Correlation Between Magnetism and Structure in Fe alloys: the case of Fe-Cr and Fe-Pt

Cyrille Barreteau (SPCSI) Chu Chun Fun (SRMP) Romain Soulairol (SRMP) Daniel Spanjaard (LPS)

Cr-SDW

Service de Physique et Chimie des Surfaces et Interfaces (**SPSCI**) Service de Recherche sur la Métallurgie Physique (**SRMP**) Laboratoire de Physique des Solides (**LPS**)

Why Fe-Cr

Material for nuclear industry

• FeCr alloy: resistance to corrosion, and irradiation. Decrease of swelling

• Structure material for future nuclear reactors (fission, fusion).

GMR in FeCr multilayers

Why Fe-Cr

Complex magnetic order

Spin spiral in Fe fcc

How magnetic order modifies the energetic of defects and vice versa..

Mixing energy

Influence of magnetism on alloy properties

Methods

Size of the system

 \bigcirc

1	00 at. 1000 at.	10nm	1µm	
	Code	DFT - PWscf	DFT - SIESTA	TB-Stoner
	E _{xc}	GGA	GGA	
	Pseudopot.	NC, US, PAW	NC	
	Basis	Plane waves	Localized	Localized (spd)
	Efficiency/precision	Very precise	Precise and efficient	Very efficient
-	Size of the system	< 500 at	< 1000 at	> 1000 at

œ

Testing the methods

Functional Effect: LDA vs GGA (PWscf PAW)

œ

Testing the methods

Pseudopotential Effect NC, US, PAW

∆E(eV)				GGA				LDA			
. ,		NC/L	CAO I	PAW U	US NO	2	NC/LCAC) PAW	US	NC	
12.00	FebccF	M 0	(0 (0 0		0.13	0.17	0.13	0.16	
1. S. C. C. C.	FefccFf	M-HS 0.11	(0.16 (0.13 0.1	1	_	_	_	_	
	FefccFf FefceAl	M-LS 0.20		0.16 (0.18 0.2	2	0.07	_	_	_	
	FefceA	FD 0.15		0.15 (0.14 0.1	2	0.07				
1000	FehcnN	M 0.17		0.11 (0.34 0.1	0	0	0	0	0	
1. The 194-	CrbccA	F 0	i i i	0 (0 0		_	ŏ	_	_	
7.000	CrbccN	M 0.03	(0.02 (0.02 0.0	4	0	0.01	0	0	
11 - C - C											
Μ(μ _B)			GGA					LDA			
	FebccFM	NC/LCAO	PAW	US	NC	Ν	IC/LCAO	PAW	US	NC	Exp. [16]
	Exp. (2.86)	2.22	2.19	2.25	2.23	2.	.16	2.16	2.19	2.16	2.22
1.000	Calc.	2.25	2.17	2.23	2.27	2.	.08	2.00	2.12	2.06	2.22
	(a)	(2.87)	(2.83)	(2.85)	(2.87)	(2	2.79)	(2.75)	(2.77)	(2.78)	
and the second											
			GG	βA				LDA			
	CrbccAF	NC/LCAO	PAW	US	NC		NC/LCAO	PAW	US	NC	Exp. [31]
	Exp. (2.88)) 1.39	1.29	1.25	1.66		0.59	0.75	0	0.78	0.5
	Calc.	1.39	1.20	1.30	1.70		0	0.44	0	0	0.5
	(a)	(2.88)	(2.87)) (2.88	8) (2.89)	(—)	(2.79)	(—)	(—)	
					The second second			1.000		-	

Testing the methods

Basis Effect

NC (PWscf)~NC(Siesta) if the localized basis is well optimized

Basis 1: DZ(2s), SZ(3p) SZ(5d)= 10 orbitals

Basis 2: DZ(2s), SZ(3p) SDZP(10d)= 15 orbitals

Minimimal Basis seems accurate enough!

Ground state of Cr: SDW!!

Experimental observation by neutron scattering (Corliss, 1959) : direction (001) et $q \approx 0.953$.

Trieste July 7 2011

Vacancy formation energy in Cr SDW

$$E_V^f(Cr) = E (n-1)Cr, V - \frac{(n-1)}{n}E(nCr)$$

Position V	AF	NM	SDW- nœud	SDW- site inter.	SDW- site max.	Exp.*
E ^f _V (eV)	2.41	2.32	2.09	2.10	2.38	2.0

* Landolt-Börnstein, PAS experiments (1985)

SIESTA

Vacancy formation is easier in a SDW node

(e)

Vacancy migration energy in Cr SDW

Cr	AF NM SDW-		SDW-	
			site µ _{max}	nœud
E ^{mig} Vac (eV)	1.32	0.82	1.28	0.76

Migration energy lower in SDW : $E^{mig}_{Vac}(SDW) < E^{mig}_{Vac}(AF, NM)$

 Anisotropy of migration energy in SDW: E^{mig}_{Vac}(SDW node) < E^{mig}_{Vac}(SDW μ_{max})

Soulairol, Fu and Barreteau, PRB 83, 214103 (2011)

Solution energy of Fe in Cr SDW

Strongly magnetic impurity: Fe

• The solution energies are lower in the SDW.

• But $\Delta E(AF-SDW)$ is rather low for Fe (< $\Delta E(AF-SDW)$ for Cu)

→ Magnetic frustration of Fe in Cr : 2 possible spin states, $\mu_{Fe} = 0$ ou 2 μ_{B} . Multiples metastable solution when %Fe \uparrow .

 SDW experimentally stable for %Fe < 1.6% → understanding the destruction mechanism of the SDW

FeCr Interfaces

Interface energies

	- Interface	E ^f _{interface} (J/ m²)	AF Cr	NM Cr	NCol.	Cr (100) SDW
Fe		Fe/Cr (100)	0.108	0.135	0.171	0.102
Cr	Interface 15 or 29 layers (for (110) or (100))	Fe/Cr (110)	0.189	0.091	0.174	0.115
0.		Fe/Cr (111)	0.134	0.123	0.194	

•Fe/Cr (100) interface is stabilized by magnetic effect contrary to the (110) interface

- → Magnetic frustration Fe-Fe Fe-Cr Cr-Cr
- Two possible ways of relaxing the magnetic frustration:
 - → SDW with NM nodes near the interface (exp. : Bödeker et al. PRL, 81, 914)
 - → Non collinear configurations (exp. : Fritzsche et al. PRB, 65, 144408)

SIESTA

SIESTA

FeCr Interfaces

Interface magnetic configurations

Cr clusters in Fe matrix

Fe _x Cr _y	Fe ₁₂₃ Cr ₅	Fe ₁₂₁ Cr ₇	Fe ₁₁₅ Cr ₁₃	
ΔE(Col - NCol) (meV/Cr ou Fe)	0	0	7	SIESTA

- •Collinear configurations for small Cr clusters in an Fe matrix (N_{Cr} = 5 and 7)
- Possible non collinear configurations of slightly lower energies for clusters of intermediate sizes (N_{Cr}=13) [Longo *et al.* PRB 77, 212406 (2008) and Robles *et al.* PRB 74, 094403 (2006)]
- Possible non collinear configurations of slightly lower energies for clusters with (110) facets

Fe clusters in Cr matrix

+ attraction- répulsion

Fe-Fe interaction energy

SIESTA

Environnement Cr	AF	AF'	NCol.	SDW- node
E ^b _{Fe-Fe} (eV)	- 0.01	- 0.04	+ 0.07	+ 0.12
μ _{Fe1} (μ _B)	2.26	0.07	1.89	2.06
μ _{Fe2} (μ _B)	0.67	0.06	1.88	2.04

- Multiple magnetic states for Fe dimer in Cr.
- Precipitation of Fe is favored in Cr SDW.
- Configurations non colinéaires de faible énergie pour les clusters avec facettes (110).

FeX alloys

Mixing energy calculated at P=0 (Cr exp. [Mirebeau *et al.*, PRL 53, 687 (1984)])

Some trends in the periodic table

	FeV	FeCr	FeMn
ΔE ^{sol}	-	- puis +	+
N ^d _{Fe} -N ^d _X	3	2	1
$\Delta \mu = \mu_{sol} - \mu_{bulk} (\mu_B)$	1,53	1.00	0,85

FeX alloys

 $\Delta E_{sol} = E (n-1)Fe, Cr - (n-1)E(Fe) - E(Cr)$ V, Cr, Mn = 1.85% at

- Effet of d band filling on the solubility of V, Cr et Mn in Fe
- AF interaction between Fe and Cr, Mn or V favors AF solutions
- FeCr: intermédiate case : magnétisme is the driving force
- $\mu_{Cr} < -0.8\mu_{B} \rightarrow mixing$ $\mu_{Cr} > -0.8\mu_{B} \rightarrow demixing$

Partial Conclusion

•Fe-Cr is a particularly complex system where magnetism plays a crucial role In the energetics.

Questions and Comments

- Can we stabilize the SDW (Fermi Surface Nesting?)
- How could we introduce (spin and ion) temperature effects?
- Need for simpler models?

FePt L10

Calculated Fe-Pt phase diagram assessed by 2001 P.Fredriksson

NIMS

 $\frac{c_{\text{exp}}}{1.36}$

 $V_{\rm exp} = 27.7 A^3$

 a_{exp}

very high magnetic uniaxial anisotropy MAE=1.4meV/atom (exp.)

Good control of nanocrystal growth

Magnetic TB model

$$H = H_0 + H_{mag} + H_{LCN} + H_{SOC}$$

• H₀: spd Tight-Binding (non magnetic)Hamiltonian

•H_{mag}: Stoner Hamiltonian

$$H_{mag} = -\frac{1}{2} \sum_{i\lambda} I_{i\lambda} \vec{m}_{i\lambda} \cdot \vec{\sigma}$$

•H_{LCN}: local charge neutrality constraint

$$H_{LCN} = \sum_{i\lambda} U_{LCN} (n_i - n_i^0) |i\lambda\rangle \langle i\lambda| + \sum_{i\lambda \notin d} U_d (n_{i,d} - n_{i,d}^0) |i\lambda\rangle \langle i\lambda|$$

• H_{SOC}: Spin Orbit Coupling

$$H_{SOC} = \sum_{i} \xi_{i} (r - R_{i}) \vec{L}_{i}.\vec{S}$$

$$\xi_{d,i} = \int_0^\infty R_{d,i}^2(r) r^2 dr$$

11

$$H_{0} = \sum_{ij\lambda\mu} |i\lambda\rangle \langle i\lambda|H|j\mu\rangle \langle j\mu| \qquad i=atom \\ \lambda = orbital$$

$$\lambda = s \qquad p_{x} \qquad p_{y} \qquad p_{z} \qquad d_{xy} \qquad d_{xz} \qquad d_{xz} \qquad d_{x^{2}-y^{2}} \qquad d_{3z^{2}-r^{2}}$$

Hopping integral

Onsite term

$$\beta_{ij}^{\lambda\mu} = \langle i\lambda | H | j\mu \rangle$$

$$\beta(R)$$

$$\varepsilon_{i\lambda} = \langle i\lambda | H | i\lambda \rangle$$

• H₀: Hopping integrals and onsite elements obtained from simultaneous fit of abinitio **band structure** and **total energy** curves of **bulk non magnetic Fe and Pt**

• H_{mag}: Stoner parameter I adjusted to reproduce ab-initio M(d) of bulk Fe and Pt

$$H_{mag} = -\frac{1}{2} \sum_{i\lambda} I_{i\lambda} \vec{m}_{i\lambda} \cdot \vec{\sigma}$$

 $I_{Fe} \in [0.88, 0.95] eV$

Bcc Fe PWscf no SO PWscf SO 1.75 - TB no SO Fcc Pt Spin Magnetic Moment per atom $[\mu_{\rm B}]$ Spin magnetic moment per atom [µ] 2.5 I=0.95 eV I=0.90 eV I=0.88 eV Pwscf GGA 0.25 01 3 5 2.6 2.8 3 a_{FCC} [A] 3.2 3.4 4 6 7 8 9 a_{FCC} [A]

 $I_{Pt} = 0.60 eV$

10

• H_{SOC}: Spin Orbit Coupling adjusted to reproduce ab-initio band structure

band structure of Pt fcc with and without SOC Pwscf DFT-LDA & TB (a=7.40bohr)

$$H_{SOC} = \sum_{i} \xi_{i} (r - R_{i}) \vec{L}_{i} \cdot \vec{S}$$

2

$$\xi_{d,i} = \int_0^\infty R_{d,i}^2(r) r^2 dr$$

Trieste July 7 2011

• H_{LCN}: local charge neutrality

$$H_{LCN} = \sum_{i\lambda} U_{LCN} (n_i - n_i^0) |i\lambda\rangle \langle i\lambda| + \sum_{i\lambda \notin d} U_d (n_{i,d} - n_{i,d}^0) |i\lambda\rangle \langle i\lambda|$$

$$\uparrow$$
Charge neutrality
"d" orbital filling

 $U = U_d = 20eV$

 $n_{i,d}^0$ adjusted to reproduce electronic and magnetic properties of FePt L10

$$n_{Fe,d}^0 = 6.6$$
 $n_{Pt,d}^0 = 8.8$ $M_{Fe} \sim 3\mu_B$ $M_{Pt} \sim 0.35\mu_B$

Magnetic and Structural properties of FePtL10

Magnetic and Structural properties of FePtL10

Magnetic Anisotropy Energy

R

Ν

FePt L10 clusters

Clusters of increasing size

N = 43

N = 55cuboctahedron

N = 147cuboctahedron Not a spherical shell

Trieste July 7 2011

Magnetic properties of FePt L10 clusters

Repartition of spin magnetic moment in the cluster

FM // z

N =135

Ab-initio= Comput. Matt. Sci. 35 (2006) 279

Magnetic properties of FePt L10 clusters

Repartition of spin magnetic moment in the cluster

AF // x

AF vs FM order in FePt clusters

FePt L10 clusters: FM vs AF

Pt termination favors AF Fe termination favors FM Large Stoner parameter favors FM Large c/a favors FM

œ

MAE in FePt clusters

Easy axis along z Except for N=135,147 (AF ordering)

Partial Conclusion

•Efficient and quantitative TB method for electronic and magnetic properties of metals and their alloys.

•Complex magnetic behavior of FePt clusters: FM vs AF, oscillating MAE etc.. influence of surface termination influence of c/a

Questions and Comments

Why is there no experimental evidence of AF order?

LSDA+U

Disorder?

Strain effect?

THANK YOU FOR YOUR ATTENTION