| Centre
Paris-Saclay
| | | | | | | webmail : intra-extra| Accès VPN| Accès IST
Univ. Paris-Saclay
6 sujets IRAMIS/LIDYL

Dernière mise à jour :


 

Dynamique attoseconde d’électrons et de spin dans les matériaux magnétiques 2D et 3D

SL-DRF-24-0246

Domaine de recherche : Interactions rayonnement-matière
Laboratoire d'accueil :

Service Laboratoire Interactions, Dynamique et Lasers (LIDyL)

Dynamique et Interactions en phase COndensée (DICO)

Saclay

Contact :

Romain GENEAUX

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Romain GENEAUX
CEA - DRF/IRAMIS/LIDyL/DICO

0169087886

Directeur de thèse :

Romain GENEAUX
CEA - DRF/IRAMIS/LIDyL/DICO

0169087886

Page perso : https://iramis.cea.fr/Pisp/romain.geneaux/

Labo : https://iramis.cea.fr/LIDYL/DICO/

La science attoseconde s’intéresse aux dynamiques de la matière aux temps ultimes, grâce à des impulsions de lumière de durée attoseconde (10-18 s). Notre laboratoire a été un pionnier dans le développement et l’utilisation de ces impulsions pour l’étude de la matière. En particulier, nous opérons plusieurs plateformes dédiées à la spectroscopie attoseconde des solides.

Pendant ce projet de doctorat, nous développerons de nouvelles expériences attosecondes visant à élucider la dynamique d'un des degrés de liberté les plus importants et les plus intrigants des solides : les spins de leurs électrons. Cette quantité est responsable des propriétés magnétiques des matériaux, avec des applications allant des dispositifs de stockage de données aux composants spintroniques. En général, les dispositifs actuels utilisent des courants électriques pour transmettre et manipuler l'information.
Ici, nous visons à répondre à une question simple en apparence : pouvons-nous utiliser un champ laser, au lieu d'un courant, pour contrôler les spins électroniques d'un solide ’ Répondre à cette question nécessite tout d'abord des investigations intrinsèquement fondamentales, en plus d’avoir le potentiel concret d'opérations beaucoup plus rapides. En effet, la réponse des matériaux magnétiques aux fréquences optiques (à des temps inférieurs à 10 fs) est presque totalement inconnue à ce jour. Nous proposons de résoudre ce problème en effectuant des expériences qui combinent sensibilité aux spins et résolution attoseconde pour la première fois. En façonnant soigneusement des impulsions attosecondes et en utilisant des schémas de détection de pointe, nous viserons à établir une technique appelée dichroïsme magnétique attoseconde, qui révélera la réponse des spins des matériaux à l'échelle temporelle du champ électrique de la lumière. Nous nous concentrerons d'abord sur des systèmes ferromagnétiques et antiferromagnétiques tridimensionnels simples, avant de nous tourner vers leurs homologues bidimensionnels. En effet, dans les matériaux dits 2D, on peut s’attendre à des interactions lumière-spin magnifiées, voir fondamentalement nouvelles. En comprenant comment la lumière interagit avec les spins électroniques en 2D, nous fournirons des éléments essentiels à l’intégration des futurs composants spintroniques de basse dimensionnalité.

L'étudiant acquerra des connaissances pratiques en optique ultra-rapide expérimentale et en spectroscopie résolue dans le temps de la matière condensée, en particulier des matériaux magnétiques. Il/elle deviendra un expert en physique et technologie attoseconde, tout en acquérant des compétences précieuses en acquisition et analyse de données complexes.
Exploration de la dynamique de dépôt d’énergie aux temps courts d’électrons accélérés par laser dans le cadre de l’effet Flash en radiothérapie

SL-DRF-24-0351

Domaine de recherche : Interactions rayonnement-matière
Laboratoire d'accueil :

Service Laboratoire Interactions, Dynamique et Lasers (LIDyL)

Physique à Haute Intensité (PHI)

Saclay

Contact :

Gérard BALDACCHINO

Sandrine DOBOSZ DUFRÉNOY

Date souhaitée pour le début de la thèse : 01-10-2023

Contact :

Gérard BALDACCHINO
CEA - DRF/IRAMIS/LIDYL

01 69 08 57 02

Directeur de thèse :

Sandrine DOBOSZ DUFRÉNOY
CEA - DRF/IRAMIS/LIDyL/PHI

01.69.08.63.40

Page perso : https://iramis.cea.fr/LIDYL/Phocea/Pisp/index.php?nom=gerard.baldacchino

Labo : https://iramis.cea.fr/LIDYL/index.php

Voir aussi : https://iramis.cea.fr/LIDYL/Phocea/Pisp/index.php?nom=sandrine.dobosz

L’objectif du projet de thèse est d’analyser les processus physico-chimiques consécutifs aux débits de dose extrêmes que l’on peut obtenir maintenant dans l’eau avec les impulsions ultra-brèves (fs) d’électrons relativistes accélérés par laser. En effet, des premières mesures montrent que ces processus ne sont probablement pas équivalents à ceux obtenus avec des impulsions plus longues (µs) dans l’effet FLASH utilisé en radiothérapie. Pour y arriver, nous proposons d’analyser la dynamique de formation/recombinaison de l’électron hydraté, espèce emblématique de la radiolyse de l’eau pour qualifier et quantifier l’effet de débit de dose sur des temps de plus en plus courts. Ceci pourra se faire en trois étapes en accompagnement de la progression technologique nécessaire et maintenant accessible, pour avoir une dose par impulsion suffisante pour détecter directement l’électron hydraté. D’abord, avec l’installation existante UHI100 en utilisant la capture de l’électron hydraté en produisant une espèce stable ; puis en produisant une espèce moins stable mais détectable en temps réel et en augmentant le taux de répétition de l’accélérateur laser-plasma. Finalement, en testant un nouveau concept appelé « cible hybride », basé sur l’utilisation d’un miroir plasma comme injecteur d’électrons couplé à un accélérateur laser-plasma. Délivrant des doses plus importantes que les accélérateurs laser-plasma, avec un spectre énergétique resserré, on pourra développer une détection pompe-sonde permettant d’accéder aux temps les plus courts, et à la formation dans les grappes d’ionisation, de l’électron hydraté et en mesurant son rendement initial.
Générateur compact de faisceaux paires electrons-positrons/muons-antimuons

SL-DRF-24-0806

Domaine de recherche : Interactions rayonnement-matière
Laboratoire d'accueil :

Service Laboratoire Interactions, Dynamique et Lasers (LIDyL)

Physique à Haute Intensité (PHI)

Saclay

Contact :

Luca Fedeli

Henri VINCENTI

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Luca Fedeli
CEA - DRF/IRAMIS/LIDyL/PHI

+33 1 69 08 19 59

Directeur de thèse :

Henri VINCENTI
CEA - DRF/IRAMIS/LIDyL/PHI

0169080376

Page perso : https://iramis.cea.fr/LIDYL/Phocea/Pisp/index.php?nom=henri.vincenti

Labo : https://iramis.cea.fr/LIDYL/PHI/

Voir aussi : https://ecp-warpx.github.io/

###Contexte

Le contexte de ce sujet de thèse est celui des accélérateurs d’électrons laser-plasma, qui peuvent être obtenus en focalisant un laser de puissance dans un jet de gaz. Au foyer laser, le champ électrique est tellement intense qu’il ionise quasi-instantanément le milieu gazeux et forme un plasma sous-dense, au sein duquel l’impulsion laser peut se propager. Dans son sillage, cette impulsion excite des structures plasmas accélératrices pouvant soutenir des champs électrostatiques de l’ordre de 100GV/m. Au sein de ces structures, des électrons du plasma peuvent être piégés et accélérés à des énergies relativistes (quelques GeV) sur des distances centimétriques. Ces champs électrostatiques étant trois ordres de grandeurs supérieurs à ceux fournis par les cavités radiofréquences, les accélérateurs laser-plasma sont des candidats prometteurs pour miniaturiser les accélérateurs d’électrons afin : (i) de démocratiser leur usage à des applications existantes mais restreintes à quelques installations dans le monde et (ii) permettre de nouvelles applications de ces accélérateurs à des secteurs stratégiques clés (recherche fondamentale, industrie, médecine, défense).

Parmi les applications faisant l’objet d’une forte concurrence internationale, on note :

> L’utilisation de ces accélérateurs pour fournir la première machine de radiothérapie d’électrons à haute énergie (100MeV) pour les traitements médicaux

> L’utilisation de ces accélérateurs comme brique de base d’un futur grand collisionneur d’électrons/positrons au TeV pour la physique des hautes énergies

> L’utilisation de ces accélérateurs pour construire une source compacte et mobile de muons relativistes pour pouvoir réaliser de la tomographie de muons active. Un tel outil serait un atout majeur dans les secteurs de l’industrie (e.g., diagnostic de sécurité des réacteurs dans le nucléaire civile) et de la défense (non-prolifération). A noter que dans ces deux secteurs, l’agence DARPA américaine a déjà financé en 2022 un programme ambitieux (Muons for Science and Security, MuS2) afin de fournir un premier design conceptuel d’une machine à muons relativistes utilisant un accélérateur laser-plasma (cf. https://www.darpa.mil/news-events/2022-07-22)


###Enjeux

Afin de rendre possible les applications mentionnées précédemment, il faut lever d’importantes limitations des accélérateurs laser-plasma actuels. Une limitation importante est le peu de charge à haute énergie (100MeV à plusieurs GeV) fournie par ces accélérateurs. La cause physique derrière ce manque de charge provient principalement du fait que les techniques d’injection de charge actuelle reposent sur l’injection d’électrons depuis le gaz, qui est très peu dense en électrons. Afin de résoudre cette limitation, nous avons récemment proposé un nouveau concept d’injection à partir d’un système physique remarquable appelé miroir plasma. Ce concept est basé sur une cible hybride gaz-solide. Quand le laser à haute intensité interagit avec cette cible, il ionise complètement le solide et le gaz. La partie solide de la cible a une densité électronique tellement élevée qu’elle réfléchit le laser incident, en formant un “miroir plasma”. Dans la partie gazeuse de la cible, le laser se propage et génère des structures accélératrices comme dans les schémas conventionnels. Suite à la réflexion sur le miroir plasma, des jets d’électrons ultra-denses peuvent être précisément injectés dans les structures accélératrices formées par le laser réfléchi. Comme le solide peut fournir une charge beaucoup plus élevée que le gaz et que la charge est injectée à partir d’une région fortement localisée, ce schéma a le potentiel d’augmenter la charge accélérée tout en préservant la qualité du faisceau accéléré.
Le groupe PHI est à la pointe au niveau international dans l’étude et le contrôle de ces systèmes. En partenariat avec le LOA, nous avons démontré (à l’aide de lasers de classe 100 TW) que ce nouveau concept permet d’augmenter considérablement la charge dans ces accélérateurs tout en conservant la qualité du faisceau.

###Objectifs

Dans ce contexte, l’objectif 1 de la thèse sera de produire un accélérateur laser-plasma avec injecteur miroir plasma à plusieurs GeV sur des installations lasers de classe PetaWatt (type laser APOLLON). Avec un laser de classe PW, cet accélérateur laser-plasma devrait produire des faisceaux d’électrons de plusieurs 100pC à 4GeV avec une dispersion en énergie de quelques %. Une telle qualité de faisceau constituerait une avancée majeure dans le domaine.

L’objectif 2 sera ensuite d’envoyer ce faisceau d’électrons dans un convertisseur à haut Z pour produire des paires muons/anti-muons. Nos estimations montrent que l’on pourrait obtenir de l’ordre de 10^4 muons relativistes par tir, ce qui permettrait de fournir une radiographie de matériaux à haut Z en quelques minutes.

Ce sujet comporte à la fois des activités :

>Théoriques/numériques de modélisation à l’aide de notre code exascale WarpX (partie accélérateur laser-plasma) et du code Geant4 (partie convertisseur haut Z)

>Expérimentales (interaction laser-plasma à haute intensité, détection de muons relativistes).

Il implique plusieurs laboratoires partenaires :

>Le Laboratoire d’Optique Appliquée sur les expériences d’accélération laser-plasma (A. Leblanc),

>Le CEA-IRFU sur la partie détection (technologie micromegas, O. Limousin),

>Le Lawrence Berkeley National Lab sur la partie développement de code (WarpX).


En termes expérimental, nous utiliserons plusieurs installations laser :

>L’installation laser UHI100 pour la mise en place et le test de l’accélérateur plasma à puissance laser plus réduite,

>L’installation laser APOLLON pour la mise en place de l’accélérateur laser-plasma à puissance nominale (PW). Une première expérience implémentant le concept d’injecteur miroir plasma au PW est prévue en Mai 2024 en collaboration CEA-LOA. Suite à cette expérience, nous réaliserons ensuite une deuxième expérience (horizon 2025-2026) de production de muons sur APOLLON ou d’autres laser en Europe (dont les lasers ELI).
Spectroscopie attoseconde haute cadence de la photoémission ultrarapide des gaz

SL-DRF-24-0345

Domaine de recherche : Interactions rayonnement-matière
Laboratoire d'accueil :

Service Laboratoire Interactions, Dynamique et Lasers (LIDyL)

Attophysique (ATTO)

Saclay

Contact :

Pascal SALIERES

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Pascal SALIERES
CEA - DRF/IRAMIS/LIDyL/ATTO

0169086339

Directeur de thèse :

Pascal SALIERES
CEA - DRF/IRAMIS/LIDyL/ATTO

0169086339

Page perso : https://iramis.cea.fr/Pisp/pascal.salieres/

Labo : http://iramis.cea.fr/LIDYL/

Voir aussi : http://attolab.fr/

Résumé :
L’étudiant-e développera des techniques de spectroscopie attoseconde utilisant de nouvelles sources laser Ytterbium de haute cadence. Les dynamiques ultrarapides de photoémission seront étudiées pour observer en temps réel les processus de diffusion/réarrangement électronique ainsi que l’intrication quantique électron-ion, en mettant à profit les techniques de coïncidence de particules chargées.

Sujet détaillé :
Ces dernières années, la génération et les applications des impulsions attoseconde (1 as=10-18 s) ont connu des progrès spectaculaires, récompensés par le Prix Nobel 2023 [1]. Ces impulsions ultrabrèves sont générées lors de la forte interaction non linéaire d’impulsions laser infrarouges brèves et intenses avec un jet de gaz [2]. Une nouvelle technologie laser à base d’Ytterbium est en train d’émerger, avec une stabilité 5 fois supérieure et une cadence 10 fois supérieure à celles de la technologie actuelle Titane:Saphir. Ces nouvelles capacités représentent une révolution pour le domaine.
Ceci ouvre de nouvelles perspectives d’exploration de la matière à l’échelle de temps intrinsèque des électrons. La spectroscopie attoseconde permet ainsi d’étudier en temps réel le processus quantique de photoémission en phase gaz, de filmer en 3D l’éjection des paquets d’onde électronique [3,4], d’étudier les réarrangements électroniques du système ionisé et les effets de décohérence quantique dus à l’intrication électron-ion [5].
Le premier objectif de la thèse est de mettre en œuvre sur la plateforme laser ATTOLab les spectroscopies attoseconde utilisant les nouvelles sources laser Ytterbium. Le second objectif est de mettre à profit les techniques de coïncidence de particules chargées, permises par la haute cadence, pour étudier avec une précision inédite les dynamiques de photoémission et d’intrication quantique.
L’étudiant-e sera formé-e en optique ultrarapide, physique atomique et moléculaire, optique quantique, et acquerra une bonne maitrise des spectroscopies XUV et de particules chargées.

Références :
[1] https://www.nobelprize.org/prizes/physics/2023/summary/
[2] Y. Mairesse, et al., Science 302, 1540 (2003)
[3] V. Gruson, et al., Science 354, 734 (2016)
[4] A. Autuori, et al., Science Advances 8, eabl7594 (2022)
[5] C. Bourassin-Bouchet, et al., Phys. Rev. X 10, 031048 (2020)

Simulation numérique à grande échelle et optimisation d’un nouveau concept d'injecteur pour augmenter la charge accélérée dans les accélérateurs d’électrons laser-plasma afin d’en permettre des applications scientifiques et technologiques

SL-DRF-24-0353

Domaine de recherche : Physique des plasmas et interactions laser-matière
Laboratoire d'accueil :

Service Laboratoire Interactions, Dynamique et Lasers (LIDyL)

Physique à Haute Intensité (PHI)

Saclay

Contact :

Luca Fedeli

Henri VINCENTI

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Luca Fedeli
CEA - DRF/IRAMIS/LIDyL/PHI

+33 1 69 08 19 59

Directeur de thèse :

Henri VINCENTI
CEA - DRF/IRAMIS/LIDyL/PHI

0169080376

Page perso : https://iramis.cea.fr/LIDYL/Phocea/Pisp/index.php?nom=henri.vincenti

Labo : https://iramis.cea.fr/LIDYL/PHI/

Voir aussi : https://www.olcf.ornl.gov/2022/10/27/warpx-named-gordon-bell-prize-finalist/

L'interaction d’un laser ultra-intense avec un jet de gaz peut être utilisée pour accélérer des paquets d'électrons très courts jusqu'à des énergies très élevées (jusqu’à plusieurs GeV) sur quelques centimètres seulement, avec une technique appelée “Laser WakeField Acceleration” (LWFA). La taille réduite de ces dispositifs et la durée très courte des paquets d'électrons en font une source potentiellement intéressante pour plusieurs applications scientifiques et technologiques. Cependant, l'LWFA ne fournit généralement pas assez de charge pour la plupart des applications envisagées, en particulier si une qualité de faisceau élevée et des énergies importantes sont également requises.

Le premier objectif de cette thèse est de comprendre la physique de base d'un nouveau schéma d'injection LWFA récemment conçu dans notre groupe: une cible solide couplée à un jet de gaz pour accélérer beaucoup plus de charge que les schémas d'injection conventionnels, tout en préservant la qualité du faisceau. Des campagnes de simulation numérique à grande échelle et des techniques d’apprentissage automatique seront utilisées pour optimiser les propriétés des électrons accélérés. Enfin, l’interaction de ces faisceaux d’électrons avec des échantillons sera simulée à l’aide d’un code Monte Carlo afin d'évaluer leur potentiel pour des applications telles que la Muon Tomography et la radiobiologie/radiothérapie. L’activité proposée est essentiellement numérique, mais avec la possibilité de participer aux activités expérimentales de l’équipe.

Le(a) doctorant(e) aura l'opportunité de participer aux activités d'une équipe dynamique avec de fortes collaborations nationales et internationales. Il/elle acquerra également les compétences nécessaires pour participer à des expériences d'interaction laser-plasma dans des installations d'envergure internationale. Enfin, il/elle acquerra les compétences nécessaires pour participer au développement d'un logiciel complexe écrit en C++ moderne et conçu pour utiliser efficacement les superordinateurs plus puissants au monde: le code Particle-In-Cell WarpX (prix Gordon Bell en 2022). L’activité de développement sera réalisée en collaboration avec l’équipe guidée par le Dr. J.-L. Vay à LBNL (US), où le/la doctorant(e) pourrait avoir l’opportunité de passer quelques mois au cours de la thèse.
Implémentation d’un nouveau concept d'injecteur pour augmenter la charge accélérée dans les accélérateurs d’électrons laser-plasma afin d’en permettre des applications scientifiques et technologiques

SL-DRF-24-0352

Domaine de recherche : Physique des plasmas et interactions laser-matière
Laboratoire d'accueil :

Service Laboratoire Interactions, Dynamique et Lasers (LIDyL)

Physique à Haute Intensité (PHI)

Saclay

Contact :

Luca Fedeli

Henri VINCENTI

Date souhaitée pour le début de la thèse : 01-10-2024

Contact :

Luca Fedeli
CEA - DRF/IRAMIS/LIDyL/PHI

+33 1 69 08 19 59

Directeur de thèse :

Henri VINCENTI
CEA - DRF/IRAMIS/LIDyL/PHI

0169080376

Page perso : https://iramis.cea.fr/LIDYL/Phocea/Pisp/index.php?nom=henri.vincenti

Labo : https://iramis.cea.fr/LIDYL/PHI/

Voir aussi : https://www.olcf.ornl.gov/2022/10/27/warpx-named-gordon-bell-prize-finalist/

L'interaction d’un laser ultra-intense avec un jet de gaz peut être utilisée pour accélérer des paquets d'électrons très courts jusqu'à des énergies très élevées (jusqu’à plusieurs GeV) sur quelques centimètres seulement, avec une technique appelée “Laser WakeField Acceleration” (LWFA). La taille réduite de ces dispositifs et la durée très courte des paquets d'électrons en font une source potentiellement intéressante pour plusieurs applications scientifiques et technologiques. Cependant, l’LWFA ne fournit généralement pas assez de charge pour la plupart des applications envisagées, en particulier si une qualité de faisceau élevée et des énergies importantes sont également requises. L’objectif de cette thèse est d’implémenter dans plusieurs laboratoires lasers à la pointe (en France et à l'international) un nouveau schéma d'injection LWFA récemment conçu dans notre groupe: une cible solide couplée à un jet de gaz pour accélérer beaucoup plus de charge que les schémas d'injection conventionnels, tout en préservant la qualité du faisceau. L'activité proposée est majoritairement expérimentale, mais avec la possibilité de participer aux activités de simulation numérique à grande échelle qui sont nécessaires pour réaliser le design d’une expérience et en interpréter les résultats. Le(a) doctorant(e) aura l'opportunité de participer aux activités d'une équipe dynamique avec de fortes collaborations nationales et internationales. Il/elle acquerra également les compétences nécessaires pour participer à des expériences d'interaction laser-plasma dans des installations d'envergure internationale. Enfin, il/elle aura la possibilité de participer à l’activité de modélisation numérique du groupe, réalisée sur les superordinateurs plus puissants au monde avec un code Particle-In-Cell open source à la pointe (WarpX, prix Gordon Bell en 2022).

 

Retour en haut