Nicolas MARTIN

Textures et défauts topologiques magnétiques: propriétés statiques et dynamiques

Audition concours CRCN 03/02 – 1^{er} Avril 2019

Echelles d'espace et de temps en magnétisme

Le magnétisme à l'échelle mésoscopique: de nouveaux objets

Le magnétisme à l'échelle mésoscopique: de nouveaux objets

Thèse de doctorat (L.-P. Regnault)

- \rightarrow Systèmes magnétiques de basse dimension
- \rightarrow Spectroscopie à écho de spin neutronique résonant

N. Martin (co-auteur), Phys. Rev. Lett. 109, 097201 (2012)

Postdoc #1: Co-responsable de l'instrument RESEDA

→ "MIEZE" – Etudes à haute résolution d'objets mésoscopiques en conditions extrêmes (H, P, T)

<u>N. Martin</u> *et al.*, Rev. Sci. Instrum. **85**, 073902 (2014) J. Kindervater, <u>N. Martin</u> *et al.*, EPJ **83**, 03008 (2015)

Postdoc #2: Magnétisme chiral et frustré (2014-2019)

- → Aimants chiraux cubiques, verres de spin réentrants et glaces de spin
- Diffusion neutronique
- ✓ Spectroscopie (HAXPES et XMCD) + diffraction sous hautepression en synchrotron
- ✓ Rotation du spin du muon (μ SR)

<u>N. Martin</u> et al., PRB **93**, 174405 (2016) <u>N. Martin</u> et al., PRB **93**, 214404 (2016) <u>N. Martin</u> et al., PRB Rapid Comm. **96**, 020413 (2017) <u>N. Martin</u> et al., PRX **7**, 041028 (2017) N. Martin (co-auteur), PRB **96**, 184416 (2017) I. Mirebeau, <u>N. Martin</u> et al., PRB **98**, 014420 (2018) <u>N. Martin</u> et al., PRB Rapid Comm. **99**, 100402 (2019)

Co-responsable de l'instrument PA20 (2016-2019)

→ Développement des activités expérimentales en matière 'dure' et magnétisme <u>N. Martin</u> et al., PRB **93**, 174405 (2016) <u>N. Martin</u> et al., PRB **93**, 214404 (2016) <u>N. Martin</u> et al., PRB Rapid Comm. **96**, 020413 (2017) <u>N. Martin</u> et al., PRX **7**, 041028 (2017) N. Martin (co-auteur), PRB **96**, 184416 (2017) I. Mirebeau, <u>N. Martin</u> et al., PRB **98**, 014420 (2018) N. Martin et al., PRB Rapid Comm. **99**, 100402 (2019)

Physicien expérimentateur

Propriétés magnétiques de la matière condensée Liens structure ↔ dynamique

→ Diffusion et spectroscopies de faisceaux quantiques (neutrons, rayons X et muons) en très grandes infrastructures de recherche

 \rightarrow Modélisation et développement instrumental

Programme de recherche

Approche expérimentale

- Utilisation couplées de différentes sondes (neutrons, X et muons)
- ✓ Echantillons massifs → Conditions extrêmes (H, P, T)

Objets d'étude Thème 1: Solitons, skyrmions et phases torsadées **Thème 2:** Vortex induits par frustration Thème 3: Textures magnétiques et effet 'Invar'

- Evolution du spectre de fluctuations
- Contrôle du régime de propagation des solitons (dopage)
- Effet du champ magnétique

Moyen

terme

PROJET

T (K)

- ✓ Nouvelle périodicité dans le système
- ✓ Evolution discontinue vers RhGe (ferro. faible supraconducteur)

- ✓ Nouvelle périodicité dans le système
- Evolution discontinue vers RhGe (ferro. faible supraconducteur)

- ✓ Nouvelle périodicité dans le système
- ✓ Evolution discontinue vers RhGe (ferro. faible supraconducteur)

<u>N. Martin et al.</u>, Phys. Rev. B Rapid Comm. **96**, 020413 (2017)

Phases torsadées ("TGB magnétiques")

Réseau de skyrmions

\rightarrow Frustration d'échange entre ions premiers voisins:

Ni-Ni & Ni-Mn: matrice ferromagnétique
 Mn-Mn: impuretés antiferromagnétiques

Verre de spin

Diagramme de phase adapté de R.L. Sommer *et al.,* JMMM **103** (1992) 25

Diagramme de phase adapté de R.L. Sommer *et al.,* JMMM **103** (1992) 25

\rightarrow Frustration d'échange entre ions premiers voisins:

Ni-Ni & Ni-Mn: matrice ferromagnétique
 Mn-Mn: impuretés antiferromagnétiques

I. Mirebeau, N. Martin et al., Physical Review B 98, 014420 (2018)

Thème 3: Textures magnétiques et effet 'Invar'

- Expansion thermique:

+ Transition Haut Spin-Bas Spin?

R.J. Weiss, Proc. Phys. Soc. 82, 281 (1963)

L. Nataf et al., Phys. Rev. B 74, 184422 (2006)

Thème 3: Textures magnétiques et effet 'Invar'

M. van Schilfgaarde *et al.*, Nature **400**, 46 (1999)

Thème 3: Textures magnétiques et effet 'Invar'

M. van Schilfgaarde et al., Nature 400, 46 (1999)

Des thèmes en synergie et des collaborations

Une recherche s'appuyant des équipements de pointe

Nicolas MARTIN

Textures et défauts topologiques magnétiques: propriétés statiques et dynamiques

Spectroscopie neutronique – espace (Q, ω)

Spectroscopie MIEZE – principes (1)

Quasi-elastic spectroscopy @ sub-µeV resolution

The incoming polarized neutron beam is manipulated by a pair of radio-frequency (RF) spin flippers running at frequencies ω_1 and $\omega_2 \rightarrow$ oscillation of neutrons' spin at a frequency $\omega_M = 2 \cdot (\omega_2 - \omega_1)$

R. Golub, HMI (now NYC University)

Spectroscopie MIEZE – principes (2)

Quasi-elastic spectroscopy @ sub-µeV resolution

This time-dependent precession is converted into an intensity modulation by the spin analyzer.

R. Golub, HMI (now NYC University)

Spectroscopie MIEZE – principes (3)

Spectroscopie MIEZE – principes (4)

Detection time t_D

Spectroscopie MIEZE – principes (4)

Detection time t_D

Spectroscopie MIEZE dans l'espace (Q, ω)

Spectroscopie neutronique – espace (Q, ω)

MnGe – dynamique de spin vue par MIEZE

N. Martin et al., PRB Rapid Comm. 99, 100402 (2019) ("Editor's suggestion")

MnGe – Transition haut-spin/bas-spin (théorie)

.

Ambient pressure state:

```
High-spin (HS) with m \approx 2 \mu_B / Mn (metal)
```

- Intermediate compression range (P > 18 GPa):

 (i) Low-spin (LS) with m ≈ 1 μ_B / Mn (semi-metal)
 (ii) Low-spin (LS) with decreasing m (metal)
- High pressure (P > 75 GPa):
 Zero cpip (75) m = 0 (r

```
Zero-spin (ZS), m = 0 (metal)
```

U.K. Rössler, J Phys: Conf Series **391** (2012) 012104

MnGe – Transition haut-spin/bas-spin (expérience)

M. Deutsch et al., Phys Rev B 89, 180407(R) (2014)

MnGe – Equations d'état sous pression

<u>N. Martin</u> et al., Phys. Rev. B **93**, 214404 (2016)

N. Martin et al., résultats non publiés

MnGe – Moment local vs. P par HAXPES

<u>N. Martin et al.</u>, Phys. Rev. B **93**, 214404 (2016)

DMI vs. x dans Mn_{1-x}(Co,Rh)_xGe

S. Mankovsky (Ludwig-Maximilians-Universität, München), communication privée

Diagrammes de phase de $Fe_{1-x}Cr_x$ et α -Fe_{1-x}Mn_x

S.K. Burke *et al.*, J. Phys. F **13** (1983) 451-470

M.B. Salamon et al., Phys. Rev. Lett. 44, 596 (1980)

Diagramme de phase de Fe_{1-x}Ni_x

T. Miyazaki et al., J. Appl. Phys. 57, 3456 (1985)

Fe_{0.64}Ni_{0.36}– Moment local vs. P par HAXPES

J.-P. Rueff et al., Phys. Rev. B 63, 132409 (2001)

Fe_{0.64}Ni_{0.36} – Etat de spin du fer dans et configurations locales vs. p

M. van Schilfgaarde et al., Nature 400, 46 (1999)

Laboratoire Léon Brillouin: instruments

21 instruments

- 9 diffractomètres
- 4 petits-angles
- 2 réflectomètres

- 4 spectromètres trois-axes
- 1 spin echo
- 1 station d'imagerie

European Spallation Source: instruments et contributions françaises

French contrbutions

MAGIC (60 %):

- Polarized single-crystal diffraction
- **C-SPEC** (50 %):
- Cold ToF, direct geometry
 SKADI (50 %):
- SANS

DREAM (24 %):

- Powder diffractionBIFROST (22 %):
- ToF, indirect geometryNMX (14 %):
- Diffraction for biophysics