environment. In one instance we have used these fixed resonances as frequency “markers” : we
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VI.B.1 Switching current vs. critical current 119

interpreted the doubling of the voltage at which these frequencies appeared as a signature of a

Zener effect (see Sec. C.4). We will also present measurements of AC Josephson effect.

In samples with a clean electromagnetic environment we could observe the gate voltage

dependent resonances with unprecedented accuracy. These resonances are caused by what is

known as “resonant Cooper pair tunneling”. These resonances form a hierarchy of which the

first three orders have been observed. These resonances are also a way to measure the charging

energy of the island. This will be explained in Sec. C.1

 B. Modulation of the supercurrent

In a current-bias set-up, the transistor displays a hysteretic behaviour when the current is

cycled (see Fig. 2). When the current of the source is ramped from zero, the I-V characteristic

first follows the superconducting branch, and then at a given value of the source current, it

suddenly “switches” to a large voltage. This defines the switching current of the transistor. The

I-V characteristic forms a large hysteresis loop : the current must be reduced to nearly zero to

bring the transistor back in its superconducting state. The repetitive measurement of the

switching current in the same conditions usually yields a peaked distribution (see Sec. B.2)

which in a first approximation can be characterised by a single number.

1. Switching current vs. critical current

For all the samples except one1, the modulation of the measured switching current was 2e-

periodic and in qualitative agreement with the theoretical prediction : its shape was

qualitatively correct and the aspect ratio of the peaks varied in agreement with the parameters.

However, in the first samples, the switching current was quantitatively well below the

theoretical critical current. By microfabricating a specific on-chip electromagnetic environment

for our latter samples (see Chap. V), we were able to prove that the ratio between the

switching current and the critical current is fixed by the dissipation in the electromagnetic

environment of the transistor.

a) EXPERIMENTAL EVIDENCE OF THE ROLE OF DISSIPATION ON THE SWITCHING

CURRENT

To test the role of the environment on the switching current, we made samples where the

electromagnetic environment of the transistor was well controlled by construction. It

incorporated a large capacitor in the leads of the device and parasitic resonances in the

                                               
1 One sample out of 13 was completely e-periodic (see appendix B). We explain this by a finite number of

excited states inside the BCS gap, down to very low energy. What surprises us is that this problem does not

occur more frequently.
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120 Experimental Results VI.B.1

environment were suppressed by geometrically cancelling most mutual inductances. The

electromagnetic environment of the transistor in these samples is well described by a simple

lumped element model (see Fig. 6).

With this arrangement we were able to prove that the dissipation in the environment plays a

crucial role in fixing the switching current. In our arrangement, dissipation was exclusively due

to the resistance of the normal-metal quasiparticle filters. This resistance was of a few ohms

when the normal metal was pure copper. When we cooled these samples to the lowest

temperatures however, superconductivity could contaminate the copper by “proximity effect”,

the effect of which was to reduce this resistance. When we measured the switching current of

these transistors, we saw it decreasing with temperature, as expected from a reduction of the

dissipation (see Sec. IV.B.3 and Fig. 7). We could check that this was indeed proximity effect

by applying a small magnetic field. This magnetic field destroyed the proximity effect in the

copper and spectacularly increased the switching current.

R

C Cj I0I

Fig. 6. Realistic lumped element model of the electromagnetic environment of the transistor
for the samples with microfabricated capacitors on chip. The cross represents the pure
effective Josephson element equivalent to the transistor and Cj the capacitance of the effective
junction. The large capacitance was C = 1.8 nF (which consisted of 50 pF on-chip plus the
rest on the sample mount in the refrigerator) and R was the resistance of the normal-metal
leads of the transistor. The typical series capacitance Cj of the transistor is of the order of
10-15 F and can be completely neglected.
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Fig. 7. Influence of the dissipation in the environmental impedance on the switching current
of the transistor. In a sample where the normal-metal leads were made of pure copper,
superconductivity penetrated the normal metal. This phenomenon known as “proximity
effect” reduced the resistance of the metal and, as a consequence, reduced the switching
current of the transistor. This effect is clearly visible below 120 mK. When a moderate
magnetic field was applied to the sample to prevent development of the proximity effect, the
switching current spectacularly increased (open symbols). (Data from sample 11. The effect
was also observed with sample 8).

b) SWITCHING CURRENT FOR STRONG DAMPING

In sample 13 we replaced the pure copper of the normal-metal leads by a spin glass alloy (Cu-

Mn, 2% wt Mn). The presence of the Mn spins forbade the development of any proximity

effect, thus the resistance of the normal metal remained constant with temperature. Moreover

the resistance being that of an alloy, it was then much higher than for the pure copper

previously used : 400 ohms instead of a couple of ohms.

A plot of the low-temperature modulation of the switching current is shown in Fig. 8. and the

experimental dependence of the switching current versus the temperature is shown in Fig. 9.

One clearly sees that the low temperature reduction of the switching current observed in Fig. 7

has been suppressed by using the spin-glass alloy, as expected.
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Fig. 8. Low temperature switching current (dots) and the critical current of a transistor (top
curve, no fitting parameters), as a function of the gate charge Qg = CgVg for sample #13. The
critical current which is the theoretical maximal supercurrent would correspond to the
switching current at T=0. Our theory of the switching current for overdamped Josephson
junctions permits the calculation of the switching current at finite temperature (dots
T = 16 mK; dashes T = 50 mK). The T=16 mK data can only be fitted if one supposes the
temperature of the electromagnetic environment to be 50 mK (dashes). This hot-electron
effect was to be expected because of Joule effect in the normal-metal filters.

In this sample we had C = 1.8 nF, Cj ≈ 0.5 fF, R = 400Ω and 4.0 < IC(ng) < 11.4 nA. The values

of IC(ng) were calculated using the three-band model of the transistor described in Sec. III.B.4.

This model was applied using the experimentally determined value of EC/kB = 660 mK (see

Sec. III.D.5) and the value EJ/kB = 520 mK of the Josephson coupling for a single junction of

the transistor calculated from the Ambegaokar-Barratoff formula corrected of charging effects

(see Sec. II.C). Writing the electrical equations of the circuit, one sees that Cj is unimportant

and that the characteristic frequency of the small oscillations of the phase in its potential is

ω
π πΦ
0

02 2
12 5 21 5= −I

C
C ~ . .  MHz.

The quality factor for these oscillations is

Q
RC

= −1
0 01 0 02

0ω
~ . .
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Fig. 9. Comparison of experimental value of the switching current with the theory of strongly
damped Josephson junctions plotted as a function of the thermometer's temperature. At high
temperature, a very good agreement is obtained without any adjustable parameter. The
deviation appearing below ~60 mK can be explained by heating effects in the sample (see
text). Data from sample 13.

Thus, the dynamics of the phase in this sample was strongly overdamped. If we suppose that

the shape of the ground band of the transistor is not important, we can calculate the switching

current as explained in Sec. IV.B.1 for an overdamped single junction. The full line in Fig. 9

and the theoretical Is(ng) curves in Fig. 8 where obtained using this theory. Agreement between

the theory and the experiment is very good at temperatures above ~60 mK. Below this

temperature the discrepancy can be explained by a hot electron effect in the sample. One could

estimate the electronic temperature in the sample using the formula [6]

P V T Te ph= −Σ 5 5d i . (1)

In this formula, P = RI2 is the power given to the electrons, V is the volume of the metal,

Σ ≈ 2 nWµm-3K-5 is a material dependent parameter which measures the coupling of electrons

with phonons, Te is the (unknown) electronic temperature and Tph is the phonon temperature

which is equal to the thermometer's temperature. The volume of metal to take into account is

here an ill-defined quantity which is certainly much larger than the volume of the resistors. A

rigorous treatment would require solving the differential equations of heat in the geometry of

the sample. However, putting some realistic figures in Eq. (1), one sees that it is actually very

likely that electrons are hot enough to explain the deviation of the data at low temperature.
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124 Experimental Results VI.B.2

Note that by going to this overdamped situation we have reached the maximum switching

current which can be achieved in a non-shunted system : no modification of the environment

can further increase the switching current at any temperature (apart from reducing the heating

effect, of course).

c) SWITCHING CURRENT FOR LOW DAMPING

In our first samples the impedance of the electromagnetic environment of the transistor was

not controlled, but one can reasonably assume that the friction was very weak at the plasma

frequency of the phase. Due to our lack of knowledge of the admittance in parallel with the

transistor, we can simply predict along the lines of reasoning exposed in Sec. IV.B.2 a scaling

of the switching current with the effective Josephson energy of the transistor :

I Es ∝ 0
3 2

This scaling agreed well with experiments (see Sec. 3a below and paper in appendix A).

2. Fluctuations of the switching current and noise measurements

The fluctuations of the switching current on repeated measurements have several origins : (i)

In the parameter domain where we were working, the switching of the transistor was normally

thermally activated, thus thermal fluctuations could widen the distribution. (ii) The switching

current being very sensitive to the charge the island “sees”, any movement of charge in the

vicinity of the island (e.g. noise in the gate voltage) yields fluctuations of the switching current.

In one occasion we observed that such a charge noise was the dominant contribution to the

width of the distribution of Is : At a given value of ng the width of the nearly Gaussian

distribution of Is was proportional to d〈Is〉/dng (see Fig. 10). From the proportionality constant

one can express the noise as a standard deviation of the gate charge of the order of 4 10-3 e.

From the absence of correlations in successive measurements at a repetition rate of 45 Hz, we

conclude to a faster dynamic of the noise mechanism. This noise was slowly decreasing with

time, on the scale of days, indicating that some relaxation was going on and proving that the

noise was not simply due to poor filtering. We interpret this charge noise as rapid movements

of charges, probably located in the substrate of the sample.
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Fig. 10. Top right panel : Histograms of switching current for sample 13, taken at gate
voltages indicated by the black squares on the top left panel. On the top left panel we have
also plotted the average switching current as a function of the gate charge. Bottom panel :
Plot of the derivative of the average switching current with respect to the gate charge (dots +
line; left axis) and width of the histograms (black squares; right axis) vs. gate voltage. The
width of the histograms is nearly proportional to the derivative of the average switching
current with respect to the gate charge. This is consistent with a width of the histograms
originating in rapid motion of random charges near the transistor.

Another conclusion of these measurements is that the intrinsic histogram width mentioned in

(i) is very narrow (not larger than the histogram at ng = 0). This narrow distribution is an

essential piece of information on the finite temperature switching process (see Chap. IV.).

Here, we will rather translate this width in terms of limit performance of the transistor used as

an electrometer. By analogy with optics, we can define the charge resolving power of the

transistor as the charge noise figure given above. Note that this resolving power only gives an

indication on the performance of the device and that the actual limit is only imposed by the

number of measurements and therefore by the amount of time available to measure a given

charge. If we suppose that the narrowest histogram we observe (at ng = 0) is fixed by the actual

intrinsic fluctuations of the switching current of the transistor, and if a fabrication technique
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126 Experimental Results VI.B.3

could suppress the charge noise we observe (perhaps by fabricating a suspended island), we

can estimate the limit resolving power of such a transistor to be ≈ 3 10-4 e.

If the transistor was actually going to be used as an electrometer, it would certainly be

interesting to make it non-hysteretic. This can be done by placing a resistive shunt between the

source and drain electrodes. This non hysteretic superconducting single electron transistor

should offer better performance than its normal-metal counterpart (10-4 e Hz  proven

sensitivity [7]), owing to the higher current and lower output impedance it presents.

3. Poisoning of the supercurrent

We have presented the zero-temperature picture of the poisoning of the supercurrent

introduced by Matveev et al. [8] in Sec. III.C. We will here discuss how this phenomenon may

appear in experiments due to dynamic effects. We will present experimental results in one of

these cases.

In the Matveev et al. description of the phenomenon, the parameter which controls the parity

effects in the island of the transistor is ∆/EC. However, at finite temperature we know that the

equilibrium probability of odd or even occupation of the island is governed by the odd-even

free energy difference D(T,H) in the island [4,5], not the gap2. Moreover, what is measured

experimentally is a switching current, not exactly the critical current. As already explained in

Chap. IV, the process during which the effective junction switches results from the dynamics

of the system. To give a detailed prediction of the effect of quasiparticle poisoning on an

experiment, it is necessary to know the timescales on which the various phenomena occur.

Thus, we introduce the characteristic timescales τs of the switching of the transistor to finite

voltage, τoe of the odd-even equilibration time in the island, and τr the ramp time of the current

during a measurement of the switching current. We can envision several simple limit cases, as

indicated below :

i.   τoe >> τr >> τs

The parity changes in the island occur on time scales greater than the time it takes to measure

the switching current. A given measurement will give the switching current corresponding to

the parity at the moment the measurement is performed. If the measurements are repeated on a

time scale greater than τoe we will obtain two values of the switching current corresponding to

the odd or even occupancy of the island. The ratio of the frequency of these measurements will

be given by the Boltzmann factor exp(-D(T,H)/kBT).

ii.   τr >> τoe >> τs

At any value of the current, the island samples both the odd and even state. If at one given time

                                               
2 At zero magnetic field, the odd-even free energy difference D(T,H) is approximately given by

D T k T NB( , ) ln0 = −∆

where ∆ is the gap of the superconductor and N=∆ρ, ρ being the density of states in the island.
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VI.B.3 Poisoning of the supercurrent 127

it is possible for the transistor to switch, it will switch because this is the fastest phenomenon.

Thus, the switching current will correspond to the minimal critical current of the odd or even

state of the island. This predicts a weak e-periodic modulation of the switching current exactly

as if the gap did not exist. The effect of poisoning is extreme.

iii.   τr >> τs >> τoe

In this case, during the process of switching the phase can be thought to evolve in an average

potential corresponding to the odd and even occupation of the island in a ratio given by the

Boltzmann factor exp(-D(T,H)/kBT). The switching current is then a sort of average between

the switching which would occur for pure even or odd occupation of the island. The shape of

the gate charge modulation of the switching current at low temperature and low magnetic field

is a rounded version of that predicted by Matveev et al. At higher temperatures and magnetic

fields, the poisoning leads to a complex modulation pattern of the switching current with

respect to the gate charge, with a non monotonous dependence in temperature. This is the case

encountered in the paper reprinted in appendix A. In the following section we present a

complete set of data showing the manifestation of this effect.

a) EXPERIMENTAL OBSERVATION OF THE POISONING

We present here data of switching current modulation from sample #5 which demonstrate the

effect of quasiparticle poisoning of the supercurrent as a function of temperature and magnetic

field. The figures presented here constitute a superset of those presented in the article given in

appendix A. The theoretical curves accompanying the data were obtained using the argument

of average potential for the phase presented in point iii) above and using a scaling Im ∝ IC
3/2 for

the zero-temperature switching current Im of the sample. This scaling corresponds to a weak

damping of the phase which is relevant for this sample (see Sec. IV.B.2). In this weak friction

limit the switching current is supposed to depend weakly on temperature, hence we compare

directly the experimental switching current at finite temperature to Im. For a complete

description of how the experimental curves were obtained, the reader is referred to the article.

It is important to mention that the whole set of theoretical curves presented here are obtained

using a unique set of parameters for the model.
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Fig. 11 A. Modulation of the switching current at T = 65 mK for an increasing magnetic
field. Note the logarithmic scale. The dip appearing at odd integer values of Qg/e
corresponds to the poisoning. These low-temperature data correspond to a rounded version of
the theory of Matveev et al. [8] (see for comparison Fig. 12 of Chap. III.). I m0 is the
maximum switching current (see article).

-2 -1 0 1 2

0.1

1
   65 mK
 105 mK
 144 mK
 205 mK
 253 mK
 359 mKI m

/I m
0

Qg/e

0.1

1
   65 mK
 105 mK
 144 mK
 205 mK
 253 mK
 359 mK

I s 
(n

A
)

Fig. 11 B. Temperature dependence of the modulation of the switching current at zero
magnetic field. Note the complex cross-over from 2e-periodicity to e-periodicity with

te
l-0

05
34

35
8,

 v
er

si
on

 1
 - 

9 
N

ov
 2

01
0



VI.B.3 Poisoning of the supercurrent 129

temperature. It corresponds to the vanishing of the odd-even free energy difference in the
island.
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Fig. 11 C. Temperature dependence of the modulation of the switching current at H = 0.07 T.

-2 -1 0 1 2

0.1

   65 mK
 103 mK
 144 mK
 203 mK
 253 mK
 303 mK
 356 mK

ng

I m
/I m

0

0.1

   65 mK
 103 mK
 144 mK
 203 mK
 253 mK
 303 mK
 356 mKI s 

(n
A

)

Fig. 11 D. Temperature dependence of the modulation of the switching current at H = 0.11 T.
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Fig. 11 E. Temperature dependence of the modulation of the switching current at H = 0.14 T.
Note that at this field the peaks in the modulation move a lot with temperature. Note also that
for this field and the following, the high-temperature modulation is greater in amplitude than
the low-temperature modulation.
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Fig. 11 F. Temperature dependence of the modulation of the switching current at H = 0.16 T.
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Fig. 11 G. Temperature dependence of the modulation of the switching current at H = 0.17 T.
At this field, the low-temperature switching current is already nearly e-periodic. In this
situation, as the temperature increases, the position of the peaks in the switching current
change from half-integer values of Qg/e to integer values of Qg/e.
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Fig. 11 H. Top panels: experimental switching current as a function of temperature for
Qg = 0 and Qg = e. Top to bottom, same field values as in Fig. 11 A. Bottom panels:
theoretical predictions for the same conditions as in top panels. The theory curves reproduce
the strongly non-monotonic temperature dependence found in the experiment at Qg = e for
low fields.
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132 Experimental Results VI.B.3

b) THE PROBLEM OF OUT-OF-EQUILIBRIUM QUASIPARTICLES

The description we have made so far of the experimental consequence of poisoning always

supposed that quasiparticles were at thermal equilibrium. This is not necessarily the case in

experiments. For example, out-of-equilibrium quasiparticles can be created by the absorption

of infrared photons by the superconducting electrodes of the transistor, and the relaxation

mechanism of these quasiparticle may be quite slow. If there are many such out-of-equilibrium

quasiparticles, it is like having no gap for the excitations and then the poisoning is extreme :

one measures a weak e-periodic modulation of the supercurrent.

As we understand it now, all the previous experiments on the superconducting transistor where

more or less plagued with this problem of poisoning by uncontrolled quasiparticles. This was

recently checked by Hergenrother et al. : by improving the screening of the sample in their

dilution refrigerator they observed a better ratio of odd to even peaks [9].

In our experiments on the transistor we avoided this problem of out-of-equilibrium

quasiparticles by fabricating our samples with normal-metal leads very close to the island (see

Chap. V). This normal metal acted as a trap (or a filter) for out-of-equilibrium quasiparticles :

such a quasiparticle entering the normal metal decays in energy and cannot subsequently re-

enter the superconductor. Very recently the same quasiparticle filter technique was applied

successfully in Delft : the modulation of a transistor became 2e-periodic.

With our samples, when we reduced the odd-even free energy by applying a magnetic field

and/or raising the temperature we could recover an e-periodic modulation pattern of the

switching current corresponding to a complete poising (see previous section). For some

parameters we could obtain a modulation pattern of the switching current very similar in shape

and amplitude to the modulation of the supercurrent peak observed in previous experiments

[3,4] (see Fig. 12). This observation also seems to confirm the hypothesis of poisoning in

former experiments.
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Fig. 12. Top panel : modulation of the switching current of sample #5 at T=65 mK and H=0
(open squares) and T=203 mK and H=0.11 Tesla (black dots). Bottom panel : magnification
of the T=203 mK and H=0.11 Tesla curve. The magnetic field and the temperature
suppressed the odd-even free energy difference : the modulation pattern became e-periodic
with a very weak amplitude, corresponding to a complete poisoning. This modulation pattern
is strikingly similar to that observed in previous experiments (see bottom curve of inset of Fig.
5 and top curve of Fig. 2 of Ref. 4)

c) POSSIBLE APPLICATIONS

As already mentioned, out-of-equilibrium quasiparticles can be created by infrared photons

incident on the superconductor. It is thus possible to envision the fabrication of a very sensitive

(ideally single-photon) IR detector based on this effect : the leads of the transistor serve as

antennas and the transistor is biased just below its switching current at Qg = e. When a photon

strikes the superconductor, it creates two quasiparticles. If one of them reaches the island

before recombination the transistor switches to a large voltage (see Fig. 2) : the system is its

own amplifier! One can then rearm the detector by cycling the current to zero. For a correct

operation, the detector must be cooled well below the odd-even symmetry breaking

temperature (~250 mK for Al islands), its environment must be cold enough not to dazzle it,

and the photon flux to measure must be weaker than the relaxation rate of quasiparticles in the

device.
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134 Experimental Results VI.C.1

C. Finite Voltage

1. Resonant Cooper pair tunneling

Our understanding of the gate voltage dependent resonances of the transistor is based on the

resonant tunneling of Cooper pairs described in Sec. III.D. In order to compare our experi-

mental results with our model of the process, we must first describe precisely how we made

the measurement of these resonances because it has an important consequence on the analysis

of the data. We measured these resonances with a bias source of intermediate impedance

(≈30 kΩ bias impedance, see Chap. V). The bias source was ramped down to zero, to get as

close as possible to the supercurrent branch. Ramping the source up would have masked the

lowest voltages because of the hysteresis of the characteristic. This method together with the

source impedance prevented the correct observation of the narrow resonances predicted by our

model, because of the intrinsic instability of the bias scheme in parts of the I-V characteristic

where the differential conductance dI/dV is negative and greater in absolute value than the

source conductance (see Fig. 13).

Thus, if our model is correct, we can at best observe I-V characteristics with truncated

resonances. We have simulated such a truncation in Fig. 15 & 14, using the parameters of the

samples which gave the measures plotted in the same figures. The results are semi-

quantitatively correct, except near ng = odd integer where our model is known to be incorrect.

In Fig. 15 one clearly sees the current peaks due to the various orders of resonant tunneling of

Cooper pairs (up to the fifth order), with a position in agreement with the theory. High order

resonances had never been observed so clearly in previous experiments (see e.g. Fig. 16 and

Ref. 10).

voltage

current

scanning
directioninstability

slope = -(conductance of the bias source)

Fig. 13. The imperfect bias source we used could not reveal the sharp resonances predicted
by the theory because of an intrinsic instability.

te
l-0

05
34

35
8,

 v
er

si
on

 1
 - 

9 
N

ov
 2

01
0



VI.C.1 Resonant Cooper pair tunneling 135

 

0 100 200
0

1

2

3

ng=0

I 
(n

A
)

V (µV)

0 100 200
0

1

2

3

I 
(n

A
)

V (µV)

Fig. 14. Comparison of experimental results of sample 13 (top, -0.5 < ng < 1.0) with our
model (bottom, -0.5 < ng < 0.5, the Josephson energy is rather large so that the model is only
valid in a limited range around ng = 0), with no other adjustable parameter than the charging
energy. Experimental results are less marked than what is predicted.
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0 50 100 150 200 250 300
0.0

0.5

1.0

1.5
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I (
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Fig. 15. Left page, top figure : experimental I-V characteristics for several gate charges. A
span of about 2 periods  in the gate voltage is covered. One clearly sees the resonances
corresponding to the resonant Cooper pair tunneling of order q = 1, 3, 5. (Data from sample
7).
Bottom figure : theoretical positions of the resonances in the ng-V plane, at a scale
compatible with the top figure. Heavy lines correspond to the observed resonances in the top
figure for the orders q = 1 (full lines), q = 3 (dotted lines), q = 5 (dash-dot). The dashed lines
indicate the position of the q = 1 resonance corresponding to a loss of the 2e-periodicity
(odd-n states). These resonances are observed experimentally over 100 µV (heavy section of
the dashed lines in the bottom figure).
This page : calculated I-V characteristics with the parameters of the sample of the top left
figure. We have used the model described in Sec. III.D with a truncation of the unstable parts
of the characteristics. A detailed comparison is difficult because of the poor signal-to-noise
ratio for the peaks in the experimental data.
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138 Experimental Results VI.C.2

Fig. 16. Data from the Göteborg group (reproduced from Ref. 11, with permission) showing
resonant Cooper pair tunneling of first order.

2. AC Josephson effect

a) “NORMAL” SHAPIRO STEPS

When the transistor is biased at a finite voltage, if the impedance in the environment of the

transistor is negligible, the phase difference across the transistor evolves linearly in time

according to the Josephson relation dδ/dt = 2πV/Φ0. We suppose that the transistor stays in its

lowest energy band. In this case, the current flowing through the transistor averages to zero. If

a sinusoidal modulation is superimposed on the DC voltage, the velocity of the phase is

modulated and an average current can possibly flow in the device. In particular, when the

Josephson frequency ν = V/Φ0 is a multiple of the irradiation frequency f, the I-V

characteristics develops voltage plateaux which are like the supercurrent branch, but

transposed at finite voltage. These voltage plateaux are called “Shapiro steps”. They

correspond to a locking of the dynamics of the phase on the external frequency. That these are

a replica of the supercurrent branch can be understood by a rewriting of the Hamiltonian at
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VI.C.2 AC Josephson effect 139

finite voltage. We make the hypothesis that the lowest band of the transistor can be replaced by

a sinusoidal band (which is a good approximation near ng = 0) :

H V A EDC J
eff( , ) cos= − δ

with

Φ Ω0

2π
δ& cos= +V A tDC

where A is the amplitude of the microwave modulation and Ω = 2πf its circular frequency.

Integrating this last equation and replacing in the former one yields

H V A E
V t A

tDC J
eff DC( , ) cos sin= − +

L
N
M

O
Q
P

2 2

0 0

π π
Φ Φ Ω

Ω .

The cosine can be expanded using Bessel functions :

H V A E J
A

f
V n t

J
A

f
H V n f A

DC J
eff

n
n

DC

n
n

DC

( , ) cos

,

= −
F
HG

I
KJ

−
F
HG

I
KJ

L

N
M

O

Q
P

=
F
HG

I
KJ

− =

∑

∑

Φ Φ
Ω

Φ
Φ

0 0

0
0

2

0

π

b g

When the voltage is equal to a particular multiple of Φ0 f the corresponding term in the sum

above will give a replica of the supercurrent branch with a coupling energy reduced by a factor

Jn(A/Φ0 f). The other terms contribute by an oscillatory current which averages to zero.

For the data shown in Fig. 17 & 18, we provoked the appearance of Shapiro steps using a

microwave generator and an antenna inside the cryostat. The coupling of the microwaves to

the DC bias line of the transistor was not controlled in this experiment, it depended strongly on

the frequency. A recording of Shapiro steps obtained this way is shown in Fig. 17. We

observed well developed voltage plateaux at voltages multiple of Φ0 f. The data were taken at

Qg = 0 where the ground band of the transistor is nearly sinusoidal and where the transistor

behaved essentially as a single Josephson junction.
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Fig. 17.  Shapiro steps observed under microwave irradiation of a transistor at f = 3.62 GHz.
The gate charge was Qg = 0. The top axis is graduated in units of Φ0 f, the theoretical interval
between the steps. Data from sample 7.

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2 experiment (←↓)
 step 0
 step 1
 step 2
 step 3
 step 4

S
ha

pi
ro

 s
te

p 
am

pl
itu

de
 (

nA
)

Microwave Amplitude (A.U.)

0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0
theory (↑→)

 |J0|3/2

  |J1|3/2

  |J2|3/2

  |J3|3/2

  |J4|3/2

x

| J
n (x) | 3/2

Fig. 18.  Measured amplitude of the Shapiro steps as a function of the microwave amplitude
(left and bottom axis). Some points could not be measured because of the hysteresis of the I-V
characteristic. The data is compared with the power 3/2 of the Bessel functions Jn (top and
right axis). Data from sample 7.
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VI.C.2 AC Josephson effect 141

The data shown here correspond to a sample with a tailored electromagnetic environment (see

Chap. V), but with a rather low damping. For this type of damping we have established that the

amplitude of the supercurrent branch scaled as a power 3/2 of the Josephson coupling energy

(see Chap. IV). Therefore, we expect that the amplitude of the nth Shapiro steps should vary

with the microwave amplitude as |Jn(A/Φ0 f)|3/2. The measured amplitude of the various

Shapiro steps as a function of the microwave amplitude is plotted in Fig. 18, along with the

power 3/2 of the Bessel functions, for comparison. The agreement is quite good in spite of the

crudeness of the description used here.

In samples 5 and 13, the odd Shapiro steps disappeared near Qg = e. This is understood as

Zener effect between the two lowest bands of the transistor. This effect is explained in Sec. 4.

b) FRACTIONAL SHAPIRO STEPS

By connecting the microwave line carefully to one of the gates of the transistor, we tried to

generate fractional Shapiro steps. The idea is to produce a microwave modulation of the gate

charge so that the system follows a trajectory in the {ng,δ} plane which picks mostly positive

contributions to the current. Trace a) of Fig. 19 gives an example of such a trajectory which

would yield the 1/2 harmonic of the normal Shapiro step (the frequency of the microwave

excitation of the gate charge is twice that of the motion of δ in the band).
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ng
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Fig. 19. Trajectories in the {ng ,δ} plane which should produce sub-harmonic Shapiro steps.
The lighter-tinted areas correspond to positive instantaneous current, and the darker to
negative current (the instantaneous current is obtained by taking the derivative of the ground
band energy with respect to δ). The plotted trajectories a) and b) pick more positive than
negative current, thus they should give a Shapiro step. a) would give the Φ0 f/2 step and b)
the 2Φ0 f/3.
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Fig. 20. Possible fractional Shapiro steps observed in sample 5. The microwave frequency
was f = 12.471 GHz. Left panel shows two steps at a 3/4 of the voltage V = Φ0 f of the first
standard Shapiro steps, and right panel shows a step at 1/3 of the first Shapiro step.
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VI.C.3 Fixed resonances 143

We did not succeed to do this in a well controlled manner. In particular, our samples with a

clean electromagnetic environment never displayed these resonances. We observed sometimes

resonances that looked like these fractional harmonics (see Fig. 20) but we could not draw any

conclusions because of several problems :

(i) In these experiments, the coupling of the microwaves was not controlled : we simply used

an antenna to radiate the microwaves inside of the cryostat. In this set-up the microwaves

certainly did not couple exclusively to the gate voltage. Moreover, transmission of the

microwaves was extremely dependent on the frequency and we could only observe this

phenomenon in narrow frequency windows.

(ii) These samples had many low-frequency resonances which could always be interpreted as

an arbitrary fraction of the first ordinary Shapiro step.

(iii) On the contrary, maybe these resonances of the environment participated in stabilising the

phenomenon which otherwise would have been too unstable to be observed.

3. Fixed resonances

Our first samples had an essentially uncontrolled electromagnetic environment. They displayed

resonances in the I-V characteristic whose center voltage was independent of the gate voltage,

but whose amplitude could depend on gate voltage. An example of such resonances is shown

in Fig. 21 where two resonances stand out at V = 40 µV and V = 80 µV. Other resonances are

obviously present in the voltage range 20-60 µV, but none seems to have a constant position

with gate voltage, they are caused by the resonant Cooper pair tunneling. We interpret the two

fixed resonances as self-induced Shapiro steps caused by resonance in the electromagnetic

environment of the transistor : At finite voltage the transistor emits an AC current at the

Josephson frequency in the leads. If the impedance of the environment presents a resonance at

this frequency, it produces a current peak in the I-V characteristic [12,13]. Several facts

support this hypothesis:

(i) The resonances shown in Fig. 21 appear at voltages multiple of 40 µV, as expected for

Shapiro steps at a frequency and its multiples.

(ii) The resonances were highly enhanced by very little microwave irradiation at the

corresponding frequency.
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Fig. 21. Low voltage I-V characteristics of a sample for several values of the gate charge Qg
(each trace has been offset for clarity; about 2 periods of Qg are covered). Resonances
clearly appear at fixed voltages (arrows). Here the resonance at 80 µV corresponds to the
first harmonic of the other one. We interpret these resonances as self-induced Shapiro steps
at f ≈ 20 GHz and 2f. Data from sample 8.

(iii) In samples with carefully designed electromagnetic environments, these resonances did not

appear.

4. Zener effect

Samples 5 and 13 had a peculiar behaviour for gate voltages close to Qg = e mod 2e : It

seemed that the relation between the frequency and the voltage for the AC Josephson effect

was changing.

This was particularly visible on the displacement of fixed resonances of sample 5 of the

environment, as illustrated by Fig. 22a. It was also visible on the AC Josephson effect, for

which the odd harmonics of the Shapiro steps disappeared close to Qg = e (see Fig. 23). This

doubling of the voltage is interpreted as the doubling of the period of the E(δ) relation

corresponding to a Zener effect between the two lowest bands of the transistor (Fig. 24).
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Fig. 22. a) I-V characteristics of a sample, for different gate voltages. A span of a little more
than one period in the gate voltage is covered and traces are offset by 0.09 nA for clarity. The
doubling of the voltage of self-induced Shapiro steps around Qg = e mod 2e is interpreted as
Zener effect between the two lowest bands of the transistor  (Data from sample 5). b) At the
same scale, the hatched areas are domains of the V-ng plane where the Zener probability is
greater than 1/2, assuming perfect symmetry of the junctions.

When the gate charge Qg becomes close to e, these bands tend to pinch at δ = π mod 2π. The

pinching is perfect only if EJ1 = EJ2 and Qg = e, in the other cases the gap between the bands

only reduces to

ε = −F
H

I
K + −2

2
2 11 2

2 2E E
E nJ J

C g( )d i .

A finite voltage V across the transistor corresponds to a given velocity of the phase
&δ π= 2 0V Φ . Zener effect occurs when the phase cannot “take the turn” at the anticrossing of

levels and changes band : if the system does not spend enough time in the vicinity of the

anticrossing, it cannot follow adiabatically the lowest level. The characteristic evolution time of

the state of the system at δ = π is τ = h/ε and the time it spends in the vicinity of the

anticrossing is of the order of ′ = =τ ε δ εΦ πE E VJ J
&

0 2 , where EJ = (EJ1+EJ2)/2 is the

average Josephson coupling energy of the two junctions. One thus expects a crossover from
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Fig. 23. Shapiro steps taken with sample 5 under microwave irradiation at f = 12.465 GHz.
Top panel : Shapiro steps taken near Qg = 0. Steps 1 and 2 are clearly seen. Bottom panel :
near Qg = e steps 2 and 4 are the only one visible. The odd Shapiro could not be observed
near this gate voltage, except at high microwave power where the modulation became e-
periodic. The doubling of the voltage of the steps is interpreted as a signature of Zener
tunneling between the two lowest bands of the transistor (see text).

adiabatic behaviour when τ << τ' to Zener tunneling for τ >> τ'. An exact treatment [14] gives

the probability of Zener tunneling at one anticrossing of the bands :

P
E eVZ

J

= − ′F
H

I
K = −F

HG
I
KJ

exp exp
πτ
τ

πε2

2

For a given voltage, the Zener transitions can occur only if ε is small enough. This means it will

only occur in the vicinity of Qg = e and only if |EJ1-EJ2| is small enough. This explains why the

effect was not visible in all the samples : it requires very symmetrical junctions. When the

Zener probability is close to one, the transistor behaves as if the period of the energy band as a

function of the phase had doubled. In particular, the AC current the transistor emits in the

environment has a frequency divided by two ; it requires a voltage twice as high to emit at the

previous frequency. This qualitatively explains the observations. We will now try to make a

quantitative comparison. Assuming perfectly symmetrical junctions, we can calculate PZ as a

function of the gate charge and of the voltage for the sample of Fig. 22a. For this purpose we

use the independently measured parameters of the sample EJ/kB = 275 mK and EC/kB = 1.0 K.
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δ=t.(dδ /dt)

Fig. 24. Plot of the two lowest bands of the transistor near Qg = e. If the gap between the
bands remains too large or if the velocity of the phase is low, the motion of the phase is
“adiabatic”, following the ground energy band (a). On the opposite, if the gap is small
enough, and the voltage high enough, the velocity of the phase can provoke Zener transitions
(b), doubling the period of the E(δ) relation.

The result of the calculation is shown in Fig. 22b, where the shaded areas correspond to ranges

of gate charge and voltage for which PZ > 1/2. These areas correspond quite well to the

domains where the doubling of voltage is visible in Fig. 22a, with no fitting parameters.

We must point out though, that the observation of Shapiro steps necessitates a non strictly

uniform motion of the phase, contrarily to what we have supposed here. Thus, the preceding

analysis needs to be refined somehow to take this effect into account.
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VII. CONCLUSION

When we started this work the behaviour of the superconducting single electron transistor was

not clearly understood in comparison with its normal-state version. The cause of these

difficulties are now identified : the initial description of the transistor considered only the role

of the charging energy EC and of the Josephson energy EJ whereas two other quantities play a

least as large a role, (i) the distribution of quasiparticles in the superconducting electrodes

described by an effective temperature T * and the related odd-even free-energy difference

D(T *, H) and (ii) the impedance Z(ω) seen by the transistor. By conducting a series of

experiment we could progressively disentangle the effects associated with these quantities.

Undoubtedly, the most decisive step in this direction was the fabrication of the normal-metal

quasiparticle filters in our samples. This innovation allowed the observation of the long-sought-

after “perfect 2e-periodicity” of the transistor : the shape of the supercurrent modulation with

the gate voltage was qualitatively in agreement with the theoretical predictions. In itself the

observation of this modulation constituted the first observation of macroscopic quantum

coherence.

The role of these quasiparticle filters is to achieve an effective thermalization of long-lived out-

of-equilibrium quasiparticles in the superconductors that otherwise prevent the observation of

macroscopic quantum coherence. This effect of destruction of the coherence is nicknamed the

“poisoning” of the supercurrent by quasiparticles; it was probably the main cause of e-

periodicity in early experiments on the transistor. By applying a magnetic field and/or raising

the temperature we have been able to decrease the odd-even free-energy in the island of the

transistor and we then observed in details the effects of the quasiparticle poisoning of the

supercurrent. These observations were found to be in good agreement with theory, which

proves that quasiparticles are indeed at thermal equilibrium when filters are used. The

poisoning effect may be used as principle for an ultra-sensitive infra-red detector.

By microfabricating a well-characterized electromagnetic environment for the transistor, we

could further clarify the observations in the low-voltage part of the current-voltage

characteristics of the samples : we discriminated the resonances due to the electromagnetic

environment of the transistor and those due to “resonant Cooper pair tunneling”. With a purely

RC electromagnetic environment, the “parasitic” resonances due to the environment are

eliminated whereas those due to “resonant Cooper pair tunneling” remain. These latter

resonances depend on the gate voltage of the transistor and form a hierarchy. We observed for

the first time the first three orders of this hierarchy. These resonances allow a precise
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determination of the charging energy of the device. Previously, the determination of this

essential parameter had always been approximate.

In two samples we could observe an other type of macroscopic quantum phenomenon : Zener

tunneling between the two lowest bands of the transistor. Unfortunately, the effect does not

yield itself to an easy investigation in this system and our results are still preliminary.

Last but not least, our experiments also yielded results whose scope extends farther than just

the superconducting single electron transistor : we have shown how the electromagnetic

environment plays a capital role in small Josephson junction systems. First of all, we have

calculated the renormalization of the Josephson coupling energy in presence of a perturbative

environment. For Josephson junctions fabricated by usual techniques, this renormalization is

dominated by charging effects, if any. The second important result concerns the magnitude of

the experimental supercurrent in these systems. We have presented a new analysis of the

behaviour of these systems based on the notion of current-voltage characteristic of a junction

in its environment. We distinguish between two types of hysteretic behaviour for the system :

(i) a static hysteresis at very low temperature and, (ii) depending on the environment, a

dynamic hysteresis at higher temperatures. Many experiment concerning Josephson junctions

(including our experiments on the transistor) are done in the current bias mode : the device is

not shunted at dc. In this setup, we have found that the system has a dynamic hysteretic

behavior and we explained how the observed switching current is related to the critical current

of the device and to the damping provided by the electromagnetic environment. We predict in

particular that the switching current of underdamped systems is inversely proportional to the

quality factor of the circuit at the plasma frequency of the system and we conjecture that it

should depend very weakly on temperature. Our data in two extreme situations (over- and

under-damped system) agree with this description.

We have now reached a point where we can explain the experimental observations at low

voltage on the transistor in a quite wide range of parameters for the system.

The knowledge gained in these experiments should apply to a wide variety of circuits where

Coulomb and/or Josephson effects are present. In particular, it is now clear that one should pay

great attention to the design of the electromagnetic environment of such circuits. The control

of the quasiparticle population is also an imperious goal if quantum superposition of charge

states is sought.

During this work however, we have not answered all the initial questions : we do not

understand what controls the quality of the superconducting order in the island. At the point

we are, having defects in the density of states seems to be a matter of chance : only one out of

thirteen samples was e-periodic at low temperature, indicating the presence of low-lying
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VII  Conclusion 151

excited states in the island. Nevertheless, if one considers making multiple-island circuits, this

apparent low probability of defect can soon become a serious problem.

A possible extension of the experiments described in this work is the precise investigation of

the phenomenon of macroscopic quantum tunneling. It would be interesting to observe the

influence of the strength of dissipation on coherence. A superconducting single electron box

experiment should be well suited for this purpose. Another extension of this work would be the

realisation of a superconducting device for metrological application such as the

superconducting Cooper pair pump.

te
l-0

05
34

35
8,

 v
er

si
on

 1
 - 

9 
N

ov
 2

01
0



152 Conclusion VII

te
l-0

05
34

35
8,

 v
er

si
on

 1
 - 

9 
N

ov
 2

01
0



Appendix A Poisoning of the Supercurrent 153

APPENDIX A

We reprint here a paper originally published in Physical Review Letters, volume 72, number

15, pp. 2458-2461, 1994.

Observation of Parity-Induced Suppression of Josephson
Tunneling in the Superconducting Single Electron Transistor

P. Joyez, P. Lafarge, A. Filipe, D. Esteve and M.H. Devoret

Service de Physique de l'Etat Condensé, CEA-Saclay

F-91191 Gif-sur-Yvette, France

Abstract: We have measured the supercurrent branch of a superconducting single electron

transistor as a function of gate charge, temperature and magnetic field. At low temperature and

magnetic field, the switching current goes from a minimum to a maximum when the gate

charge is varied from 0 to e, as expected for an island in the ground state with an even electron

number. When the odd electron number ground state becomes populated by an increase of

temperature or field, the Josephson tunneling is strongly suppressed, in agreement with

theoretical predictions.

PACS 73.40.Gk, 73.40.Rw, 74.50.+r
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154 Poisoning of the Supercurrent Appendix A

The consequences of the duality of phase and number-of-particle variables are

particularly well illustrated by the competition between Josephson tunneling and single electron

charging phenomena in ultrasmall superconducting junction systems [1,2]. One of the simplest

devices consists of two Josephson junctions in series [3,4,5,6]: the number of Cooper pairs on

the middle “island” tends to be fixed by the charging energy EC = e2
/2CΣ of the island while

the associated phase tends to be fixed by the Josephson coupling energy EJ of the two

junctions which we suppose identical for simplicity. Here CΣ refers to the total capacitance of

the island. This model system has been investigated theoretically in detail [1,7,8,9]. For large

area junctions (EJ >> EC) the charging effects are overcome by Josephson tunneling and the

maximum supercurrent that can flow through the two junction system is just I0 = 2eEJ/h, the

maximum supercurrent of each junction. However, for small area junctions (EJ << EC), the

maximum supercurrent should strongly depend on the polarisation charge Qg applied to the

island by means of a gate electrode, hence the name of “superconducting single electron

transistor” given to such device. When Qg = e mod 2e, i.e. when states differing by one Cooper

pair in the island are degenerate, the maximum current should attain I0/2 while for

Qg = 0 mod 2e it should fall to a value of order I0EJ/EC
 [1] (here and in the following, we

assume for convenience that the neutral island has an even number of electrons). Recently

Matveev et al. [9] have shown theoretically that this simple electrostatic modulation of

Josephson tunneling will be observed only if the parity of the number n of excess electrons on

the island can be kept even for all Qg. This requires that the odd-even free energy difference D

[5,10] of the island is greater than EC. When D < EC, the island is unstable, in the vicinity of

Qg = e, with respect to the entrance of a quasiparticle. This quasiparticle prevents the

formation of the coherent superposition of charge states at Qg = e, and therefore “poisons”

Josephson tunneling. A complex Qg-dependence of the supercurrent should then be observed.

In this Letter we present an experiment on the superconducting single electron transistor in

which, for the first time, we observe the characteristic features resulting from poisoning of

Josephson tunneling.

The sample was prepared using standard e-beam lithography and shadow mask

evaporation techniques [11]. The main difference with previous experiments is the use of the 3-

angle evaporation technique of Haviland et al. [12] in order to fabricate in a single pump-down

the alumina-covered Al island electrode, the two Al drain and source electrodes and the Cu

(3% wt. Al) buffer electrodes (see device layout in the inset of Fig. 1). We believe that these

last electrodes allow the quasiparticle population in the transistor to reach the thermal

equilibrium value and prevent uncontrolled poisoning of Josephson tunneling by out-of-

equilibrium quasiparticles from the rest of the circuit. The contact between the Cu and Al

electrodes is sufficiently good to have a negligible influence on the behavior of the transistor at

low voltages. The electrical wiring between the sample and the measuring apparatus at room
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Appendix A Poisoning of the Supercurrent 155

temperature was made through a series of cryogenic filters as in previous experiments [10].

From the measurement of the device with the Al electrodes brought in the normal state by a

magnetic field, we obtained the relation between the gate charge Qg and gate voltage U, and

we could estimate EC/kB = 1.0 K. The normal resistance of the two junctions in series was

RN = 49.2 kΩ. The value ∆ = 180 µeV of the gap of the superconducting aluminum was

extracted from the large scale I-V characteristic of the sample in zero magnetic field. Using the

Ambegaokar-Baratoff relation [13] we deduced from RN and ∆ the Josephson energy

EJ/kB = 275 mK and critical current I0 = 2eEJ/h = 11.4 nA of each junction, supposing they are

identical. In Fig. 1 we show the sub-gap current-voltage (I-V) characteristic of the junction at

T = 20 mK and for Q eg~− . A supercurrent branch is clearly seen with nearly zero voltage like

in the recent experiment by Eiles and Martinis [6]. Its residual slope was measured to be less

than 100 Ω, our resistance resolution given the wiring of the sample to the external apparatus.

This branch defines a switching current Is at which the device switches to a voltage set by the

resistance of the current bias source, which was 12.1 MΩ for the data we present in the

remainder of this paper.

In Fig. 2a we show the variations of Is as a function of the gate charge Qg for several

values of the magnetic field and at T = 65 mK. At lower temperatures the data did not change

except for Q eg  in the vicinity of ±0.75 modulo 2 where we observed what we interpret as a

low voltage self-induced Shapiro step [14] and which slightly biased the measurement of the

switching current. At low magnetic fields, the switching current varied monotonically when the

gate charge was varied from 0 to e. As the field increased, the peak at Qg = e became a dip, a

behavior corresponding to the poisoning of Josephson tunneling by a single quasiparticle. This

dip widened as the field was increased further, in agreement with Ref. 9.

In order to compare our experimental results to theory, we now make a minimal

extension of Ref. 9 to take into account finite temperature and environmental impedance. The

states of the transistor are conveniently characterized by two quantum numbers, the number

n = (N-N') of excess electrons on the island and by the charge flow index k = (N+N')/2, where

N and N' denote the number of electrons having crossed the junctions (see Fig. 3a). The

Josephson Hamiltonian couples states with different k but with the same parity of n and we can

thus separate the manifold of states into odd-n and even-n manifolds. In the following, the

superscript p will designate a given parity, even or odd. Inside a manifold of parity p, we now

perform a change of representation, in which the new states are indexed by n and δ, the total

phase difference of the transistor, which is the variable canonically conjugate to k. If we now

restrict the span of n to the three lowest electrostatic energy states, we can exactly diagonalize

the sum of the Josephson and electrostatic Hamiltonians. In contrast with the treatment of Ref.

9, this procedure takes into account the degeneracy of the first excited charge states that

occurs at Qg = 0 ( = e) when p is even (odd). We obtain a ground state energy band E fp p
0 0 δa f,
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156 Poisoning of the Supercurrent Appendix A

where the function f p
0  is such that Max{f p

0 }-Min{ f p
0 } = 2, for arbitrary values of the

parameters EJ, EC and Qg (see Fig. 3b). In this calculation we assume a gate voltage invariant

Josephson coupling EJ for each of the junction (this is valid since the energy gap ∆ of the

superconductor is such that EC << 2∆). The 2π-periodic E fp p
0 0 δa f function is equivalent for the

transistor to the energy-phase relation -EJcos(δ) for a single Josephson junction; in particular it

goes from a minimum to a maximum when δ goes from 0 to π. The transistor can thus be seen

as an effective junction with a gate charge-dependent effective Josephson coupling energy Ep
0 .

The relation between the I-V characteristic observed experimentally and the energy-

phase relation depends on both the temperature T and the admittance Y(ω) which, in the

lumped element model of the electromagnetic environment of the junction, is in parallel with

the bias current source I. This admittance will govern the dynamics of δ which is analogous to

that of a particle in the tilted potential E f Ip p
0 0 0 2δ π δa f b g− Φ , where Φ0 = h/2e. In the case of

interest here, where the response time of the admittance is short compared to the characteristic

time of the evolution of δ, we can write the differential equation obeyed by δ as:

Φ
Φ

0 0

0

0

2
0 0

1

2
0

2

π
δ δ δ

π
δ

Y jY Y
E f

I
p p

a f a f a f& && &&&− ′ − ′′ +L
NM

O
QP

+ =K

d

d
.

This equation generalizes the equation of motion of the resistively and capacitively

shunted junction (RCSJ) model [15] to an effective Josephson element shunted by a general

admittance.

For I I E fc
p p≤ =0 0 0 02π δΦe j o tMax d d , this equation admits a zero-voltage solution

( &δ = 0) corresponding to the particle sitting in a minimum of the tilted potential. This solution

is unstable against thermal fluctuations and therefore the particle will diffuse from well to well

in the potential, giving rise to a departure of the supercurrent branch from the zero-voltage

axis. However, for I I Im c≤ < 0 this diffusive motion is itself unstable against the runaway

down the potential [16], where Im is the current for which, on the average, the energy gain due

to the tilt of the potential becomes greater than energy loss due to friction. In the weak friction

limit appropriate to our experiment, the runaway current Im is given by:

I Y
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Y

E

Y
m

p p

=
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0
0

α βa f
a f

a f
a f

K ,

where α, β, ... are dimensionless coefficients which are weakly dependent on f p
0 . The first

term in the expansion corresponds to the well known 4I0/πRCωp result of the RCSJ model

[17]. Here, since we have an unshunted junction, this term vanishes and the Qg-dependence of

Im is dominated by the second term. In view of the importance of thermal fluctuations in our

experiment E Ep
J0 2≤e j, we will compare the Qg-dependence of the measured switching
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Appendix A Poisoning of the Supercurrent 157

current with the theoretical Qg-dependence of Im rather than of the critical current Ic0

considered by Matveev et al. [9].

We now make a crucial assumption. We assume that the inverse of the transition rate

between the odd-n and even-n states is much smaller than the characteristic time of the

runaway process. This assumption of rapid odd-even transition is justified since the normal

electrodes, which provide the quasiparticle involved in the transition, are very close to the

island [18]. In the calculation of the switching current, we thus replace Ep
0  by the Boltzmann

average E E p E pav odd
odd

even
even0 0 0= +  where podd and peven are the probabilities of being in an

odd- or even-n state, respectively, and which verify:

 p E Q e n n D T H k Todd even C g B
n odd even

/
/

exp mod ,∝ − − +L
NM

O
QP

R
S
T

U
V
W

∑ d i a f a f
2

2 .

Here D(T,H) is calculated as in Ref. 19.

Using this analysis we can calculate the function Im(Qg,H,T) in which enters the

unknown scale parameter Y"(0)/Y'(0)3/2 and two adjustable parameters: i) the parameter ρ of

the reduction of I0 due to penetration of magnetic field in the junctions [14] defined by

I0(H) = I0(1-ρH2) in the low field limit of relevance here and ii) the critical field Hc such that

D(0,H > Hc) = 0, which corresponds to the field at which Im(Qg) becomes e-periodic at T = 0.

In Fig. 2b, we plot I Q H T Im g m, , = 65 0mKd i  where I I Q e H Tm m g0 = = , = 0, = 65 mKd i
using the best fit values ρ = 18.5 T-2 and Hc = 0.20 T which are consistent with the junction

geometry and with a previous measurement of D [19], respectively. These values are also used

in the other comparisons described below. A close agreement with the experimental results is

obtained. The validity of our model can be checked further on the temperature dependence of

the Im versus Qg data shown in Fig. 4 taken for the intermediate field H = 0.11 T. Experiments

at higher temperatures agree less closely with theory, the relative amplitude of the peaks being

greater in experiment than in theory. We believe this is due to the neglect of the departure of Is

from Im induced by thermal fluctuations in the phase diffusion state. However, the non-

monotonous behavior of the Qg = e switching current as a function of temperature is well

captured by our model, as shown in Fig. 5 where we also plot the Qg = 0 switching current for

comparison. Note that the recovery above 250 mK of e-periodicity, due to the vanishing of the

odd-even free energy difference, was also found in other experiments [5,10]. Our model

predicts the detailed features of this recovery: the odd manifold contributes dominantly to the

current at Qg = 0 and the even manifold contributes dominantly to the current at Qg = e but, at

intermediate temperatures, the switching current is maximum at Q eg ~− 2 as in the high field

limit of Ref. 9.

In conclusion, we have shown that in a Josephson system where the number of

quasiparticles was controlled, experimental measurements of charging effects can be explained
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158 Poisoning of the Supercurrent Appendix A

by a minimal model, in contrast with preceding experiments. As Fig. 4 exemplifies, the

competition between the charging energy, the Josephson energy and the odd-even free energy

difference produces a complex behavior of the supercurrent as a function of gate charge,

magnetic field and temperature. This intrinsic complexity, together with the difficulties

associated with the control of out-of-equilibrium quasiparticles, probably explains why the data

in the superconducting state has always been found harder to interpret than in the normal state.
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160 Poisoning of the Supercurrent Appendix A

Figures
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Fig. 1 Current-voltage characteristic of superconducting single electron transistor whose lay-

out is shown in upper left inset. The letters N and S refer to normal (Cu) and superconducting

(Al) electrodes. The tunnel barriers are indicated by grey rectangles. The gate voltage U

induces on the middle island a gate charge Qg whose value is e for the data shown. The

temperature was 20 mK. The maximum current defines the switching current Is. Lower right

inset is an electron micrograph of the device. The current flows through the middle strip only.

The top electrode is the gate.
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Fig. 2 a) Switching current as a function of gate charge, for several values of the magnetic field

H, at T = 65mK. Top to bottom: H = 0, 0.07, 0.11, 0.14, 0.16, 0.17 T. The dip at odd integer

values of Qg/e corresponds to the poisoning of Josephson tunneling by the entrance of one

quasiparticle in the island. b) Theoretical runaway current as a function of gate charge, for the

same field values as in a).

te
l-0

05
34

35
8,

 v
er

si
on

 1
 - 

9 
N

ov
 2

01
0



162 Poisoning of the Supercurrent Appendix A

2

n= -2

0
2

-2
4 EC

0

E

k

1 -1

3

1 -1

3

-1 0 1 δ

0

E

0 2π

2E0
odd

2E0
even

∆+EC

b)a)

Fig. 3a) Energy levels of the transistor at Qg = 0.02e. The number n labelling the levels refer to

the number of electrons in the middle island. The number k is the charge transfer index. The

lines joining the levels represent the Josephson coupling. Only levels with the same parity of n

are coupled. The even-n manifold (levels in solid line) and the odd-n manifold (levels in dashed

line) are weakly coupled by the cotunneling of one electron from a normal lead to the middle

island (double arrow). b) Lowest energy bands corresponding to the even and odd manifolds.

The variable δ is canonically conjugate to k.
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Fig. 4 a) Switching current as a function of gate charge,  at H = 0.11 T and for several values

of the temperature T, showing the complex transition from 2e-periodicity to e-periodicity with

the increase of T. Open dots: T = 65 mK; solid dots: T = 203 mK; triangles: T = 356 mK.  b)

Theoretical runaway current as a function of gate charge, for the same temperature values as in

a) (the full and dotted line correspond to the lowest and highest temperatures, respectively).
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Fig. 5 Top panels: experimental switching current as a function of temperature for Qg = 0 and

Qg = e. Top to bottom, same field values as in Fig. 2. Bottom panels: theoretical runaway

current for the same conditions as in top panels. The theory curves reproduce the strongly non-

monotonic temperature dependence found in the experiment at Qg = e  for low fields.

te
l-0

05
34

35
8,

 v
er

si
on

 1
 - 

9 
N

ov
 2

01
0



Appendix B Characteristics of the Samples 165

APPENDIX B

Characteristics of the samples

sample

#

date e or 2e

period.

Rt

(kΩ)

EJ/kB

(mK)

I0

(nA)

Ismax

(nA)

I max

I max
s

C

Ec/kB

(K)

on-chip

capacitors?

fixed

resonances

1 02/04/93 2e+e 120 125 5.2 0.002 0.08% 1* no

2 20/04/93 2e 59.0 254 10.6 0.3 5.6% 0.3* no

3 24/05/93 2e 41.0 366 15.3 1.1 14% 0.3* no

4 09/06/93 2e 53.0 283 11.9 1.3 22% 1* no

5 22/07/93 2e 49.2 305 12.8 1.3 20% 1.0 no yes

6 08/11/93 2e 44.7 336 14.1 0.9 13% 1.1 no yes

7 01/12/93 2e 24.8 605 25.3 3.0 24% 0.64 yes no

8 04/01/94 2e 17.0 882 37.0 6.0 32% 0.46 yes yes

9 12/01/94 2e 56.8 264 11.1 0.6 11% ≈.65† yes no†

10 07/02/94 e 30.0 500 20.9 0.1 1.1% 0.41 yes no

11 09/02/94 2e 21.8 688 28.8 9.0 62% 0.69 yes yes

12 13/04/94 2e ≈25 yes

13 19/04/94 2e 30.0 500 20.9 7.3 70% 0.66 yes no

Table 1. Main characteristics of the samples we have measured. All these samples had normal-

metal leads to prevent quasiparticle poisoning. In column four, we give the period of the

modulation of the supercurrent with respect to the gate charge. Column 5 : total tunnel

resistance of the sample at low temperature. Column 6 and 7, calculated Josephson Coupling

energy EJ of each junction (assumed identical) and critical current I0 of each junction obtained

using Ambegaokar-Baratoff equation. Column 8 : ratio of maximum measured switching

current to maximal critical current of the transistor ICmax = I0/2. Column 9 : Charging energy

of the sample determined using the gate voltage dependent resonances (see Sec. V.C.1), except

(*) for samples 1-4 (rough estimates based on temperature dependence of charging effects or

normal-state I-V characteristics.). Column 10 indicates if the sample incorporated on-chip

microfabricated capacitors (see Chap. VI). Column 11 reports observation of gate voltage

independent resonances (these were not looked after in samples 1-4).

Miscellaneous information : Samples 1 and 2 were voltage biased. Sample 1 was not perfectly

2e-periodic because its normal-metal filters were too short (they were made longer in

subsequent experiments). A cryogenic problem prevented cooling of sample 2 below 50 mK.
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166 Characteristics of the Samples Appendix B

Samples 3 and 12 were destroyed accidentally by an electrostatic shock. Sample 4 could not be

measured in the normal state (superconducting coil disabled). Sample 5 was used for the paper

given in appendix A. Sample 7 and 8 had two samples on the same chip and showed finite-

voltage fixed resonances in spite of a microfabricated environment, possibly because of the

poor symmetry of the mask. Temperature measurements made on sample 8 were unreliable

because of a thermalisation problem. Measurements at finite voltage on sample 9 had a poor

signal to noise ratio due to the smallness of the current which prevented a precise

determination of some parameters (†). Samples 9 to 13 had a coaxial microwave cable

connected directly on chip for AC Josephson effect measurement, but the coaxial cable used

with sample 9 was too resistive and heated up the sample when microwaves were applied.

Sample 10 was completely e-periodic. Samples 8 and 11 showed a decrease of the switching

current with the temperature below 100 mK (see Sec. V.B.1). In sample 13, normal-metal

leads of the transistor were made of a spin glass alloy Cu-Mn (2% wt. Mn).
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