| Centre
Paris-Saclay
| | | | | | | webmail : intra-extra| Accès VPN| Accès IST | English
Univ. Paris-Saclay

Les stages

PDF
Synthèse et Etudes de Matériaux Graphéniques
Synthesis and Study of Graphenic Materials

Spécialité

Chimie organique

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

30/03/2022

Durée

6 mois

Poursuite possible en thèse

oui

Contact

CAMPIDELLI Stéphane
+33 1 69 08 51 34

Résumé/Summary
Le terme graphène regroupe toute une famille de matériau. Dans ce stage, nous proposons de construire par des méthodes synthèses organiques des nanoparticules de graphène pour l'étude de leurs propriétés optiques et qui peuvent servir de brique de base pour la réalisation de matériaux graphéniques.
The term graphene covers a whole family of materials. In this internship, we propose to build by organic synthesis methods graphene nanoparticles for the study of their optical properties and which can serve as a basic brick for the realization of graphene materials.
Sujet détaillé/Full description
Le graphène est un matériau bidimensionnel issu, à l'origine, du graphite. Une des limites majeures à l'utilisation du graphène notamment en optique et en électronique est l'absence de bande interdite (gap ou bandgap) ; en effet le graphène est un semi-métal. Un des moyens pour ouvrir un "gap" dans le graphène consiste à réduire une ou ses deux dimensions jusqu'aux échelles nanométriques ; on forme ainsi des nanorubans ou des nanoparticules de graphène. Une autre méthode consiste à former un réseau régulier de trous dans le graphène, ces matériaux sont appelés "Nanomesh de graphène". Depuis une dizaine d'année, plusieurs groupes se sont intéressés à la réalisation et à l'étude de ces structures en utilisant l'approche "top-down", c'est-à-dire par la formation de nanostructures à partir du matériau macroscopique par des processus d'oxydation chimique, des attaques plasma, etc...[1-3] L'inconvénient de la méthode "top-down" est qu'elle ne permet pas de contrôler précisément la structure du matériau final. De plus il a été démontré que les propriétés optiques et électroniques sont largement influencées par les effets bords et leur état d'oxydation. Par opposition, la synthèse de matériaux graphéniques par synthèse chimique (approche "bottom-up") permet de contrôler les structures à l'atome près. [4,5]

Ce projet s'inscrit dans ce contexte et le but est donc de synthétiser des matériaux graphéniques (nanoparticules de graphène, nanomesh de graphène) par l'approche "bottom-up", c'est-à-dire via des réactions de chimie organique (couplage au palladium, Diels-Alder, réaction de Scholl, etc…) Dans le cadre d'une collaboration avec l'ENS Paris-Saclay (laboratoire LUMIN), nous avons synthétisé plusieurs nanoparticules au LICSEN et leurs propriétés d'ensembles et sur molécules individuelles ont été étudiées au LUMIN. Nous avons montré que ces particules possèdent à la fois les propriétés intéressantes des molécules (petite taille, grande section efficace d'absorption, possibilité d'accorder leurs propriétés grâce à la chimie organique) et celles d'émetteurs solides comme les centres colorés du diamant (haute brillance et bonne photostabilité). [6]

Lors de ce stage de nouvelles familles de nanoparticules de graphène seront synthétisées et nous nous intéresserons également à la synthèse de précurseurs de nanomesh de graphène. Ce stage est principalement un stage de chimie moléculaire, les techniques classiques de chimie seront utilisées (chimie en sorbonne, travail sous atmosphère inerte, rampe vide/argon, etc). Les techniques classiques de caractérisation : spectroscopie RMN, abs. UV-Vis-NIR, photoluminescence ainsi que la spectrométrie de masse (MALDI-TOF) seront utilisées.

Pour ce projet le/la candidat(e) devra posséder une solide formation en chimie organique. Le projet sera réalisé en collaboration avec des physiciens ; le/la candidat(e) doit également avoir un goût prononcé pour le travail multidisciplinaire. Ce travail pourra donner lieu à une poursuite d'étude en thèse.

Références :
[1] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour, Nature 2009, 458, 872-877.
[2] L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Nature 2009, 458, 877-880.
[3] L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, J.-J. Zhu, Nanoscale 2015, 5, 4015-4039.
[4] A. Narita, X. Y. Wang, X. Feng, K. Müllen, Chem. Soc. Rev. 2015, 44, 6616-6643.
[5] J. Pijeat, J.-S. Lauret, S. Campidelli. "Bottom-up approach for the synthesis of graphene nanoribbons", (Eds.: L. Brey, P. Seneor, and A. Tejeda), Graphene Nanoribbons, IOP Publishing Ltd, 2020, p. 2.1-2.25.
[6] S. Zhao, J. Lavie, L. Rondin, L. Orcin-Chaix, C. Diederichs, P. Roussignol, Y. Chassagneux, C. Voisin, K. Müllen, A. Narita, S. Campidelli, J.-S. Lauret, Nat. Commun. 2018, 9, 3470
Compétences/Skills
Synthèse organique, RMN, spectrométrie de masse, spectroscopie d'absorption et de photoluminescence
Organic synthesis, NMR, Mass spectrometry, absorption and photoluminescence spectroscopy

 

Retour en haut