CEA - Saclay 91191 Gif-sur-yvette Cedex Service de Physique de l'Etat Condensé SÉMINAIRE

Mercredi 24 février 11h15

Orme des Merisiers SPEC Salle Itzykson, Bât.774

Miniaturizing optical cavity QED

Jakob Reichel

Laboratoire Kastler Brossel, ENS Ulm

Second-long coherence times are a hallmark of laser-cooled atoms, and can be achieved both with single atoms and with ensembles. Applications based on this coherence include atomic clocks and atom interferometry. Combining it with efficient single-atom preparation and detection methods may enable quantum engineering in a style similar to ion traps, while maintaining the simplicity of a neutral-atom experiment. A particularly attractive platform for such developments are miniature atom traps on chips, called "atom chips".

We have developed such methods using a novel fiber Fabry-Perot cavity on an atom chip, which works in the strong coupling regime of cavity quantum electrodynamics (CQED). This has enabled us to observe CQED effects with atomic Bose-Einstein condensates, and to optically detect single atoms with a back-action of less than one spontaneous photon - a result that is impossible to achieve with free-space optical interaction.

Un café sera servi à 11h00.

Contact : patrice.bertet@cea.fr/elisabeth.bouchaud@cea.fr - Tel : +33 1 69 08 55 29 / 41 03 http://iramis.cea.fr/spec/