

Concours IR2 BAP C no. 19 "Expert en développement d'instrumentation"

Thèse en Physique des Matériaux (L.-P. Regnault)

- → Systèmes magnétiques de basse dimension
- → Echo de spin neutronique résonant ("ZETA")

 \rightarrow Spectroscopie à haute résolution ($\Delta E \approx 10 \ \mu eV$)

N. Martin (co-auteur), Phys. Rev. Lett. 109, 097201 (2012)

Temperature (K) <u>N. Martin</u> *et al.,* Physica B **406** (2011) 2333-2336

PostDoc #1: Co-responsable de l'instrument RESEDA

→ "Upgrade" complet de l'instrument (électronique, mécanique, protection biologique et détection)

→ Mise en place d'une option "MIEZE" (écho de spin sous fort champ magnétique)

N. Martin et al., Rev. Sci. Instrum. 85, 073902 (2014); J. Kindervater, N. Martin et al., EPJ 83, 03008 (2015)

PostDoc #2: Magnétisme chiral et frustré

(I. Mirebeau)

- ✓ Spectroscopie (HAXPES, XMCD)
 + diffraction de poudre sous
 haute pression en synchrotron
- ✓ Rotation du spin du muon (μ SR)
- ✓ Diffusion neutronique
 - \rightarrow Diffusion aux Petits Angles

<u>N. Martin</u> *et al.*, PRB **93**, 174405 (2016) <u>N. Martin</u> *et al.*, PRB **93**, 214404 (2016) <u>N. Martin</u> *et al.*, PRB Rapid Comm. **96**, 020413 (2017) <u>N. Martin</u> *et al.*, PRX **7**, 041028 (2017) <u>N. Martin</u> (co-auteur), PRB **96**, 184416 (2017) I. Mirebeau, <u>N. Martin</u> *et al.*, PRB **98**, 014420 (2018) <u>N. Martin</u> *et al.*, PRB Rapid Comm. **99**, 100402 (2019)

Depuis 2016: Co-responsable de l'instrument PA20

→ Développement des activités en matière "dure" et magnétisme

 \rightarrow Réalisation d'expériences

 \rightarrow Maintenance de l'instrument

→ Gestion des environnements échantillon (*basses températures et forts champs magnétiques*)

 \rightarrow Aide à l'analyse des données

→ Développement de cellules pression 30 kbar "compactes" pour la DNPA (*collab.* R. Sadykov, Moscou, Russie)

Valorisation des travaux

✓ 23 publications + 3 en cours de relecture

→ dont 1 Phys. Rev. X et 5 Phys. Rev. B en 1^{er} auteur → ≈ 360 citations (indice h = 10)

- → Magnétisme et instrumentation pour la neutronique
- Invitations en conférences (ECNS 2019) et workshops (WE-Heraeus-Seminar 2020) internationaux + séminaires et réunions thématiques en France
- ✓ Relecteur pour l'American Physical Society et le Nature Publishing Group

Collaborations et encadrement

- ✓ Travail en équipe
- ✓ **Collaborations** nationales et internationales (*Allemagne, Russie, Japon*)
- ✓ Accueil d'utilisateurs "de la proposition à la publication"
- ✓ Encadrement d'étudiants et de jeunes chercheurs en physique et informatique (2 niveau Licence, 3 niveau Master et 1 Post-Doc)

Le Laboratoire Léon Brillouin

- ✓ Centre national de diffusion neutronique
- ✓ 21 instruments (spectroscopie, réflectométrie, diffraction et petits angles)
- Expertise technique et scientifique internationalement reconnue

Le Laboratoire Léon Brillouin

- ✓ Centre national de diffusion neutronique
- ✓ 21 instruments (spectroscopie, réflectométrie, diffraction et petits angles)
- Expertise technique et scientifique internationalement reconnue

Arrêt du réacteur Orphée le 28 octobre

- ✓ Opportunité de se ré-inventer
- Mise en place de projets instrumentaux
- Importance donnée aux "petits angles"

Diffusion des neutrons aux petits angles: une technique universelle

Diffusion des neutrons aux petits angles: une technique universelle

Textures magnétiques complexes

Diffusion des neutrons aux petits angles: une technique universelle

Le LLB du futur: nouveaux horizons, nouveaux défis

PA20 au Paul Scherrer Institut

- 100 jours/an à la communauté française
- → Accompagnement des utilisateurs sur site

Le LLB du futur: nouveaux horizons, nouveaux défis

SKADI à la European Spallation Source

- \odot 10⁻⁴ < Q < 1 Å⁻¹ en "single shot"
- Le flux de l'ESS
- → Perspectives scientifiques inédites

Le LLB à l'Institut Laue Langevin

- ✓ Un programme de jouvence lancé fin 2016 ("Endurance 2")
- ✓ Une opportunité pour la communauté française
- ✓ 3 projets portés par le LLB:
 - 1. Spectromètre à temps de vol SHARP+
 - 2. Spectromètre à trois axes **GAPS** (neutrons polarisés + option **ZETA**)
 - 3. Diffusion de neutrons aux petits angles **SAM**

Le projet "SAM": équipe projet

Le projet "SAM": objectifs

18.5 m

✓ Un instrument flexible

- Environnements échantillonadaptés à chaque thématique
- **Neutrons polarisés**

Le projet "SAM": objectifs

18.5 m

- Module "MIEZE":
- \rightarrow Spectroscopie en conditions extrêmes (0.1 ps \rightarrow 100 ns)
- \rightarrow Mesures stroboscopiques (1 Hz \rightarrow 1 MHz)

N. Martin, Nucl. Inst. and Methods in Phys. Res., A 882 (2018) 11-16

Le projet "SAM": objectifs

✓ Un instrument disponible dès 2023

- **Savoir-faire du LLB en instrumentation**
- Collaboration étroite avec les équipes de l'ILL

Le projet "SAM": premières étapes

Concours BAP C IR no. 19 "Expert en développement d'instrumentation"

Le projet "SAM": structure de répartition des travaux

Le projet "SAM": estimation des coûts

Répartition des coûts par "workpackage"

Profil de dépenses

Le projet "SAM": planning prévisionnel détaillé

L'instrument "SAM": emplacement dans le hall des guides ILL

L'instrument "SAM": branche de guide H153b

Split "RAM-SAM"

Μ

S

A

Μ

А

Ρ

S

60

200

+

Т3

60

225

- Guide: 1.
 - m = 1
 - Réduction de la section 60 x 40 \rightarrow 35 x 35 mm²
 - Pas de "vue directe"

L'instrument "SAM": casemate

• Insertion en milieu confiné

L'instrument "SAM": collimateur

3. Collimateur:

- Longueur totale ≈ 9 m
- 2 guides amovibles (4 et 2.5 m), section 35 x 35 mm²
- Fentes ajustables (4 lames, cf. PA20)
- Champ de guidage (polarisation)

L'instrument "SAM": zone échantillon

- 4. Ligne échantillon + environnement
 - Table PA20
 - Passeur "2D", cryo-aimant, hautes-pressions, etc.
 - Protection radiologique à étudier
 - Possibles interférences avec les guides et instruments voisins

L'instrument "SAM": spectromètre secondaire

5. Enceinte détecteur

- Tube + détecteur "MAM128" PAXY
- Amovible en fonction de l'environnement échantillon
- Accès arrière (maintenance détecteur)

L'instrument "SAM": option "MIEZE"

- - Flippers RF + analyseur en fin de collimateur
 - Détecteur temps de vol (10B), 10 x 10 cm², dynamique ≈ 10 MHz
 - BaroTron, SoNDe, CASCADE, ProxiVision, NovaScientific?? -
Equipements "tabletop" du LLB

PPMS 9 T

- Magnétométrie, transport et chaleur spécifique
- Options haute-température, pression, etc.

Diffusion de rayons X aux petits angles (SAXS)

Exemple de développement instrumental

→ Conception d'un nouveau type de flipper radiofréquence

<u>N. Martin</u> et al., Rev. Sci. Instrum. **85**, 073902 (2014)

Le LLB du futur: nouveaux horizons, nouveaux défis

Le projet "SAM": performances et synergie

Le projet "SAM": performances et synergie

Echelles d'espace et de temps en magnétisme

Le magnétisme à l'échelle mésoscopique: de nouveaux objets

Le magnétisme à l'échelle mésoscopique: de nouveaux objets

Spectroscopie neutronique – espace (Q,ω)

Spectroscopie MIEZE – principes (1)

Quasi-elastic spectroscopy @ sub-µeV resolution

The incoming polarized neutron beam is manipulated by a pair of radio-frequency (RF) spin flippers running at frequencies ω_1 and $\omega_2 \rightarrow$ oscillation of neutrons' spin at a frequency $\omega_M = 2 \cdot (\omega_2 - \omega_1)$

R. Golub, HMI (now NYC University)

Spectroscopie MIEZE – principes (2)

Quasi-elastic spectroscopy @ sub-µeV resolution

This time-dependent precession is converted into an intensity modulation by the spin analyzer.

R. Golub, HMI (now NYC University)

Spectroscopie MIEZE – principes (3)

Spectroscopie MIEZE – principes (4)

Detection time t_D

Spectroscopie MIEZE – principes (4)

Detection time t_D

Précession de Larmor

G.M. Drabkin et al., Sov. Phys. JETP 29 (1969)

Echo de spin neutronique – cas élastique

F. Mezei, Z. Phys. 255 (1972)

Echo de spin neutronique – cas quasi-élastique

$$\varphi_{\text{NSE}} = \gamma_n BL \cdot \left(\frac{1}{v + \delta v} - \frac{1}{v}\right) \neq 0$$

$$\overrightarrow{\delta v \ll v} \qquad \gamma_n BL \cdot \frac{\delta v}{v^2} = \underbrace{\frac{\hbar \gamma_n BL}{m_n v^3}}_{\text{Transfert d'énergie neutron-échantillon}} \cdot \underbrace{\frac{\delta v}{v^2}}_{\text{Transfert d'énergie neutron-échantillon}} \cdot \underbrace{\frac{\delta v}{v^2}}_{\text{Tra$$

F. Mezei, Z. Phys. 255 (1972)

Echo de spin neutronique – quantité mesurée

Echo de spin neutronique – avantages

- La condition d'écho de spin est indépendante de la longueur d'onde: travail avec des faisceaux modérément monochromatisés ($\frac{\Delta\lambda}{\lambda} \approx 10-20$ %).
- Meilleure résolution en énergie atteignable en diffusion neutronique
- Donnée par le temps de Fourier $\tau = \frac{\hbar \gamma_n BL}{m_n v^3}$

e.g. IN15 @ ILL : $(BL)_{\text{max}} = 2.7 \cdot 10^5 \text{ G} \cdot \text{cm}, \lambda = 25 \text{ Å} \rightarrow \tau_{\text{max}} \approx 500 \text{ ns} \leftrightarrow \delta E \approx 1 \text{ neV}$

Spectroscopie MIEZE dans l'espace (Q,τ)

N. Martin, Nucl. Inst. and Methods in Phys. Res., A 882 (2018) 11-16

Spectroscopie MIEZE dans l'espace (Q,τ)

Spectroscopie MIEZE dans l'espace (Q,τ)

Laboratoire Léon Brillouin: instruments

21 instruments

- 9 diffractomètres
- 4 petits-angles
- 2 réflectomètres

- 4 spectromètres trois-axes
- 1 spin echo
- 1 station d'imagerie

European Spallation Source: instruments et contributions françaises

French contrbutions

MAGIC (60 %):

- Polarized single-crystal diffraction
- **C-SPEC** (50 %):
- Cold ToF, direct geometry
 SKADI (50 %):
- SANS

DREAM (24 %):

- Powder diffractionBIFROST (22 %):
- ToF, indirect geometryNMX (14 %):
- Diffraction for biophysics

Le développement instrumental...

'The development of a new method -whenever its precision, sensitivity, or resolution is better than everything that existed before- leads to new science.'

Heinz Maier-Leibnitz ILL director (1967-1972) **Rudolf Mößbauer** ILL director (1972-1977)

Decision to build in parallel IN11-NSE (based on a 3 pages hand-written proposal! cf. F. Mezei) and IN10-BSS (perceived as less interesting than NSE)

A. Heidemann, The Backscattering story: a personal view

L'ingénieur de recherche: un rôle pivot

L'ingénieur de recherche: un rôle pivot

