| Centre
Paris-Saclay
| | | | | | | webmail : intra-extra| Accès VPN| Accès IST
Univ. Paris-Saclay
Spectroscopie attoseconde de la photoémission ultrarapide des gaz et des liquides
Attosecond spectroscopy of ultrafast photoemission of gases and liquids

Spécialité

Interaction laser-matière

Niveau d'étude

Bac+5

Formation

Master 2

Unité d'accueil

Candidature avant le

24/05/2024

Durée

4 mois

Poursuite possible en thèse

oui

Contact

SALIERES Pascal
+33 1 69 08 63 39

Résumé/Summary
L’objectif du stage est de produire des impulsions attosecondes à l’aide d’un nouveau laser Ytterbium de forte puissance, et de les utiliser pour étudier la dynamique ultrarapide de la photoémission des gaz et des liquides, en particulier, imager en temps réel l’éjection des paquets d’onde électronique.
The aim of the internship is to generate attosecond pulses using a new high-power Ytterbium laser and to use them to investigate the ultrafast photoemission dynamics of gases and liquids, in particular, to image in real time the ejection of electronic wavepackets.
Sujet détaillé/Full description
Ces dernières années, la génération et les applications des impulsions attosecondes (1 as=10−18 s) ont connu des progrès spectaculaires, récompensés par le Prix Nobel 2023 [1]. Ces impulsions ultrabrèves sont générées lors de la forte interaction non linéaire d’impulsions laser infrarouges brèves et intenses avec un jet de gaz [2]. Une nouvelle technologie laser à base d’Ytterbium émerge, qui promet des gains de puissance moyenne/cadence d’un à deux ordres de grandeur par rapport à la technologie actuelle Titane:Saphir. Ceci ouvre de nouvelles perspectives d’exploration de la matière à l’échelle de temps intrinsèque des électrons. La spectroscopie attoseconde permet ainsi d’étudier en temps réel le processus quantique de photoémission, de filmer en 3D l’éjection des paquets d’onde électronique [3,4], et d’étudier les effets de décohérence quantique dus notamment à l’intrication électron-ion.
Le travail expérimental comprendra la mise en œuvre d’un dispositif, installé sur la plateforme laser ATTOLab, permettant : i) la génération d’impulsions attosecondes à partir d’un nouveau laser Ytterbium; ii) leur caractérisation par interférométrie quantique ; iii) leur utilisation en spectroscopie de photoémission. L’étudiant-e sera formé-e en optique ultrarapide, physique atomique et moléculaire, optique quantique, et acquerra une bonne maitrise de la spectroscopie de particules chargées. La poursuite en thèse est souhaitée.
[1] https://www.nobelprize.org/prizes/physics/2023/summary/
[2] Y. Mairesse, et al., Science 302, 1540 (2003)
[3] V. Gruson, et al., Science 354, 734 (2016)
[4] A. Autuori, et al., Science Advances 8, eabl7594 (2022)
Recently, the generation and application of attosecond pulses (1 as=10−18 s) have made impressive progress, rewarded by this year’s Nobel Prize [1]. These ultrashort pulses are generated from the strong nonlinear interaction of short intense laser pulses with gas jets [2]. A new laser technology based on Ytterbium is promising increases in average power/reprate of more than one order of magnitude as compared to the current Titanium:Sapphire technology. This opens new prospects for the exploration of matter at the electron intrinsic timescale. Attosecond spectroscopy thus allows studying in real time the quantum process of photoemission, shooting the 3D movie of electronic wavepacket ejection [3,4], and studying quantum decoherence resulting from, e.g., electron-ion entanglement.
The experimental work will include the development and operation of a setup installed on the ATTOLab laser platform allowing: i) the generation of attosecond XUV pulses from a new Ytterbium laser, ii) their characterization using quantum interferometry, iii) their use in photoemission spectroscopy. The student will be trained in ultrafast optics, atomic and molecular physics, quantum optics and will acquire a good mastery of charged particle spectrometry. The continuation on a PhD project is advised.
[1] https://www.nobelprize.org/prizes/physics/2023/summary/
[2] Y. Mairesse, et al., Science 302, 1540 (2003)
[3] V. Gruson, et al., Science 354, 734 (2016)
[4] A. Autuori, et al., Science Advances 8, eabl7594 (2022)
Mots clés/Keywords
attoseconde, laser intense, photoémission
attosecond, intense laser, photoemission
Compétences/Skills
Spectroscopie de photons UVX Spectroscopie de particules chargées: électrons
XUV spectroscopy Charged-particle spectroscopy
Logiciels
Python, matlab

 

Retour en haut