Headlines 2021

Jun 15, 2021

Les propriétés chimiques, optiques et électroniques d’une molécule sont principalement déterminées par ses orbitales occupées de plus haute énergie. La manière dont ces orbitales évoluent, se forment ou se brisent, est une information essentielle pour la compréhension de mécanismes réactionnels. Observer ces dynamiques est un défi considérable, qui a motivé le développement de la spectroscopie attoseconde (10-18 s), à même de fournir la résolution spatio-temporelle requise. Cependant, les techniques de cartographie actuelles sont unidimensionnelles, et ne peuvent capturer sans hypothèse préalable la fonction d’onde d’une orbitale moléculaire, une grandeur par essence complexe et multi-dimensionnelle.

Le groupe ATTO du LIDYL au CEA-Saclay, en collaboration avec le Laboratoire LCPMR, Sorbonne Université, et le LBNL de Berkeley en Californie, a développé une nouvelle approche de cartographie attoseconde, permettant de reconstruire avec grande précision des orbitales électroniques moléculaires à plusieurs dimensions [1]. Dans cette méthode, ici appliquée aux deux orbitales occupées les plus hautes en énergie (HOMO et HOMO-1) du diazote, les molécules à étudier sont alignées et soumises à un champ laser, donnant lieu à la génération de rayonnement extrême ultraviolet (UVX). L'analyse de l’intensité, de l'énergie de photon et de la phase de cette lumière UVX permet de reconstruire les orbitales mises en jeu dans cette émission de lumière.

Mar 27, 2021
Les chercheurs d'une collaboration entre le Laboratoire d'Optique Appliquée (LOA, ENSTA-X-CNRS) à Palaiseau et l'équipe "Physique à haute intensité" de l'IRAMIS/LIDYL sont parvenus pour la première fois à accélérer des électrons par laser dans le vide (Vacuum Laser Acceleration - VLA) jusqu'à des énergies relativistes en utilisant un champ électrique longitudinal. Pour parvenir à ce résultat, la polarisation linéaire habituellement utilisée dans les expériences a été convertie en polarisation radiale, qui possède une structure idéale pour l'accélération par laser dans le vide et permet d'obtenir des faisceaux d'électrons mieux collimatés. Ces expériences, combinées à des simulations de pointe en trois dimensions, ont permis une compréhension fine des mécanismes physiques en jeu et des optimisations à réaliser lors des futures expériences. Ces résultats montrent que l'accélération par laser dans le vide est une voie prometteuse pour générer de façon compacte des faisceaux d'électrons relativistes de très bonne qualité et de durée femtoseconde.

 



Retour en haut