Vicinal Surfaces

Cyrille BARRETEAU¹ Marie Catherine Desjonquères¹ Daniel Spanjaard² and Fayçal Raouafi¹

¹ Service de Physique et Chimie des Surfaces et Interfaces (SPSCI) Groupe Modélisation Surfaces Interfaces et Nanostructures (MSIN) DRECAM, CEA-Saclay, 91191 Gif sur Yvette

> ² Laboratoire de Physique des Solides (LPS) Université Paris Sud, 91405 Orsay

Step energies

A

$$E_{step}^{\infty} = E_{step}(p \to \infty)$$

	Vicinal surface	Step energy (eV/atom)							
	$p \rightarrow \infty$	TBEffective Pair Potential				l			
	1			TB	Vitos	Methfessel	Eichler	Galanakis	
Rh	$p(111) \times (100) (A)$	0.638	$2V_1 + 4V_3$	0.657	0.583	0.520	0.650	0.670	
	$p(111) \times (\overline{111}) (\mathbf{B})$	0.645	$2V_1 + 4V_3$	0.657	0.583	0.520	0.650	0.670	
	$p(100) \times (111)$	0.393	$V_1 + 2V_2$	0.407	0.288	0.265	0.295	0.285	
	$p(100) \times (010)$	0.747	$2V_1 + 2V_2$	0.738	0.550	0.480	0.580	0.596	
	$p(110) \times (111)$	0.056	$V_2 + 2V_3$	0.035	0.043	0.070	0.045	0.011	
РЛ	$p(111) \times (100) (\mathbf{A})$	0.425	$2V_1 + 4V_3$	0.429	0.460	0.423		0.500	
FU	$p(111) \times (\bar{1}11) $ (B)	0.432	$2V_1 + 4V_3$	0.429	0.460	0.423		0.500	
	$p(100) \times (111)$	0.289	$V_1 + 2V_2$	0.295	0.106	0.222		0.298	
	$p(100) \times (010)$	0.536	$2V_1 + 2V_2$	0.533	0.265	0.427		0.548	
	$p(110) \times (111)$	0.027	$V_2 + 2V_3$	0.006	0.045	0.015		0.024	
C_{11}	$p(111) \times (100) (\mathbf{A})$	0.348	$2V_1 + 4V_3$	0.347	0.380			0.426	
Cu	$p(111) \times (\overline{111}) $ (B)	0.345	$2V_1 + 4V_3$	0.347	0.380			0.426	
	$p(100) \times (111)$	0.191	$V_1 + 2V_2$	0.192	0.200			0.241	
	$p(100) \times (010)$	0.352	$2V_1 + 2V_2$	0.359	0.363			0.456	
	$p(110) \times (111)$	0.060	$V_2 + 2V_3$	0.020	0.046			0.011	

- ★ EPP works suprisingly well
- ★ Large discrepancy between different calculations
- ★ Good agreement for (111) surfaces
- ★ Very small step energy for (110)

BUT

- ★ No distinction between A and B steps
- ⋆ No step-step interaction

Pair interactions

A

	Surface	energies	(ev/atom)					
	(111)	(100)	(110)	V_1	V ₂	<i>V</i> ₃	Reference	V_{1}^{0}
Rh	1.091	1.379	2.112	0.332	0.038	-0.001	This work	0.352
	1.002	1.310	1.919	0.262	0.013	0.015	Vitos et al	0.324
	0.99	1.27	1.84	0.215	0.025	0.023	Methfessel et al	0.313
	1.11	1.47	2.13	0.285	0.005	0.020	Eichler et al	0.360
	1.034	1.404	2.047	0.311	-0.013	0.012	Galanakis et al	0.344
Pd	0.655	0.828	1.317	0.238	0.029	-0.011	This work	0.217
	0.824	1.152	1.559	0.159	-0.027	0.036	Vitos et al	0.269
	0.68	0.89	1.33	0.205	0.008	0.003	Methfessel et al	0.223
	0.822	1.049	1.596	0.250	0.014	0.000	Galanakis et al	0.269
Cu	0.581	0.748	1.121	0.166	0.013	0.004	This work	0.188
- •·	0.707	0.906	1.323	0.163	0.018	0.014	Vitos et al	0.224
	0.675	0.874	1.327	0.215	0.013	-0.001	Galanakis et al	0.221

$$4E_{kink} = 2E_{kinked}(r, s, v) - [E(s, v) + E(s - 1, v + 1)]$$

(terrace)x(ledge)	Rh	Pd		Cu	
			TB	Other Calc.	Experiments
(111)×(100)	0.339	0.249	0.143	0.092	0.113±0.007
(111)×(111)	0.329	0.242	0.148	0.117	0.121±0.007
(100)×(111)	0.349	0.247	0.146	0.139	0.123 ; 0.129
V	0.332	0.238	0.166		

E(eV)

Harmonic approximation

Energy minimization: conugate gradient algorithm

Dynamical Matrix $D_{ij}^{ab} = \frac{1}{M} \frac{\partial^2 E}{\partial r_i^a \partial r_i^b}$

 $3(111) \times (100)$

 $\boldsymbol{h} = \tan(\boldsymbol{q}) = \sqrt{2}$

Vicinal surfaces have a rich and subtle behavior

Empirical potentials lead to a too schematical behavior

Only calculations based on the determination of the electronic states allow to account for the diversity of experimental possibilities.