| Centre
Paris-Saclay
| | | | | | | webmail : intra-extra| Accès VPN| Accès IST | English
Univ. Paris-Saclay
Spin Transport Through Organic–Inorganic Hybrid Interfaces
Clément BARRAUD
Laboratoire Matériaux et Phénomènes Quantiques (UMR 7162), Université Paris Cité
Mercredi 22/06/2022, 11:15-12:15
SPEC Salle Itzykson, Bât.774, Orme des Merisiers

Spin electronics [1] is a quantum technology which aims at adding the spin quantum degree of freedom to conventional CMOS electronics. Since the discovery of the giant magnetoresistance in 1988 [2,3],  considered as the birth of this field, spintronics continues flooding the market with plethora of devices used in everyday life applications such as hard drive read heads or magnetic random-access memories, and so on. From a fundamental research perspective, the field is still blooming bringing post-CMOS perspectives technologically closer to the reality with, for instance, prototypes of all-spin-logic circuits and neuromorphic chips[4]. To sustain this intense research activity, a quest for new platform materials is also taking place not only to enhance existing performances but also to generate novel functionalities. In this vein, carbon nanostructures such as molecules [5], graphene, and carbon nanotubes [6] are among the most sought-after materials.
During this presentation, I will first detail the context of our research and the recent challenges for achieving spin-logic circuits. I will focus on the physics of lateral spintronics devices and then I will detail our approach for reaching giant spin signals in functionalized multiwall carbon nanotubes [7]. I will focus on the necessity to consider new hybrid interfaces are highlighted for a better control of the spin injection at the device level [8]. I will for instance describe our most recent work concerning spin transport across graphene/molecule interfaces.
[1] A. Fert, Rev. Mod. Phys., 2008, 80, 1517–1530.
[2] M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich
and J. Chazelas, Phys. Rev. Lett., 1988, 61, 2472–2475.
[3] G. Binasch, P. Grünberg, F. Saurenbach and W. Zinn, Phys. Rev. B, 1989, 39, R4828–R4830.
[4 ]B. Dieny, I. L. Prejbeanu, K. Garello, P. Gambardella, P. Freitas, R. Lehndorff, W. Raberg, U. Ebels, S. O. Demokritov, J. Akerman, A. Deac, P. Pirro, C. Adelmann, A. Anane, A. V. Chumak, A. Hirohata, S. Mangin, S. O. Valenzuela, M. C. Onbaşlı, M. D’Aquino,
G. Prenat, G. Finocchio, L. Lopez-Diaz, R. Chantrell, O. Chubykalo-Fesenko and P. Bortolotti, Nat. Electron., 2020, 3, 446–459.
[5] M. Galbiati, S. Tatay, C. Barraud, V. A. Dediu, F. Petroff, R. Mattana and P. Seneor, MRS Bull., 2014, 39, 602–607.
[6] P. Seneor, B. Dlubak, M.-B. Martin, A. Anane, H. Jaffres and A. Fert, MRS Bull., 2012, 37, 1245–1254.
[7] R. Bonnet, P. Martin, S. Suffit, P. Lafarge, A. Lherbier, J. C. Charlier, M. L. Della Rocca and C. Barraud, Sci. Adv., 2020, 6, eaba5494.
[8] P. Martin, B. Dlubak, P. Seneor, R. Mattana, M. Martin, P. Lafarge, F. Mallet, M. L. Della Rocca, S. M. ‐M. Dubois, J. Charlier
and C. Barraud, Adv. Quantum Technol., 2022, 5, 2100166.
[9] P. Martin et al., submitted (2022)

 

Retour en haut