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Abstract. A room temperature nuclear magnetic resonance force microscope (MRFM), fitted in a 1 tesla
electromagnet, has been used to measure the nuclear spin relaxation of 1H in a micron-size (70 ng) crys-
tal of ammonium sulfate. NMR sequences, combining both pulsed and continuous wave radio-frequency
fields, have allowed us to measure mechanically T2 and T1, the transverse and longitudinal spin relaxation
times. Because two spin species with different T1 values are measured in our 7 µm thick crystal, magnetic
resonance imaging of their spatial distribution inside the sample section have been performed. To under-
stand quantitatively the measured signal, we carefully study the influence of spin-lattice relaxation and
non-adiabaticity of the continuous-wave sequence on the intensity and time dependence of the detected
signal.

PACS. 07.79.Pk Magnetic force microscopes – 76.60.-k Nuclear magnetic resonance and relaxation –
87.61.Ff Instrumentation

1 Introduction

For a long time research groups have looked for new ways
of detecting electronic or nuclear paramagnetic resonance
with better sensitivity. A review of different proposed
methods can be found in the introduction of Abragam’s
book [1]. In two seminal papers [2,3], Sidles recognized the
advantage of coupling the spin system to a mechanical os-
cillator for magnetic resonance imaging. In this technique,
the force signal is proportional to the magnetic field gradi-
ent [4], which, in an extremely inhomogeneous field, should
allow high spatial resolution. The new technique is referred
to as magnetic resonance force microscopy (MRFM) [5].

The first magnetic resonance force signal was de-
tected by Rugar et al. in 1992 while exciting electron spin
resonance (eMRFM) in a 30 ng crystal of diphenylpicryl-
hydrazil [6]. Two years later, Rugar et al. reported the me-
chanical detection of 1H (protons) nuclear magnetic reso-
nance (nMRFM) in 12 ng of ammonium nitrate [7]. These
two pioneering experiments demonstrate that a micro-
fabricated cantilever, identical to the ones developed for
atomic force microscopy, can detect the magnetic moment
of a micron-size sample. In the case of nuclear magnetic
resonance (NMR) [7], the achieved sensitivity of 1013 spin,
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at room temperature and in a field of 2.4 T, represents a
substantial improvement over the standard coil detection.

Significant progress has been made in the past few
years. In 1996, Zhang et al. mechanically detected
the ferromagnetic resonance (fMRFM) of yttrium iron
garnet [8]. Imaging experiments with eMRFM [9,10],
nMRFM [11,12] and fMRFM [13] were performed. A mag-
netic resonance torque signal in a homogeneous magnetic
field [14] was also detected. Improvement of the force
sensitivity by operating at low temperatures [15–17] was
demonstrated. Force maps of the sample were obtained
with the magnetic probe placed on the mechanical res-
onator in eMRFM [18] and fMFRM [13]. The highest sen-
sitivity reported so far is around 200 electron spin in a
1 Hz bandwidth. The result was obtained by operating
an eMRFM at 77 K in a very large magnetic field gradi-
ent [19]. In 1996, Wago et al. demonstrated that a pulse
sequence combined with fast adiabatic passages can allow
measurement of the nuclear spin-lattice relaxation time
of 19F in calcium fluoride at low temperatures [15]. The
same method was used to measure the longitudinal spin
relaxation of 1H in ammonium sulfate at room tempera-
ture and normal pressure [20,21]. Recent eMRFM work
in vitreous silica at 5 K showed that the same principles
can be also applied to study electron spin dynamics of E′
centers with long T1 [17].

In this paper, we report the first measurements of
both the transverse and longitudinal nuclear spin dynam-
ics of 1H using mechanical detection. A very thin sample



58 The European Physical Journal B

������
������
������
������
������

������
������
������
������
������

�����
�����
�����
�����

�����
�����
�����
�����

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

����
����
����

����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

VCO

audio generator

Ms

pre-amplifier

rf
  c

oi
l

photodiode

laser

cantilever

iron cylinder

micron-size crystal

B

B

r

z

1

ext

lock-in

2mm in diameter

rf amplifier (7W)

Fig. 1. MRFMs are miniature versions of the Faraday bal-
ance. The instrument fits between the poles of an electromag-
net that generates a homogeneous static field Bext = 1 T. A
sample is affixed onto a micro-fabricated cantilever and placed
in a field gradient g ≈ 500 T/m produced by a 2 millimeter-
size iron bar. The gradient serves to create a magnetic force on
the spin system. The induced Å-scale bending of the cantilever
is measured by a laser beam deflection on a photodiode. To
increase the sensitivity, the nuclear magnetization is inverted
periodically at 1.4 kHz, a frequency that corresponds to the
fundamental flexure mode of the cantilever. The induced vi-
bration is monitored by a lock-in. The nuclear spin oscillations
are obtained by cyclic adiabatic inversions using a frequency
modulated r.f. field produced by a VCO. The carrier is at the
Larmor frequency of protons.

is used to analyze if new phenomena might be specific
to small sizes. Our instrument is a simple home-built
MRFM located inside a 1 tesla electromagnet. The me-
chanical motion of the cantilever is monitored by a laser
beam deflection system. The sample is a 7 µm thick crys-
tal of (NH4)2SO4. Two spin-lattice relaxation times are
observed, T1s = 0.4 s and T1l = 5 s. The latter value
corresponds to the T1 reported in the literature for this
compound [22,23]. The short relaxation, however, might
be due to water contamination inside the crystal during
its contact with air. These same two relaxation times are
also measured by conventional NMR in powder samples
with particles of dimensions smaller than 50 µm.

After introducing in Section 2 the measurement tech-
nique employed in this study, we will present in Section 3
our results on the transverse and longitudinal spin relax-
ation properties of (NH4)2SO4. This will be followed in
Section 4 by a more detailed analysis of the time depen-
dence and magnitude of the force signal in order to quan-
tify the proportion of spins with short and long T1 and
to determine the effect of the non-adiabaticity of the se-
quence in the measured signal. Finally a model to describe
our experimental data will be proposed.

2 Measurement of the force signal

The setup is schematically represented in Figure 1. The
experiment is performed at room temperature inside a vac-
uum cell (10−2 torr) constantly connected to the inlet of a
rotary pump. The instrument [24] fits between the poles of
an iron core electromagnet which produces a static mag-
netic field Bextk along the z axis. To the uniform field one
adds a second inhomogeneous field with axial symmetry
produced by a magnetized iron bar 8 mm in length and
1.9 mm in diameter. The polarization field experienced
by the spin is B0 = Bext + Bcyl, with B0 = B0 · k and
Bcyl = Bcyl · k. Near the symmetry axis, the instanta-
neous magnetic force acting on the sample is given by the
expression [25]:

F (t) =
∫
Vs

Mz(r, t)
∂Bcyl

∂z
dV. (1)

Here Mz is the z component of the bulk magnetization
and Vs is the volume of the sample. For small sample
size, we make the approximation that the field gradient
g = ∂Bcyl/∂z is uniform over Vs. A new length variable
ζ = B0(r)/g is defined so that a plane of constant ζ maps
onto a surface (actually a paraboloid) of constant polar-
ization field which also corresponds to a sheet where the
spins have the same motion. A paraboloid of fixed ζ value,
however, shifts axially away from the iron cylinder when
Bext increases. In this experiment, the sample is placed
0.70 mm above the iron cylinder and centered on the cylin-
der axis. At this distance, the calculated axial field gradi-
ent is g = −470 T/m (see Appendix A).

The mechanical force detection is obtained by measur-
ing the elastic deformation along the z axis of a micro-
fabricated cantilever on which the sample is attached. In
this orientation, the probe is sensitive to the longitudinal
component of the nuclear magnetization in contrast with
a standard coil detection. The cantilever equation of mo-
tion is represented by a damped harmonic oscillator with
a single degree of freedom. The measurement technique
uses the optical deflection of a 4 µW HeNe laser beam
which reflects off the rear side of the cantilever onto a
position-sensitive detector.

Our test compound is (NH4)2SO4. This non-magnetic
insulator has a high proton density d = 6.4×1022 1H/cm3

and is in its paraelectric state above 223 K. NMR mea-
surements of the 1H spin-lattice relaxation time at 300 K
in our powder [26] give T1z ≈ 5 s along the static field [27].
The 1H linewidth is 5 G and the second moment is
M2 = 4 G2 at 295 K [28]. Our sample is a crystal cleaved
to a platelet aspect ratio and glued with epoxy on the
end of a commercial Si3N4 amorphous cantilever of spring
constant k = 0.008 N/m, as can been seen in Figure 2.
After completing the assembly, the cantilever resonance
frequency drops from 5.8 kHz to 1.4 kHz due to the sam-
ple mass [29]. The quality factor of the loaded cantilever
is Q ≈ 4 000 in vacuum. From the electron microscopy
images (Fig. 2), the sample dimensions are approximately
100× 50× 7 µm3 with the smallest length (the thickness)
oriented along the axial field. This represents a volume
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Fig. 2. Images of a commercial Si3N4(amorphous) cantilever:
a 7 µm thick single-crystal (NH4)2SO4 sample is glued on the
cantilever end with epoxy. The loaded cantilever has a reso-
nance frequency of 1.4 kHz, a spring constant of 0.008 N/m
and a quality factor of 4 000 in vacuum. The estimated sample
volume is 3.5× 10−8 cm3.

Vs = 3.5×10−8 cm3 or a mass m = 70 ng and corresponds
to N ≈ 1015 protons. The temperature of the cantilever
holder is stabilized around +27 ◦C during the measure-
ment [30]. The nuclear magnetization at thermal equilib-
rium is expressed by the Curie law M0 = (dµ2

nB0/kBT ) k,
with µn = 1.4× 10−26 J/T the proton magnetic moment,
T = 300 K and B0 = 1.3 T the polarization field. This
gives a magnetic moment M0Vs = 2.3× 10−16 J/T.

In order to increase the sensitivity, Mz is modulated at
a frequency ωm close to ωc, the frequency of the fundamen-
tal flexure mode of the cantilever. At the moment, the op-
timal configuration uses cantilevers that have mechanical
resonance frequencies in the audio range and Larmor fre-
quencies ω0 which are several orders of magnitude larger
(radio or microwave frequencies). Only two methods have
been used to create an oscillatory force on the cantilever:
cyclic saturation and cyclic adiabatic inversion. They are
restricted respectively to compounds that have spin-lattice
relaxation times T1 either shorter or larger than the oscil-
lation period of the cantilever.

In our case, the modulation of M is generated by
a continuous-wave (c.w.) sequence that consists of pe-
riodic adiabatic fast passages [1]. The radio-frequency
(r.f.) source is a 35-75 MHz Voltage Controlled Oscilla-
tor (VCO). The r.f. output field is amplified up to 7 W
and fed into an impedance matched resonating circuit
(Qrf ' 100) tuned to a fixed frequency, 54.7 MHz. A small
coil (3 turns, 0.8 mm in diameter) is in series with the
tank circuit. The sample is 0.5 mm away from this an-
tenna. The nuclear spins are irradiated for a few seconds
by a linearly polarized r.f. field Bx = 2B1 cos

∫ t
0
ω(t′)dt′

with ω(t) = Ω sin(ωmt) + ω0, a sine-wave modulation of
the r.f. frequency around the proton Larmor frequency
ω0 = γ g ζ0, where γ/2π = 4.258 kHz/G is the nuclear gy-
romagnetic ratio. The surface of constant ζ = ζ0 is called
the resonant sheet. The sinusoidal frequency modulation
is started at a time t = 0. In a transformation to a rotating
coordinate system with an instantaneous angular velocity
ω(t)k, the effective magnetic field is:

Be(ζ, t) = B1i +
{
g ζ − ω(t)

γ

}
k. (2)

θ is defined as the polar angle made by the apparent field
with the external field. The magnetization, however, pre-
cesses about the direction Be + θ̇/γ j, with θ̇ = ∂θ/∂t (see
Appendix B). A parameter for non-adiabaticity is defined
with tanα = θ̇/(γ|Be|) the angle between the two vec-
tors. Provided that the adiabatic condition α � 1 is sat-
isfied, the spin system remains at all times in a state
of internal equilibrium and M is parallel to Be as re-
quired by Curie’s law. The longitudinal magnetization is
Mz(ζ, t) = |M| cos θ, where

cos θ =
g ζ − ω(t)/γ√

{g ζ − ω(t)/γ}2 +B2
1

· (3)

For free spins, |M| is a constant of the motion [1]. This
is no longer true in condensed matter because of spin-
lattice relaxation. In our sample, however, the magnetiza-
tion decay is slow compared to the modulation period.
Under our measurement protocol, an extra defocusing
originates from the lack of adiabaticity of the modula-
tion. In a first step, these effects are neglected and they
will be considered in a more detailed analysis, deferred to
a later section (see also Appendix B). At time t = 0, B1

is assumed to be turned on adiabatically with the sam-
ple initially in thermal equilibrium. In this case the norm
M reflects the state of the longitudinal magnetization im-
mediately before the force measurement. During the c.w.
sequence, the oscillatory movement of Mz(t) comes prin-
cipally from the cos θ factor. The value is expanded in
time series cos θ ≈ a0 + a1 sin(ωmt) [31] with a1 the first
harmonic Fourier component [11] (higher harmonics have
a negligible effect on the motion of the cantilever). Be-
cause of the large field inhomogeneities, the amplitude of
oscillation depends on the location inside the sample. The
resonant sheet, which is the paraboloid of constant ζ0,
corresponds to the surface of maximum amplitude of os-
cillation. The spatial dependence of a1(ζ) is the sensitivity
profile. Γ is the half width at half maximum of this bell-
shaped curve. Γ has the units of a distance and it defines
the thickness of the slice probed. The amplitude of Γ de-
pends on both Ω and B1 [32]. The induced vibration is
synchronously amplified by a lock-in technique through a
single-pole low-pass linear filter of time constant τl. For
ωm = ωc, the lock-in signal grows exponentially (an exact
expression will be given in Eq. (11)) to the asymptotic
amplitude

A0 =
1√
2
Qg

k

∫
Vs

M0 a1(ζ) dζ. (4)



60 The European Physical Journal B

Fig. 3. (a) Vibration amplitude of the cantilever measured
by the lock-in for a (NH4)2SO4 crystal containing 1015 pro-
tons at 300 K in Bext = 0.9425 T. The trace corresponds to
a single shot experiment with no averaging. The lock-in time
constant is τl = 0.3 s. (b) Details of the start and end of the
c.w. sequence. The crystal is irradiated for 3 s by a r.f. field of
B1 = 10 G (upper panel). The bottom panel shows the voltage
waveform applied to the VCO. It produces a sinusoidal fre-
quency modulation around ω0/2π = 54.7 MHz. The amplitude
of the modulation is Ω/2π = 150 kHz. The width of the curve
is the digitalization noise of the oscilloscope (not the phase
noise).

In conclusion, the lock-in output is proportional to the
longitudinal magnetic moment inside the probed slice at
the beginning of the c.w. sequence. In the ideal case
of a uniform inversion of all spins inside the sample
(a1 = 1,∀ζ), the asymptotic amplitude would be Atot =
QgM0Vs/(k

√
2).

The upper panel of Figure 3 shows the time depen-
dence of the lock-in output A(t). The c.w. sequence is
applied between the markers. The time delay between
force measurements is set to 27 s (> 5T1) to ensure a
steady state magnetization close to the thermal equilib-
rium value. The lock-in time constant is τl = 0.3 s which
corresponds to an output noise of 4 Å. The bottom panel
of Figure 3 displays the time dependence of B1 and ω at
the beginning and end of the c.w. sequence. At the start,
the amplitude of B1 is turned on from 0 to 10 G in 5 ms
when the frequency is well off-resonance, i.e. 400 kHz be-
low ω0/2π. The frequency is then ramped to resonance in
7 ms. Finally, the frequency modulation of the r.f. field is
applied for 3 s with a deviation Ω/2π = 150 kHz. For these
settings, the calculated value of Γ = 7 µm is comparable
to the sample thickness.

Since the r.f. tank circuit is tuned to a fixed frequency,
the resonance is found by sweeping the external field
Bext. There is no spurious vibrations of the cantilever in-
duced by the r.f. fields when Bext is outside the resonance

Fig. 4. The amplitude of the force signal (lock-in peak am-
plitude averaged over 1 s around its maximum) is shown as
a function of the width of a r.f. pulse applied 13 ms before
the c.w. sequence. Each point is the average of 16 c.w. se-
quences. The solid line is proportional to a damped cosϕ with
ϕ = γτpB1 the nutation angle. The 6.4 W r.f. power during
the pulse corresponds to a rotating field of B1 = 15 G at the
sample location. The settings for the c.w. sequence are a r.f.
field of 10 G, Ω/2π = 50 kHz and τl = 100 ms. The inset
is a schematic of the time dependence of B1 (solid line) and
ω (dashed line).

range. Figure 3a shows the amplitude of the lock-in sig-
nal achieved in a one shot experiment at the resonance
maximum, Bext = 0.9425 T. The maximum vibration am-
plitude is around 40 Å which corresponds to a signal to
noise ratio of 20 dB. The shape of the lock-in signal A(t)
depends on the value Bext [17]. For Bext = 0.9425 T, i.e.
ζ0 set at the middle of the sample thickness, no steady-
state vibrations of the cantilever are induced by the c.w.
sequence and the lock-in signal decays toward zero for long
a sequence. On the other hand, for Bext 6= 0.9425 T, an
unbalanced partial repolarization of the magnetization oc-
curs during each cycle and the lock-in signal decays to a
finite value which changes sign for Bext smaller or larger
than 0.9425 T.

3 Relaxation measurements

In this section the nuclear spin dynamics of our sample
are measured by applying a series of r.f. pulses before the
c.w. sequence described above.

In order to calibrate the strength of the r.f. field, a
r.f. pulse of duration τp is applied, with an amplitude B1,
13 ms before the c.w. sequence. During this pulse, M0 ro-
tates about Be through an angle ϕ. The angle obtained
at the end of the pulse is ϕ = γ|Be|τp [15,17]. Within
a few milli-seconds after the pulse, the nutated magneti-
zation vector decays to its longitudinal component which
then determines the amplitude of the maximum vibrations
achieved by the cantilever during the force measurement.
B1 is set at maximum power, i.e. 6.4 W, for the pulse.
The c.w. sequence uses a 2.9 W r.f. field. Figure 4 shows
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Fig. 5. Measurement of the transient shape of the spin-echo:
a π/2-τa-π pulse sequence is used to form a spin echo. The
transverse magnetization is measured with the combination of
a π/2 pulse and the c.w. sequence. The amplitude of the force
signal is shown as a function of τa + τb with a fixed τa = 17 µs.
A r.f. field of B1 = 15 G is used for the pulses. The settings
for the c.w. sequence are a r.f. field of 10 G, Ω/2π = 50 kHz
and τl = 100 ms. The solid line is the calculated shape of the
spin echo expected for a platelet of 6.5 µm thickness in the
inhomogeneous magnetic field.

the lock-in output averaged over a 1 s time interval around
its peak amplitude. For spins that are at ζ0, the signal is
proportional to cosϕ. The data are fitted by the func-
tional form exp(−τp/τ) cos(γB1τp) + b. The period gives
a calibration of the r.f. field strength at the sample loca-
tion and we get B1 = 15 G during the pulse. The other
fitting parameters are τ = 43± 6 µs and a positive offset
b = 3± 0.2 Å. The values of these last two parameters de-
pend strongly on B1. The positive offset b is mainly due to
the non-uniform field inside the sample [33]. For 1H away
from ζ0, the direction of Be is not exactly perpendicular
to k and only a partial inversion of the z component is
obtained when ϕ = π. The decay of the magnetic moment
fitted by τ is due to field inhomogeneity which causes a de-
phasing of the magnetization in the transverse plane [34].

To study the transverse magnetization decay of 1H [17]
a sequence of 3 pulses is used. A π/2 pulse is applied to
the spin system, so that the magnetization at ζ0 is rotated
to the transverse plane. After a fixed delay, τa, a π pulse
is applied to form a spin echo. Shortly after, a π/2 pulse
takes an instant snap-shot of the transverse magnetiza-
tion by rotating it along k and the frozen component is
measured with the c.w. sequence. Varying the time delay,
τb, between the last two pulses reconstructs the transient
shape of the spin echo. Using the same settings as the ear-
lier measurement, the widths of the π/2 and π pulse are
set to 3.8 µs and 7.6 µs respectively. The delay between
the center of the first two pulses is τa = 17 µs. In Fig-
ure 5, the lock-in peak (again averaged over 1 s around its
maximum) is shown as a function of τa + τb. As expected

Fig. 6. Spin-spin relaxation time measurement: normalized
heights of the spin echo are displayed on a square-logarithmic
scale as a function of τa + τb with τa = τb . The straight line
is a fit with exp

�
−(2τa/T2)2

	
where T2 = 39± 1 µs.

for a spin echo, the reconstructed transverse magnetiza-
tion becomes refocused at a time 2τa. The shape of the
spin echo reflects mainly the inhomogeneous broadening
of the resonance line as due to the strong field gradient.
The amplitude, however, should only be affected by the
homogeneous contributions to the 1H line (dipolar cou-
pling).

With increasing spacing τa between pulses, the size
of the spin echo signal decreases due to spin-spin relax-
ation. Using the same sequence as above, Figure 6 is a
plot of the spin echo amplitude measured as a function
of the time 2τa. The measured values are plotted on a
x2-log(y) scale and one finds that the data follow the rela-
tionship exp

{
−(t/T2)2

}
with T2 = 39± 1 µs. Taking the

inferred T2, the dipolar linewidth [28] and the inhomoge-
neous broadening as due to the field gradient, the shape of
the echo in Figure 5 is simulated. The solid line in Figure 5
is the best fit obtained for a sample thickness of 6.5 µm
which is in good agreement with the value obtained on the
image.

The longitudinal magnetization recovery is now mea-
sured after a saturation comb [35]. This protocol puts
efficiently inhomogeneous spin systems in a well defined
uniform state outside thermal equilibrium. The satura-
tion comb is composed of three π/2 pulses spaced by
100 µs. The c.w. sequence is applied at a variable delay
(13 ms < t < 20 s) after the comb. In order to obtain an
intrinsic measurement of the relaxation, it is important
to ensure that the sensitivity profile a1(ζ) is exclusively
included inside the sample section, otherwise a partial re-
polarization of the magnetization occurs during the mea-
surement cycle [17]. For our settings, ζ0 is set exactly at
the middle of the sample and Γ = 2.4 µm is smaller than
the sample thickness. As before, the value plotted is the
lock-in output averaged over a 1 s time interval around
its maximum. No signals are detected when t = 13 ms.
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Fig. 7. Measurement of the longitudinal magnetization recov-
ery: the logarithmic of the normalized amplitude of the force
signal is shown as a function of the interval t between a satu-
ration comb and the c.w. sequence. The solid line is a fit with
a double exponential recovery which yields T1s = 0.35± 0.03 s
and T1l = 5.4 ± 0.5 s. Each point is the average of 32 c.w.
sequences. A r.f. field of B1 = 15 G is used for the comb. The
settings for the cyclic adiabatic inversions are a r.f. field of 7 G,
Ω/2π = 50 kHz and τl = 100 ms. We make sure that there is
no net repolarization of M during the c.w. sequence.

In Figure 7, two relaxation times in the recovery
process are clearly observed. The results are fitted
with a double exponential %s {1− exp(−t/T1s)} + (1 −
%s) {1− exp(−t/T1l)} which gives %s = 49 ± 2%, T1s =
0.35± 0.03 s and T1l = 5.4± 0.5 s. The value %s does not
correspond directly to the proportion of spins that have a
short relaxation (ns) since the factor between Mz and the
lock-in amplitude is also a function of T1.

Neutron diffraction studies [36] of the (NH4)2SO4 crys-
tal structure show that there are two NH+

4 sites at room
temperature surrounded respectively by five and six SO2−

4
ions. The protons of the two inequivalent ammonium ions
are coupled via dipole-dipole interactions and the mea-
sured spin-lattice relaxation rate at 300 K is an averaged
value of the T−1

1 . In a variable temperature NMR measure-
ments, O’Reilly and Tsang [23] observe a single exponen-
tial 1H relaxation process and analyze their T1 results by
the reorientation correlation times τ0 of the two distinctive
NH+

4 . At 300 K, 1/τ0 should be larger than the Larmor fre-
quency and the rotation should be isotropic which means
that T1 should be independent of the orientation between
the static field and the crystallographic axis. We suppose
that our observed two T1 processes might be due to water
contamination inside the sample during its contact with
air. The presence of H2O in the crystal lattice could de-
crease the reorientation correlation time of the ammonium
ions, hence diminishing the protons T1. The relatively high
proportion of spins with short T1 might be due to the ex-
ceptionally small thickness of our crystal (7 µm).

In order to check the latter hypothesis, a conventional
NMR measurement was performed by A. Dooglav with a
1 T custom spectrometer. The sample consisted of∼ 1 g of

Fig. 8. Force signal as a function of Bext: a saturation comb
is applied 0.6 s (closed circles) and 16 s (open circles) before
the c.w. sequence. The solid line is the expected profile for a
parallelepiped sample of 7 µm thickness within both the free
spin and adiabatic approximations. The c.w. sequence uses a
r.f. field of 7 G, Ω/2π = 25 kHz and τl = 300 ms. The inset
shows the transfer function that corresponds to these settings,
a1 is the spatial dependence of the sensitivity profile.

our sample ground to small particles with dimensions be-
low 50 µm. In this fine powder sample, a double relaxation
process is also observed with the following parameters
ns = 17±5%, T1s = 0.37±0.1 s and T1l = 4.7±0.2 s. This
result is in sharp contrast with experiments performed on
coarser grains, where only one relaxation is observed with
T1 = 5.0±0.2 s. The values of the two relaxation times are
equal, within error bars, to the ones measured by MRFM.
In addition, measurements were performed on the same
50 µm powder after two weeks of aging in air. It showed
a rise of ns to 26 ± 3% in the longitudinal magnetiza-
tion recovery experiment. A standard spin-spin relaxation
measurement on this powder seems also to indicate a dou-
ble time T2 with ns = 20 ± 6%, T2s = 49 ± 12 µs and
T2l = 79± 1 µs.

One corollary issue concerns the spatial distribution
of each spin species inside the sample section. To perform
this measurement, we record the amplitude of the lock-in
signal as a function of Bext. By sweeping Bext, the surface
ζ0 is displaced to different heights in the sample. The force
signal is then proportional to the density of spin around
this location. In order to obtain a local measurement, the
thickness Γ of the slice probed is reduced by decreasing
both Ω and B1. The inset of Figure 8 shows the spatial
dependence of the transfer function a1(ζ) for our settings
and Γ , the half width at half maximum, is 1.9 µm. Fig-
ure 8 shows the amplitude of the lock-in signal obtained
for two different delays t between the saturating comb
and the c.w. sequence. By changing t, the weight %s of
one spin species compared to the other is varied. Qualita-
tively, this protocol gives more weight to the spin species
with short relaxation when the comb is close to the c.w.
sequence. A first look at the result indicates that a more
rounded distribution is obtained for the t = 0.6 s data.
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The measurements, however, collected close to the edge
of the sample are skewed by repolarization processes that
modify the shape of the lock-in signal. Inside the bulk
of the crystal (0.942 T . Bext . 0.944 T), there is no
clear evidence of a spatial modulation of one spin popu-
lation compared to the other, e.g. a dip of the signal at
0.9425 T, the middle of the crystal. This result suggests
that, within our resolution, the water contamination is
uniform in the thickness. The solid line is a calculation
of the expected profile for a parallelepiped sample of di-
mensions 100× 50× 7 µm3 within both the free spin and
adiabatic approximations. In spite of the idealized model,
the t = 16 s data (open circles) are well described by
the calculated profile, except for the high-field range. The
shoulder at Bext = 0.946 T corresponds to the surface of
the sample that has been glued with epoxy to the can-
tilever. We did not attempt to fit this part of the data.
The observed step in the signal might be due to the pro-
tons in the epoxy. A small roll angle between the sample
and the cantilever combined with the particular shape of
our crystal is also consistent with the observed effect.

Although the data analyzed here-above ensure that
two populations of spin with different NMR properties
are present, their actual proportion is not quantitatively
determined, as the actual values of the relaxation times in-
fluence the magnitude of the measured signal. For a bet-
ter knowledge of the sensitivity of the technique to the
measurement parameters, it is then necessary to perform
quantitative analyses.

4 Quantitative measurements

In this section, we shall first calibrate the mechanical re-
sponse of the cantilever and the mechanical noise. The
time dependence A(t) of the lock-in signal is calculated,
taking into account relaxation processes and non-
adiabatic effects. The experimental responses for differ-
ent values of B1 and Ω are compared with the calcula-
tions. This allows us to select an experimental condition
for which non-adiabatic effects can be neglected. It is then
shown that two relaxation times are indeed required to fit
the time dependence of the observed lock-in signals, with
values consistent with those obtained from T1 data.

The Q of the cantilever is first measured carefully us-
ing the noise vibration spectrum of the cantilever loaded
with the sample in vacuum when the r.f. power is off. The
lock-in time constant is set to τl= 10 s. An audio generator
sweeps the lock-in reference around ωc. The plotted value
in Figure 9 is the standard deviation of the lock-in signal
estimated over 100×τl (the mean lock-in signal is zero).
During the whole experiment, the temperature stability
of the cantilever is better than ±0.01 ◦C which guaran-
tees that ωc does not shift by more than 0.01 Hz. Fitting
the squared amplitude with a Lorentzian [37], one obtains
the cantilever resonance frequency ωc/2π = 1 397.77 Hz
and quality factor Q = 4 000 (defined as the ratio of ωc

over the full width at half maximum of the power spec-
trum). Away from resonance, our sensitivity is limited

Fig. 9. Noise vibration spectrum of the cantilever with the
sample attached: the data is obtained in vacuum (10−2 torr)
when no r.f. fields are applied. The lock-in time constant is τl=
10 s. The signal is the standard deviation of the lock-in out-
put estimated over 100×τl. The cantilever holder temperature
stability is better than ±0.01◦C during the measurement.

by the noise of the detection electronics. It is several or-
ders of magnitude smaller than the Å-scale motion of the
cantilever at resonance and therefore it can be neglected.
Near ωc, the cantilever motion consists of white noise am-
plified by a narrow-bandwidth mechanical resonator [38].
∆νc is the one-sided equivalent noise bandwidth (ENBW)
of the mechanical resonator ∆νc = ωc/8Q = 0.27 Hz.
The noise at the output of the lock-in is this narrow-band
motion noise observed through a RC filter of time con-
stant τl = 1/RC whose ENBW ∆νl = 1/4τl = 0.025 Hz.
Exactly at resonance, the combined distribution gives an
ENBW ∆ν = (1/∆νc + 1/∆νl)−1 = 0.023 Hz. To con-
vert our data to spectral density, the resonance ampli-
tude in Figure 9 must be divided by

√
∆ν. The mea-

sured noise spectral density is A = 13 Å/
√

Hz. This figure
also corresponds to the noise observed in Figure 3 where
∆ν = 0.20 Hz. The result has to be compared with the in-
trinsic correlation function for fluctuations of a Brownian
particle harmonically bound to an oscillator with a single
degree of freedom of spring constant k:

〈AA(t)〉 =
4QkBT

kωc
· (5)

Taking the square root of the above expression, one gets
AT = 10 Å/

√
Hz at T = 300 K which is in good agree-

ment with our measured value. In conclusion, our domi-
nant noise comes from the thermal vibration of the can-
tilever. From this result, one can estimate the smallest
force detectable by the instrument in one shot kA/Q =
2×10−15N/

√
Hz.

In order to obtain a quantitative measurement of our
force signal when the r.f. field is applied, a more detailed
study of the time dependence of the lock-in signal A(t)
is needed. The length of the c.w. sequence is increased



64 The European Physical Journal B

Fig. 10. Time dependence of the lock-in signal: the trace is the
average of 32 c.w. sequences with τl = 30 ms. The c.w. sequence
is composed of a r.f. field of 10 G with Ω/2π = 50 kHz. The
solid line is the calculated vibration amplitude of a harmonic
oscillator driven by a damped sinusoidal magnetic force with
a decay time constant τm = 2.2 ± 0.07 s. In this case, the
predicted maximum signal is Apeak = 0.5A0 with A0 = QF0/k.

to 6 s compared to Figure 3. Figure 10 is the average of
the lock-in signal over 32 sequences using a short lock-in
time constant of τl = 30 ms. The striking feature of this
plot is that the norm of the magnetization |M| decays dur-
ing the c.w. sequence. We have checked that experimental
perturbations such as the phase noise of the r.f. source are
negligible in this case [39].

In the rotating frame, the magnetization tends to
recover slowly towards a steady state value due to spin-
lattice relaxation processes [40]. These relaxations are dif-
ferent from the ones measured in section 3 which are in-
ferred from the time evolution of the magnetization in
the absence of r.f. fields. In addition, the lack of adia-
baticity quantified by α ≈ θ̇/γBe produces a precession
movement around the locally changing effective field di-
rection. This mistracking corresponds to a magnetization
component perpendicular to the instantaneous precession
axis Be + θ̇/γ j that relaxes due to spin-spin interactions.
But in the limit α � 1 and 2π/ωm � T1, the decrease
of M after one cycle ∆ = M(t+ 2π/ωm)−M(t) is small.
The value is calculated at the lowest order for one spin
species (see Appendix B).

∆ ≈ −M


∫ 2π

ωm

0

θ̇(t)
∫ t

0

θ̇(t′) exp
(
−
∫ t

t′

1
T+

1

dt′′
)

× cos
(∫ t

t′

γB1

sin θ(t′′)
dt′′
)

dt′dt

+
∫ 2π

ωm

0

(
cos2 θ(t)
T1z

+
sin2 θ(t)
T1x

)
dt


+M0

∫ 2π
ωm

0

cos θ(t)
T1z

dt, (6)

where T1z is the usual T1 in the absence of an r.f.
field, T1x is the transversal spin-lattice relaxation and
1/T+

1 = (1/T1y + cos2 θ/T1x+ sin2 θ/T1z)/2. It was shown
that the relaxation mechanisms in this compound are asso-
ciated with the time varying field induced by the change in
the NH+

4 orientation. For an exponential correlation func-
tion with correlation time τ0, T1x is expressed as a sum of
the spectral density of these fluctuating fields J (i)(ω) =
τ0/(1+ω2τ0) with an index i that corresponds to the num-
ber of net spin flip: 1/T1x = 3

2γ
4~2I(I+1)/r6(5

2J
(1)(ω0)+

1
4J

(2)(2ω0) + 1
4J

(0)(2ωe)), with ωe = γBe. In the approxi-
mation for our compound that ωeτ0 � 1, one obtains that
T1x is independent of θ and T1y = T1x. Coming back to
equation (6), one recognizes that the first integral is the
decrease due to the finite value of the non-adiabaticity pa-
rameter α (see Appendix B). The second represents the
spin-lattice relaxation T1ρ in the rotating frame [41]. The
last integral is the equilibrium magnetization that corre-
sponds to the spin temperature in the rotating frame. τ
and Meq are defined by rewriting the above expression
in the form ∆/2π = −M/(ωmτ) + Meq/(ωmτ). During
the c.w. sequence, the oscillatory driving magnetic force
is dampened and the instantaneous value is given by:

F (t) ≈ g sin(ωmt)
∫
Vs

a1(ζ)M(ζ, t) dζ + const., (7)

with

M(ζ, t) =
{
Meq(ζ) + {M0 −Meq(ζ)} exp

(
−t
τ(ζ)

)}
.

(8)

The integral in equation (7) relaxes approximately accord-
ing to a single exponential towards its equilibrium value
meq =

∫
Vs
a1(ζ)Meq(ζ)dζ with an apparent characteris-

tic time τm. One notes that meq = 0 by symmetry when
ζ0 is centered at the middle of the sample ζ0 = ζm. The
value of meq is positive for ζ0 < ζm and changes sign for
ζ0 > ζm [17]. In the particular case where meq = 0 and
α � 1, then it can be shown that the coefficient τm is
bounded between T1x ≤ τm ≤ T1z [21].

The forced vibrations of an harmonic oscillator are
given by the convolution product:

a(t) = β

∫ t

0

F (t′)
k

exp
{
− t− t

′

τc

}
sin {ωc(t− t′)} ωc dt′,

(9)

with β =
{

1 + 1/(4Q2)
}

and 1/τc = 1
2ωc/Q the damping

constant of the cantilever. In our experiment the external
force is F (t) = F0 exp(−t/τm) exp(iωmt) for meq = 0, with
F0 = kA0/Q and τm the characteristic decay time of the
magnetic force. a(s) the Laplace transform of equation (9)
is calculated in the complex plane:

k

F0
a(s) =

τm
(
4Q2 + 1

)
(sτm + 1− iτmωm) {(sτc + 1)2 + 4Q2} · (10)

The response A(t) of the lock-in is the imaginary part of
the inverse Laplace transform L−1 {a(s+ iωm)/(1 + τls)}
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Fig. 11. (a) Measurements of the amplitude of the lock-in
signal is shown as a function of the modulation amplitude for
different strengths of the r.f. field. The dashed lines are guides
for the eye. The arrows indicate the limits of the adiabatic
regime. The measurements are performed at Bext = 0.9425 T.
(b) Calculated amplitude of the lock-in signal obtained for a
7 µm thick sample using equation (7). The parameters intro-
duced in the model are T1z = 4.9 s, T1x = T1y = 3.2 s and
T2 = 40 µs (solid line) or 100 µs (dotted line).

with τl the lock-in time constant. An approximation can
be obtained in the special case where ωm = ωc in the limit
Q� 1 and ωc � (1/τm, 1/τl).

A(t)
A0
≈ 1

(1/τm − 1/τc)(τc − τl)
exp

(
− t

τc

)
+

τm/τc
(1/τc − 1/τl)(τl − τm)

exp
(
− t

τl

)
+

τm/τc
(1/τc − 1/τm)(τm − τl)

exp
(
− t

τm

)
. (11)

The sum of these three exponentials vanishes at t = 0 and
each term decays to zero with a different time constant at
a later time t > 0. This leads to a peaked lock-in signal
whose amplitude Apeak and position depends on τm (for
a fixed τc and τl). At the end of the c.w. sequence in Fig-
ure 10 (t > 6 s), the decaying free oscillations of the can-
tilever (time constant τc) are observed. If one tries to fit
the data with the above nonlinear form, τm = 2.2± 0.07 s
is obtained but the quality of the fit is not very good.
Values of τm smaller than T1x = 3.2 s have also been
reported by Verhagen et al. [21] and these findings were
attributed to the phase noise of the r.f. source. However,
when large modulation amplitudes are employed for the
c.w. sequence, such a fast force decay can also be con-
sistent with a magnetization decrease due to a lack of
adiabaticity.

To understand further the meaning of this fit param-
eter τm, we plot in Figure 11a the lock-in peak ampli-
tude measured for different values of Ω and B1 when
Bext = 0.9425 T. The non-adiabaticity parameter α in-
creases along the abscissa axis. For a fixed Ω and B1,
the value of α oscillates with time and passes through a
maximum, αmax = Ωωm/(γ2B2

1), at a time t = 0 modulo
π/ωm. Figure 11b shows the amplitude of the peak sig-
nal Apeak predicted by equation (11) with F (t) calculated
from equation (7) using a sample thickness of 7 µm. The
results are normalized by Atot = QgM0Vs/(k

√
2) the am-

plitude associated with a uniform inversion of all spin in-
side the sample. The parameters introduced in the model
are the values of the spin-lattice relaxation times measured
on powder samples by conventional NMR with T1z = 4.9 s
along the static field and T1x = 3.2 s along a 10 G r.f. field,
in the approximation that T1y = T1x. In our theoretical
model, perturbation effects from the dipolar broadening
are also introduced. They are approximated as a time
independent local field with a Lorentzian lineshape. The
solid lines are the numerical predictions using T2 = 40 µs
and the dotted lines correspond to T2 = 100 µs.

The increase of the force signal at small Ω(≤ 50 kHz)
corresponds to an increase of the modulated magnetic mo-
ment. Larger frequency deviation increases the width of
the probed slice, Γ , and more protons oscillate at ωm. For
both large B1 ≥ 14 G and large Ω ≥ 150 kHz the ampli-
tude of the signal eventually saturates when Γ becomes
greater than the sample thickness.

For B1 = 7 and 10 G, the deviation from the low
Ω-linear increase (indicated by the arrows) marks the
cross-over from an adiabatic regime to a quasi-adiabatic
one [40]. In our sample the threshold occurs at αmax = 0.1,
in good agreement with the theoretical model. In the
adiabatic regime (αmax < 0.1) the dominant relaxation
processes, which reflect in τm, correspond to T1ρ effects,
while, in the quasi-adiabatic regime (αmax > 0.1), they
result from dipolar interactions with a ratio determined
by the non-adiabaticity parameter (T2 < τm < T1, see
Appendix B). The predicted position of this cross-over
depends somewhat on the dipolar contribution T2.

From the last discussion, one can conclude that the
settings of Figure 10 correspond to a non-adiabatic pa-
rameter αmax = 0.04 well inside the adiabatic regime for
our compound. It can then be inferred that the decrease
of the force signal in Figure 10 is due to spin-lattice effects
in the rotating frame and our fitted value of τm must be
an average of the two T1’s reported in Figure 7.

The time dependence of the lock-in signal is fitted
with a double damped synchronous excitation of two spin
populations with respectively short (τms) and long (τml)
relaxation times. The nonlinear function nsA(t, τms) +
(1 − ns)A(t, τml) is used where A(t) is given by equa-
tion (11). The best fit is obtained for τms = 0.55± 0.02 s,
τml = 4.8 ± 0.2 s and ns = 69 ± 1%. The result is the
solid line shown in Figure 12. The fit values obtained for
the relaxation times are similar to those measured in the
magnetization recovery experiment in Figure 7. An imme-
diate question is which portion of the lock-in output signal
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Fig. 12. Signal of Figure 10: the solid line is the response of
an harmonic oscillator driven by two synchronous forces with
short and long relaxations times nsA(t, τms)+(1−ns)A(t, τml).
The best fit is obtained for τms = 0.55±0.02 s, τml = 4.8±0.2 s
and ns = 70%. The height of the peak is 0.3A0. The dashed
lines show the contribution of each spin species.

should be used when several spin species are present in
the sample. In Figure 12 the separate contribution to the
lock-in signal of each spin species (dashed lines) is shown.
The maximum force signal of the two spin species occurs
respectively 0.7 s and 1.9 s after the start of the c.w. se-
quence for the short and long τm. We recall that our defi-
nition of the force signal is the average of the lock-in peak
amplitude over a 1 s time interval around its maximum
value. This approach gives approximately equal weights
to both spin species in the measurement. One can also
observe in Figure 12 that the height of the two peaks are
approximately equal despite the fact that there is 2.3 times
more spin with short relaxation. As a matter of fact it can
be shown that the mechanical detection is 2.4 times more
sensitive to the spins that have a 4.8 s relaxation time
compared to the spins that have a 0.55 s one. From this
result, the value of the fit parameter %s ≈ 0.5 in Figure 7
can be converted into the proportion of spins that have
a short relaxation ns = 2.4%s/{(2.4− 1)%s + 1} = 70%; a
value that agrees well with the fit ns in Figure 12.

Finally, the expected amplitude of the force signal for
our sample is calculated. Using equation (4), one gets
a value of A0 = 100 Å for the settings used in Fig-
ure 12 (B1 = 10 G and Ω/2π = 50 kHz). In Figure 12
the predicted amplitude of the lock-in peak is 0.3A0, or
30 Å, which is close to the experimentally measured value
of 20 Å. In conclusion, our measured amplitude of the
peak lock-in signal is in good agreement with the theoret-
ical prediction if the two spin-lattice relaxation times of
the two spin species are taken into account. Other effects
such as misalignment of the sample compared to the cylin-
der magnetic axis can account partially for a decrease of
the signal (e.g. an offset of 0.1 mm from the axis decreases
the amplitude of the lock-in signal by a factor of 2).

5 Conclusion

Measurement sequences combining fast adiabatic passages
and pulses have been reported. They allow us to measure

T1 and T2 for microscopic samples using a mechanical de-
tection. This has been applied to quantitative analyses of
the detected signals for a 7 µm thick sample of (NH4)2SO4.
The transverse relaxation T2 has been found consistent
with conventional NMR detection on a macroscopic sam-
ple. Our sample displays, however, two spin lattice relax-
ation times T1s = 0.4 s and T1l = 5 s. While the long T1l

corresponds to that measured for coarse powder samples,
the short T1s might be due to water contamination of our
thin crystal during its contact with air. This contamina-
tion is found to be uniform in the thickness of the sample.
This large difference in T1 values has allowed us to study
the influence of the spin-lattice relaxation in the rotat-
ing frame on the time dependence of the lock-in signal,
as well as the variation of signal intensity with increas-
ing non-adiabaticity of the sweep sequence. A consistent
analysis of all experimental parameters has been proposed
and will be quite useful in future quantitative investiga-
tions of MRFM signals. Our work also raises the problem
of how to perform reliable spin lattice relaxation mea-
surements at the sample surface. Our T1 investigation is
mainly restrained to the bulk of the sample, because the
shape of the lock-in signal (which reflects in the appar-
ent relaxation times) varies with Bext. These difficulties
prevented us from interpreting quantitatively our results
on the spatial distribution of the different spin densities
close to the edge. These issues will be best solved by per-
forming a similar experiment on a hetero-layer sample of
well-characterized composition.

We are greatly indebted to A. Dooglav for his help in the con-
ventional NMR experiments. We also would like to thank C.
Fermon, M. Goldman, J.F. Jacquinot and G. Lampel for stim-
ulating discussions. This research was partly supported by the
Ultimatech Program of the CNRS.

Appendix A: Inhomogeneous field

Near the axis, a uniformly magnetized (Ms) cylinder of
length l and diameter φ produces a field, whose component
along k, Bcyl, decays radially as

Bcyl(r, z)
4πMs

=
{
b 1

2

(
z + l

φ

)
− b 1

2

(
z

φ

)}
+3
{
b 5

2

(
z + l

φ

)
− b 5

2

(
z

φ

)}
r2

φ2
+O(r4), (A.1)

with ba(z) = z
(
1 + 4z2

)−a. The fields are expressed in
cylindrical coordinates with the origin centered on the
cylinder’s upper surface (see Fig. 1). In our case Ms is
calculated from the applied field Bext needed to produce
a resonance signal at the sample position, z = 0.70 mm.
Bcyl(0, z = 0.70) = ω0/γ − Bext = 0.352 T is put in the
above expression and one obtains Ms ≈ 1400 emu/cm3 for
our iron. Using this result, the gradient g = −470 T/m at
the sample location is calculated.
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Appendix B: Adiabaticity

The aim of this Appendix B is to calculate the decrease of
the magnetization due to the spin-lattice relaxation and
the lack of adiabaticity. The solution below is proposed by
M. Goldman. In the limit of strong r.f. fields (larger than
the local field), one can neglect the spin-lattice relaxation
of the dipolar energy expectation value. In the rotating
frame, the time evolution of the different spin components
are [40]:

∂〈Iz〉
∂t

=− γB1〈Iy〉+
〈I0〉 − 〈Iz〉

T1z
(B.1a)

∂〈Ix〉
∂t

= + γB1 cot θ〈Iy〉 −
〈Ix〉
T1x
− i
~
〈[HDz , Ix]〉 (B.1b)

∂〈Iy〉
∂t

= + γB1 (〈Iz〉 − cot θ〈Ix〉)−
〈Iy〉
T1y
− i
~
〈[HDz, Iy ]〉,

(B.1c)

with 〈I〉 = Tr(Iσ) the expectation value of the magneti-
zation, σ the instantaneous density matrix in the rotating
frame and HDz the secular part of the dipolar Hamilto-
nian. The commutator incorporates the local field contri-
bution defined through B2

L = Tr(H2
Dz)/γ

2Tr(I2
z ). In our

notation θ is the angle between the directions of the static
and effective field, Be = B1/ sin θ, with B1 cot θ the pro-
jection along k. Under r.f. irradiation, a new coordinate
system {X,Y, Z} is defined through a transformation by
the unitary operator exp(−iθIy), a rotation around y by
θ. In the doubly rotating frame the differential equations
then become:

∂〈IZ〉
∂t

= + c
〈I0〉
T1z
−
{
s2

T1x
+

c2

T1z

}
〈IZ〉

+
(
θ̇ − cs

{
1
T1x
− 1
T1z

})
〈IX〉 (B.2a)

∂〈IX〉
∂t

=− s 〈I0〉
T1z
−
(
θ̇ + cs

{
1
T1x
− 1
T1z

})
〈IZ〉

+ γ
B1

s
〈IY 〉 −

{
c2

T1x
+

s2

T1z

}
〈IX〉

− 3c2 − 1
2

i
~
〈[HDZ , IX ]〉 (B.2b)

∂〈IY 〉
∂t

=− γB1

s
〈IX〉 −

〈IY 〉
T1y

− 3c2 − 1
2

i
~
〈[HDZ , IY ]〉,

(B.2c)

with s = sin θ and c = cos θ. HDZ is the doubly truncated
part of the dipolar Hamiltonian that commutes with IZ .
The term θ̇/γj is the inertia field due to the transforma-
tion to a time-dependent reference axis. In the adiabatic
regime, defined by α = θ̇/(γ Be) � 1, it can be shown
that 〈IX〉 = 〈IY 〉 = 0 and the first two terms of equation
(B.2a) are the expression of the spin-lattice relaxation in
the rotating frame for strong r.f. fields [1,41]. This ap-
pendix seeks to evaluate the term proportional to 〈IX〉 in
equation (B.2a) that represents the decrease of 〈IZ〉 due
to the lack of adiabaticity. The equations of motion are

expressed in terms of the raising and lowering operators
〈I+〉 = 〈IX〉 + i〈IY 〉 and 〈I−〉 its complex conjugate. We
suppose that γBe � 1/τ0, the reorientation correlation
rate, for our compound which leads to T1x independent of
θ and T1y ≈ T1x. First the adiabatic regime, αmax < 0.1,
is examined where spin-spin interactions can be neglected.
The influence of these processes will be discussed later on.
As a consequence, one has

∂〈I+〉
∂t

≈− iγ
B1

s
〈I+〉 − 〈I

+〉
T+

1

−
(
θ̇ + cs

{
1
T1x
− 1
T1z

})
〈IZ〉 − s

〈I0〉
T1z

, (B.3)

with 1/T+
1 = (1/T1y + c2/T1x + s2/T1z)/2. Furthermore,

the period of the cyclic passage is much smaller than the
spin-lattice relaxation times. Hence, both 1/T1z and 1/T1x

are negligible compared to θ̇:

∂〈I+〉
∂t

≈ −iγ
B1

sin θ
〈I+〉 − 〈I

+〉
T+

1

− θ̇〈IZ〉 − sin θ
〈I0〉
T1z

,

(B.4)

which, upon integration, gives the result:

〈I+〉 = −
∫ t

0

{
θ̇(t′)〈IZ〉+ sin θ(t′)

〈I0〉
T1z

}
× exp

{
−
∫ t

t′

1
T+

1

+ i
γB1

sin θ(t′′)
dt′′
}

dt′, (B.5)

assuming that 〈I+〉 = 0 at a time t = 0. The expression
for 〈I−〉 is the complex conjugate of the above expression.
For values of t < T1, it is a good approximation to ne-
glect 〈I0〉/T1z compared to θ̇〈IZ〉 in the first bracket. Since
the decay of 〈IZ〉 is slow, it is replaced by a constant. Fi-
nally, the time variation of the longitudinal magnetization
is given by:

∂〈IZ〉
∂t

≈ −〈IZ〉θ̇(t)
∫ t

0

θ̇(t′) exp
(
−
∫ t

t′

1
T+

1

dt′′
)

× cos
(∫ t

t′

γB1

sin θ(t′′)
dt′′
)

dt′

−〈IZ〉
(

cos2 θ(t)
T1z

+
sin2 θ(t)
T1x

)
+〈I0〉

cos θ(t)
T1z

, (B.6)

which has been used in equation (6) in the text. Although
the general form of our final expression contains a T+

1 -
term in the first integral, the decrease of the magnetiza-
tion due to the lack of adiabaticity of the fast passages
is unrelated to spin-lattice relaxation mechanisms. This is
best seen in the free spin limit (T1 →∞), where our above
equation (B.6) reduces to the integral form of the ordinary
differential equation ∂〈I〉/∂t = γ〈I〉 ×Be, an equation of
motion that preserves the norm of the magnetization. In
this limit, the first integral (the only non-vanishing term)
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expresses the decrease of the projection 〈IZ〉 due to a mis-
tracking of the magnetization vector from the effective
field direction. After several passages, the magnetization
eventually reaches a steady state movement: a precession
in a cone of summit angle of order α (the non-adiabaticity
parameter) around the direction Be + θ̇/γ j. For free spins,
it implies that non-adiabatic effects alone cannot account
for a substantial decrease of 〈IZ〉 on a time scale of several
passages. In condensed matter, however, the magnetiza-
tion component perpendicular to the effective field direc-
tion quickly defocuses (thereby reducing the norm) prin-
cipally because of spin-spin interactions.

The influence of these interactions are best seen in an-
other rotating frame {X ′, Y ′, Z ′} where the direction Z ′

is aligned along the instantaneous axis of precession of
the magnetization. The new system of differential equa-
tions is obtained by applying the unitary transformation
exp(−iαIX) to the equation system (B.2). Here second
order corrections are examined and a more detailed anal-
ysis should take care of the new inertia field α̇. In this
triply rotating coordinate system, the relaxation mecha-
nisms along the X ′ and Y ′ directions are dominated by
local field effects, which have a characteristic time of or-
der T2. The impact of these decays becomes prominent
in the quasi-adiabatic regime (αmax > 0.1) when a sig-
nificant percentage of the bulk magnetization is projected
perpendicular to the precession axis. A complete analyti-
cal account of these effects is complicated because the local
field in the triply rotating frame oscillates with time. We
have simplified the problem by adding a relaxation term
−〈Iq〉/T2 to the equation of motion of the q = X ′, Y ′ com-
ponent respectively. This is equivalent to approximating
these interactions to a time independent local field with
a Lorentzian lineshape. Taking T2 = 40 µs and solving
numerically the linear differential equations, we find that,
when αmax > 0.1, the percentage of bulk magnetization,
which vanishes after one passage because of spin-spin in-
teractions, corresponds roughly to the change in 〈IZ′〉 pro-
duced by the lack of adiabaticity, of order 1−cos(αmax/2).
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15. K. Wago, O. Züger, R. Kendrick, C.S. Yannoni, D. Rugar,
J. Vac. Sci. Technol. B 14, 1197 (1996).
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