

Morphologie et énergétique des surfaces vicinales de métaux de transition

Cyrille Barreteau

Parcours Scientifique

- 91-95 Thèse sur la microscopie électronique (ONERA)
- 95-97 Post-doc sur le développement d'une méthode de liaisons fortes (CEA)
- 97-98 Post-doc sur la transition de phase $(3 \times 3) \leftrightarrow (\sqrt{3} \times \sqrt{3})R30^\circ$ de Sn/Ge(111) (Trieste)

Le fil directeur

Morphologie et énergétique des surfaces vicinales de métaux de transition.

Conséquences du théorème de Wulff

La bonne fonction énergétique: f

énergie de surface par unité de surface projetée (sur un plan de référence)

Le cristal a une forme convexe ainsi que la fonction f

$$X = -\frac{1}{\lambda} \frac{\partial f}{\partial h_X} \quad ; \quad Y = -\frac{1}{\lambda} \frac{\partial f}{\partial h_Y} \quad ; \quad Z = \frac{1}{\lambda} \left(f - h_X \frac{\partial f}{\partial h_X} - h_Y \frac{\partial f}{\partial h_Y} \right)$$

Le multiplicateur de Lagrange est le potentiel chimique

Construction géométrique de Wulff

Facettes correspondent aux points de rebroussement de l'énergie de surface

Forme d'équilibre polyèdre convexe

Raccordement (anguleux ou doux) de 2 facettes

 $\frac{r_A}{r_A} = \frac{\gamma_A}{\gamma_A}$

Description géométrique d'une surface vicinale

p Nombre de rangées atomiques dans la terrasse

Les grandeurs énergétiques de surface

énergie de surface par unité de surface projetée $f(\tan \theta) = \underbrace{\frac{\gamma(n)}{\cos \theta}}_{r} = \gamma(n_0) + \frac{\beta}{h} |\tan \theta|$ $\vec{\gamma(n)}$ énergie de surface par unité de surface β énergie de marche par unité de longueur

Liaisons fortes

 $E_{\text{tot}} = \sum_{\alpha} E_{\alpha} f(E_{\alpha})$ $E_{\text{tot}}(T=0) \approx E_{\text{tot}}(T) - \frac{1}{2}TS_{e}$ $f(E) = \frac{1}{1 + \exp(\frac{E - E_f}{k_T})}$ Énergie totale Correction entropique $\delta V_{ij}^{\lambda\mu} = \langle i\lambda \,|\, \delta V \,|\, j\mu \rangle = \frac{1}{2} (\delta V_i + \delta V_j) S_{ii}^{\lambda\mu}$ Neutralité de charge locale $E_{\rm dc} = N \sum_{i} \delta V_i + \frac{1}{2} \sum_{i} \delta V_i \delta V_i$ $E_{\rm tot} = \sum E_{\alpha} f(E_{\alpha}) - E_{\rm dc}$ $\delta V_i = U \delta N_i$ Interaction de Coulomb locale Etat de surface Surface Rh(111) Niveau de Fermi 3.0 **C-EF**(eV) E-EF(eV) -2.5 -7.5 -9.0 $\overline{\mathbf{M}}$ Ī $\overline{\Gamma}$ M K Г Gamma Gamma LF sans neutralité

LF avec neutralité

Ab-initio (Eichler)

Potentiels empiriques

$$E = \sum_{\substack{i,j\\R_{ij} \in R_c}} W(R_{ij}) f_c(R_{ij}) + \sum_i F(\rho_i) \qquad \rho_i = \sum_{\substack{j \neq i}} g(R_{ij}) f_c(R_{ij})$$

$$R_c : \text{ rayon de coupure} \qquad \text{Fonction d'immersion} \qquad \text{Fonction * densité * } \\ \rho_i = Z_i^1 + Z_i^2 g_2 \quad g(R_1) = 1 \\ \text{(réseau rigide)} \qquad \text{Second moment} \qquad \text{EAM/EMT} \qquad \text{Second moment modifié} \\ F(\rho) = -\xi \sqrt{\rho} \qquad F(\rho) = \dots, \qquad F(\rho) = -\xi \rho^{\alpha}$$

$$\text{Approximation harmonique} \qquad \text{Matrice dynamique} \qquad D_{ij}^{\alpha\beta} = \frac{1}{M} \frac{\partial^2 E}{\partial r_i^{\alpha} \partial r_j^{\beta}}$$

$$\text{Energie libre vibrationnelle} \qquad F_{\text{vib}} = k_B T \int_0^{+\infty} \ln(2 \sinh \frac{hv}{2k_B T}) n(v) dv$$

Potentiel de paires effectif (Ising)

Réseau CFC

 V_1, V_2, V_3 déterminés à partir des 3 énergies de surface (Vitos *et al.*)

$$\begin{cases} E_{111} = 3V_1 + 3V_2 + 12V_3 \\ E_{001} = 4V_1 + 2V_2 + 16V_3 \\ E_{110} = 6V_1 + 4V_2 + 20V_3 \end{cases} \iff \begin{cases} V_1 = E_{110} - E_{111} - \frac{1}{2}E_{001} \\ V_2 = \frac{2}{3}E_{111} - \frac{1}{2}E_{001} \\ V_3 = \frac{1}{2} \left[E_{111} - \frac{3}{2}(E_{110} - E_{001}) \right] \end{cases}$$

Modélisation d'une surface

Le calcul des énergies en pratique

Les interactions entre marches

L'énergie de marche dépend de la vicinalité

Les interactions entre marches

Énergie de marche en liaisons fortes

Énergie de marche vibrationnelle

p(100)x(010)

p(100)x(111)

 $\eta = \tan(\theta) = 0$

$$\Delta f = \left[E_{\text{surf}}(hkl) - (p_1 - 1)E_{\text{surf}}(100) - (p_2 - 1)E_{\text{surf}}(111) \right] / A_0(n)$$

Potentiel empirique

Réseau relaxé

Voisins lointains

interaction entre marches influence sur la stabilité

relaxation

Interaction élastique courbure positive stabilisation des vicinales

Situation identique à Frenken et Stoltze

Influence des phonons

 γ_B

Stabilité des surfaces vicinales

Problème difficile car bilan énergétique subtil: meV/Å

Les potentiels empiriques ont leur limite

Les calculs de structure électronique sont-ils totalement fiables?

Conclusions & Perspectives

Grande richesse des surfaces vicinales

Facettage sous dépôt d'adsorbat

Vicinales des surfaces d'alliages ou de quasicristaux

Formation de nanofils

Propriétés physiques des nanostructures

Comportement magnétique des nano-objets (nanofils, nano-plots)

Aimantation, anisotropie magnétique, distribution spatiale des Moments (amplitude et orientation)

Influence des marches sur la catalyse