Laboratoire des Solides Irradiés, UMR 7642

Séminaire Invité

Yuta Mizukami, Université de Tokyo, visiteur au LSI

Mercredi 25 mai 2016 Salle de conférence CPHT - Aile 0

High-pressure phase diagram of high-quality single-crystalline FeSe

Among the iron-based superconductors, structurally-simplest FeSe exhibits tetragonal-to-orthorhombic structural transition at $T_s \sim 90$ K and superconducting transition at $T_c \sim 9$ K. FeSe is unique in that it does not exhibit antiferromagnetic transition accompanying the structural transition[1,2]. In addition to this, the previous study on powder crystals has revealed four-fold increase of T_c with applying pressure [3]. Therefore, FeSe is considered to be a key material to understand the mechanism of iron-based high-temperature superconductor.

Recently high-quality single crystals have been synthesized[4] which show large residual resistivity ratio[5], and quantum oscillations[6,7]. The study on these crystals under hydrostatic pressure has revealed a complex temperature-pressure (*T*-*P*) phase diagram, where the pressure dependence of T_c has three plateaus, and the T_s is monotonically suppressed with the sudden development of magnetic phase [8].

To reveal the *T-P* phase diagram under higher pressure, we perform the high-pressure resistivity measurements up to 15 GPa[9], and synchrotron X-ray scattering measurements up to 4 GPa using several pressure techniques. From resistivity measurements, we observe increase of magnetic transition temperature (T_m) with increasing pressure up to 5 GPa. Above 6 GPa, however, the drop of T_m is observed, which is accompanied by the sudden enhancement of T_c up to 38 K, indicating the competing nature of the two orders with similar energy scales. From X-ray scattering measurements, we find tetragonal-to-orthorhombic structural transitions at all pressure points. At 1 GPa, the orthorhombic distortion exhibits second-order-like temperature dependence which is similar to the one at ambient pressure. Above 2 GPa, however, it displays sudden splitting just below the T_m , indicating first-order nature of the transitions in this pressure range. Here, we report on the *T-P* phase diagram obtained from both measurements, and the details of the temperature dependence of resistivity and orthorhombicity at each pressure.

- [1] R. Khasanov et al., Phys. Rev. B 78, 220510 (2008).
- [2] T. M. MacQueen et al., Phys. Rev. Lett. 103, 057002 (2009).
- [3] S. Medvedev et al., Nat. Mater. 8, 630 (2009).
- [4] A. E. Böhmer et al., Phys. Rev. B 87, 180505 (2013).
- [5] S. Kasahara et al., Proc. Natl. Acad. Sci. USA 111, 16309 (2014).
- [6] T. Terashima et al., Phys. Rev. B 90, 144517 (2014).
- [7] M. D. Watson et al., Phys. Rev. Lett. 115, 027006 (2015).
- [8] T. Terashima et al., J. Phys. Soc. Jpn. 84, 063701 (2015).
- [9] J. P. Sun et al., arXiv:1512.06951.