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ABSTRACT: The conformation and the two-dimensional
self-assembly of 4'-(3’,4”-dihexyloxy-5,2":5,2":5",2" -quater-
thien-2,5”-diyl)-bis(2,2':6',2"-terpyridine) molecules are the-
oretically and experimentally investigated. This molecular
building block forms a hydrogen-bonded chiral supramolecular
nanoarchitecture on graphite at the solid/liquid interface.
Scanning tunneling microscopy (STM) shows that the
molecule adopts an S-shaped conformation in this structure.
DFTB+ calculations reveal that this conformation is not the

lowest-energy conformation. The molecular nanoarchitecture appears to be stabilized by hydrogen bonding as well as van der
Waals interactions. I-, L-, and D-shaped molecular conformations are, however, locally observed at the domain boundary, but
these conformations do not self-assemble into organized 2D structures.

B INTRODUCTION

Engineering novel organic/inorganic interfaces thought the self-
assembly of functionalized molecules' " is attracting an
enormous amount of research interest due to its expected
applications in nanotechnology.'*~"* The electronic properties
of a self-assembled organic or hybrid layer can be drastically
affected by the organization of its building blocks at the
interface with a conductive surface.'”'® Controlling the
arrangement of the building nanoblock at the nanoscale is
therefore a key parameter governing the properties of the
interface. Hydrogen bonding is a particularly appealing
interaction governing molecular self-assembly due to the
strength, the high selectivity, and the directionality of this
binding.'" ™’ Carboxylic groups can be used to strengthen
molecular self-assembly because these substituents are expected
to lead to the formation of double hydrogen bonds (O—H---O)
between neighboring molecules. This strategy has been
successfully used to achieve the formation of self-assembled
porous and compact nanoachitectures.”” ' An alternative
consists of functionalizing the molecular skeleton with pyridine
units instead of carboxylic groups. Pyridine is also expected to
drive molecular self-assembly through the formation of double
hydrogen bonds (C—H-N) between neighboring molecules.
Intense effort has recently been devoted to the synthesis of
pyridine-based molecular building blocks.”>** Hydrogen-
bonded densely packed and porous nanoarchitectures have
been engineered using pyridine-based molecular building
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blocks.>**> The review of Wild et al. summarized the recent
research effort in synthezising 7-conjugated 2,2":6',2"-terpyr-
idine ligands for application in the fields of supramolecular and
coordination chemistry and materials science.”” The pyridine
groups are expected to drive molecular self-assembly through
hydrogen bonding or metal coordination whereas the spacer
unit is carrying the electronic properties or the active part of the
molecular building block. Among the possible spacer units,
oligothiophenes are very interesting because their chemistry is
now well known to tune their electronic, optical, and redox
properties for applications in organic electronics.*®

A compound mixing two flat conjugated system based on
bisterpyridines and quaterthiophene is therefore a promising
building block for engineering highly organized self-assembled
organic films. However, the pyridine and thiophene units can
rotate along their C—C axis in the terpyridine and the
quaterthiophene groups. Molecules can adopt different
conformations once adsorbed on surfaces.”” >’ Yokoyama et
al. investigated the cis and trans conformations of single
thiophene derivatives using scanning tunneling microscopy,*’
but they were not able to resolve the backbone structure of the
molecule. This is essential to assessing individual molecular
conformation because their electronic properties are governed
by intramolecular 7-conjugation that depends on the torsion
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angle between neighboring thiophene cycles.”' ™" In addition,
it is unclear if the flexibility of the molecular skeleton can lead
to the formation of ordered nanoarchitectures.

In this paper, we synthesized a new organic building block
with a quaterthiophene spacer functionalized in positions a

with two terpyridine groups (4T-bisterpy) (Figure 1). This

Figure 1. Scheme of the 4T-bisterpy molecule (CgsH;,N¢O,S,).
Carbon atoms are gray, oxygen atoms are red, nitrogen atoms are blue,
hydrogen atoms are white, and sulfur atoms are yellow.

compound can adopt five conformational structures. Scanning
tunneling microscopy (STM) was used to investigate the self-
assembly of this compound at the I1-phenyloctane/graphite
interface. STM reveals that the molecules self-assembled into a
two-dimensional chiral nanoarchitecture based on a single
molecular conformational structure.

B EXPERIMENTAL SECTION

The molecule was synthesized according to the procedure described in
the Supporting Information. Nearly saturated solutions of 4T-bisterpy
(Figure 1) in 1-phenyloctane (98%, Aldrich) were prepared
(concentration of 1075 mol/L). A droplet of this solution was then
deposited on a graphite substrate. STM imaging of the samples was
performed at the liquid/solid interface”¥*~* using a Pico-SPM
(Molecular Imaging, Agilent Technology) scanning tunneling micro-
scope. Cut Pt/Ir tips were used to obtain constant-current images at
room temperature with a bias voltage applied to the sample. STM
images were processed and analyzed using the FabViewer
application.*

B RESULTS AND DISCUSSION

Calculation of Molecular Conformational Energies.
The chemical structure of 4T-bisterpy is presented in Figure 1.
Depending on the orientation of the thiophene units, the 4T-
bisterpy molecule can adopt five flat structural conformations as
represented in Table 1. We used density functional tight-
binding calculations, using the DFTB+ numerical package
calculations, to estimate the energy of the five possible
molecular conformations and their corresponding adsorption
energy on a honeycomb graphitic sheet. The results are
presented in Table 1 and Table 1 in Supporting Information.

The molecularly straight I shape has the lowest conforma-
tional energy (—4081.153 eV), followed by the C shape
(—4081.123 eV). Then the S-shaped and L-shaped conforma-
tion have nearly the same energy, —4081.105 and —4081.103
eV, respectively. The L and D shapes have the two highest
conformational energies. In conformations I and C, which
present lower energies, S---O intramolecular interactions
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Table 1. Scheme, Conformal Energy in the Gas Phase (Ej,,),
and Adhesion Energy (E,q,) per Molecule of the Five
Molecular Conformations (Molecules Are Represented
without Their Alkyl Chains)®

Scheme Conformation | Egus (€V) | Eaan (V) | Aey

I -4081.153 | -5.021 0
E C -4081.123 | -5.017 | +0.033
& S -4081.105 | -5.006 | +0.063
% L -4081.103 | -4.876 | +0.195
3 D -4081.079 | -4.731 | +0.364

“The surface energy of the graphitic sheet is —18 897.169189 eV. A,y
corresponds to the molecular total energy difference with respect to
that of the I configuration.

between the oxygen of hexyloxy chains and the sulfur of an
adjacent thiophene stabilize these two structures as previously
reported in EDOT oligomers.”” These interactions are not
present in structures D and S, and only one is observed in the L
conformation. Once the molecules are adsorbed on the
graphitic substrate, calculations (E,y, in Table 1) show that
the conformations can be categorized into two groups, ie, a
low-energy conformational group (I, C, and S conformations)
and a high-energy conformational groups (L and D). The
energy difference between the S and L shapes is significant once
molecules are adsorbed on the graphite surface.

Molecular Conformation on the Surface. The large-
scale STM images reveal that 4T-bisterpy self-assembles into
large domains at the 1-phenyloctane/graphite interface (Figure
2). The typical domain size is 1000 + 200 nm? In Figure 3, the
high-resolution STM image shows the domain boundary
between two enantiomeric self-assembled nanoarchitectures.
The domain boundary is highlighted by white arrows in the
image. The building blocks of the two domains are two 4T-
bisterpy enantiomers. These enantiomers have been colored in
orange as a guide for the eyes in Figure 3. Intramolecular
features corresponding to the integrated density of states of the
molecule appear distinctly in the high-resolution STM image.
In particular, the structural conformation of the molecular
backbone is clearly resolved. The molecules adopt the S
structure in the organic layer. The two molecular enantiomers
can be observed in Figure 3. The unit cell is represented by
dotted lines in the STM image. The unit cell is not strictly
identical in neighboring domains, i.e. the flexibility of
intermolecular binding and molecular conformation affects
the unit cell of the domains. The network unit cell of this chiral
structure is, however, a parallelogram with 1.9 + 0.2 and 1.7 +
0.2 nm unit cell constants and an angle of 80 & 5° between the
axes. Each chiral domain is based on a single enantiomer.
Rectangular cavities, ~1.0 X 0.7 nm? are formed in this
nanoarchitecture above to terpyridine units of the molecules
(dark area in the STM images, Figure 3). The model of the
organic nanoarchitecture is presented in Figure 3b.
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Figure 2. Large-scale STM images of the 4T-bisterpy self-assembled
nanoarchitecture on graphite: (a) 155 X 155 nm” and (b) 30 X 25
nm? V, = 040 V, and I, = 9 pA.

Organic domains are based on a single molecular
enantiomer. The alternation of enantiomer rows can, however,
be locally observed at the domain boundary (Figure 4). Careful
analysis of the STM images reveals that at the domain
boundary, rows of molecular enantiomers (B’ and A’) can be
separating domains (A and B), as shown in Figure 4. However,
we never observed a sequence larger than four rows of different
enantiomers on the surface. This sequence is shown in Figure 4
(A-B’-A’-B). Because long-range ordering is not achieved with
two enantiomers, it appears more appropriate to talk of the
domain boundary instead of the network for this structure.

Hoster et al. has simulated intermolecular interactions in the
case of bis(terpyridine)-based compounds’ self-assembly.”!
Their calculations show that the two intermolecular bindings
are favored when pyridine orientation allows C—H---N bonds
between neighboring molecules. The organic nanoarchitecture
in Figure 3 appears to be stabilized by double N--H—C
hydrogen bonds between molecular pyridine rings in
terpyridine. Surprisingly, the molecular building blocks adopt
an S shape in the network. The other conformations can be
seen locally only at the domain boundary, as shown in Figure S.
This is particularly puzzling because most of the experimental
observations report on the self-assembly of molecular
thiophene chains adopting a straight conformation.**>® The
self-assembly of twisted conformations was rarely observed.”’
The STM images show that the molecule adopts the S
conformation exclusively in the 2D self-assembled nano-
architecture. The other molecular conformations represent

Figure 3. (a) High-resolution STM images of 4T-bisterpy chiral self-
assembly: 15 X 13 nm? V, = 0.40 V, and I; = 9 pA. The two molecular
enantiomers can be observed (orange and green). (b) Model of the
nanoarchitecture. The parallelogram unit cells of the chiral domains
are represented by dotted white (a) and blue lines (b). (Molecules are
represented without their alkyl chains). (c) Scheme of intermolecular
bonding. N---H—C bonds are represented by dotted red lines.

Figure 4. (a) STM images of a multiple domain boundary, 11 X 9
nm?% V, = 0.70 V and I, = 10 pA. The two enantiomers have been
colored in green and red. (b) Model (molecules are represented
without their alkyl chains).

less than 1% of the molecules. The I, L, and D conformations
can be observed in Figure Sa—c, respectively. The C
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Figure S. STM images of the molecular domain boundary. Molecules
adopting the S conformation in the domain have been colored in
green, and molecules adopting other conformations have been colored
in orange. (a) I-shape conformation, 7 X 7 nm% (b) L-shape
conformation, 9 X 9 nm% (c) D-shape conformation, 7 X 7 nm%; V, =
0.40 V and I, = 9 pA.

conformation was not observed, but we do not rule out that it
cannot exist locally.

The calculations show that the I- and C-shaped molecules
have lower conformal energy (Table 1). Therefore, the S
structure should be less favorable. However, the energy
difference among the I, C, and S conformations is greatly
reduced when the molecules are adsorbed on graphite.

An analysis of STM images suggests that the molecular S
nanoarchitecture is stabilized by double hydrogen bonds
between pyridine groups of neighboring molecules. These
bonds are presented in Figure 3. Figure S reveals that when S
molecules coexist with C, I, or L molecules, terpyridine groups
of neighboring molecules are also always bound to each other
through double N---H—C hydrogen bonds between pyridine
groups. This suggests that this interaction is the dominant
interaction driving the molecular self-assembly. This interaction
should, however, be able to stabilize other structures based on I
or C conformations of molecules, for example. STM shows that
the quaterthiophene backbone surrounds a pyridine group of
neighboring molecule in the S molecular nanoarchitecture. This
maximizes intermolecular interactions between molecules in
the S nanoarchitecture.

Molecular self-assembly is driven by the tendency of
molecules to form the maximum number of interactions, as
summarized by the close-packing principle. In that case, the S-
molecule self-assembly is obviously more favorable than the I-
molecule self-assembly because the contact area between
neighboring molecules is larger. In addition, adsorbate
molecules adsorb readily because they lower the surface free
energy.”® The packing density of the S-molecule nano-
architecture is 20% denser than the packing density of the I-
molecule nanoarchitecture. This also supports the fact that the
S nanoarchitecture is more favorable than the I nano-
architecture.

It should be noticed that the single-enantiomer structure
(Figure 3) and the mixed-enantiomer structure (Figure 4) are
stabilized by the same intermolecular interactions, i.e., a double
hydrogen bond between pyridine groups and a similar
intermolecular side-by-side contact area. However, the mixed-
enantiomer structures were rarely observed, and these domains
were very small. Self-assembled structures resulting from the
self-assembly of the different molecular enantiomers are rarely
observed. In the case of the 4T-bisterpy molecule, it seems that
the molecular backbone conformation is at the origin of the less
favorable arrangement of the two enantiomers, ie. the
backbone conformation in a two-enantiomer sequence (Figure
4) is less favorable than that in an S—S arrangement sequence
(Figure 3).

B CONCLUSIONS

In this paper we proved that a new bisterpyridine-
quaterthiophene compound self-assembles into a hydrogen-
bonded nanoarchitecture on graphite. The molecule does not
adopt the lowest-energy conformation in this structure. The
high conformational flexibility of this compound opens up new
opportunities for tailoring molecular self-assembly and for
engineering novel oréganic nanoarchitectures for applications in
organic electronics.”>”
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