Chiral Recognition in the Gas Phase investigated Using Femtosecond Photoelectron Circular Dichroism

 Alexander Kastner¹, Tom Ring¹, Christian Lux¹, Tim Schäfer²,
 G. Barratt Park², Hendrike Braun¹, Arne Senftleben¹, Philipp Ph. Demekhin¹ and Thomas Baumert¹

¹ Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany

 2 Institut für Physikalische Chemie, Georg-August-Universität Göttingen Germany

Attolab meeting 2018

Overview

1 Introduction

2 Experimental setup and Data evaluation

- 2.1 Excitation and ionization scheme
- 2.2 Experimental setup
- 2.3 Data processing VMI (fenchone)

3 Results

- 3.1 Origin of PECD
- 3.2 Sensitivity of PECD
- 3.3 Wavelength dependence of PECD
- 3.4 Bichromatic field ionization

1 Introduction

2 Experimental setup and Data evaluation

3 Results

Chiral recognition

♠ How to describe chirality?

Lord Kelvin: " I call any geometrical figure, or group of points, chiral, and say that it has chirality if its image in a plane mirror, ideally realized, cannot be brought to coincide with itself."

Laurence D. Barron: Molecular light scattering and optical activity, Cambridge University Press

M.Pitzer et al.: Science 341, (2013)

Photoelectron Circular dichroism (PECD)

Differences in the differential photoelectron emission in the \pm 10 % region (electric dipole interaction)

PECD of chiral molecules observed by resonance-enhanced multi-photon ionization Photoelectron Circular dichroism (PECD)

Differences in the differential photoelectron emission in the \pm 10 % region (electric dipole interaction)

PECD survives averaging over different orientations of chiral molecules in space (measurement in laboratory frame possible) B. Ritchie PRA 13, 1411 (1976), I. Powis JCP, 112, 1, (2000)

Demonstrated in Böwering et al., PRL 86, 1187 (2001)

Photoelectron Circular dichroism (PECD) Single-photon ionization Demonstrated using VMI

Determine polarization state of

harmonics Mairesse et al., Nat. Phot. 314, (2014)

Photoelectron Circular dichroism (PECD) Single-photon ionization Multi-photon ionization

Demonstrated using VMI

Determine polarization state of harmonics Mairesse et al., Nat. Phot. 314, (2014)

VMI Lux et al., Angew. Chem. 51, (2012)

Mass-tagged PECD

Lehmann et al., J. Chem. Phys. 139, (2013)

Overview

1 Introduction

- 2 Experimental setup and Data evaluation
 - 2.1 Excitation and ionization scheme
 - 2.2 Experimental setup
 - 2.3 Data processing VMI (fenchone)

3 Results

1 Introduction

2 Experimental setup and Data evaluation
2.1 Excitation and ionization scheme
2.2 Experimental setup
2.3 Data processing - VMI (fenchone)

3 Results

Excitation and ionization scheme

Overview

1 Introduction

2 Experimental setup and Data evaluation
2.1 Excitation and ionization scheme
2.2 Experimental setup
2.3 Data processing - VMI (fenchone)

3 Results

Experimental setup - femtosecond PECD

 Ti:Sa amplifier (25 fs, 0.8/1 mJ, 1/5 kHz)

Experimental setup - femtosecond PECD

- Ti:Sa amplifier (25 fs, 0.8/1 mJ, 1/5 kHz)
- UV ($\sim 400 \text{ nm}$) \rightarrow SHG/OPA (*TOPAS*)

VERSITAT

Experimental setup - femtosecond PECD

- Ti:Sa amplifier (25 fs, 0.8/1 mJ, 1/5 kHz)
- UV (~ 400 nm) \rightarrow SHG/OPA (*TOPAS*)
- photoelectron momentum distributions measured by velocity map imaging (VMI)

VERSITAT

Experimental setup - femtosecond PECD

- Ti:Sa amplifier (25 fs, 0.8/1 mJ, 1/5 kHz)
- UV (~ 400 nm) \rightarrow SHG/OPA (*TOPAS*)
- photoelectron momentum distributions measured by velocity map imaging (VMI)
- Reconstruction of 3D momentum distribution for LIN (detector plane) and CIRC possible

Introduction

2 Experimental setup and Data evaluation
2.1 Excitation and ionization scheme
2.2 Experimental setup

2.3 Data processing - VMI (fenchone)

3 Results

Data processing - Abel inverted (fenchone)

 $\vec{k} \rightarrow$

LCP/RCP

PAD = $C_0 + C_1 + C_2 + C_3 + ...$ Quantification: LPECD = $\frac{1}{c_0} \left(2c_1 - \frac{1}{2}c_3 + \frac{1}{4}c_5 - \frac{5}{32}c_7 \right)$ UNIKASSEL VERSITÄT Overview

1 Introduction

2 Experimental setup and Data evaluation

3 Results

- 3.1 Origin of PECD
- 3.2 Sensitivity of PECD
- 3.3 Wavelength dependence of PECD
- 3.4 Bichromatic field ionization

1 Introduction

2 Experimental setup and Data evaluation

3 Results

3.1 Origin of PECD

- 3.2 Sensitivity of PECD
- 3.3 Wavelength dependence of PECD
- 3.4 Bichromatic field ionization

Origin of PECD

' Its [PECD] origin lies in quantum interference terms between outgoing waves developed, as the photoelectron is scattered off the chiral molecular potential.'

G. A. Garcia et al., Nature Communications, 4, 2132, (2013)

Origin of PECD

' Its [PECD] origin lies in quantum interference terms between outgoing waves developed, as the photoelectron is scattered off the chiral molecular potential.'

G. A. Garcia et al., Nature Communications, 4, 2132, (2013)

picture taken from S. Beaulieu et al., New J. Phys. 18,

102002G, (2016)

Origin of PECD

' Its [PECD] origin lies in quantum interference terms between outgoing waves developed, as the photoelectron is scattered off the chiral molecular potential.'

G. A. Garcia et al., Nature Communications, 4, 2132, (2013)

in agreement with coincidence findings (C. S. Lehmann et al., J. Chem. Phys., 139, 234307 (2013), M. M. Rafiee Fanood et al., J. Chem. Phys., 145, 124320 (2016)) PECD of chiral molecules observed by resonance-enhanced multi-photon ionization
PECD of chiral molecules observed by resonance-enhanced multi-photon ionization
Overview

1 Introduction

2 Experimental setup and Data evaluation

3 Results

- 3.1 Origin of PECD
- 3.2 Sensitivity of PECD
- 3.3 Wavelength dependence of PECD
- 3.4 Bichromatic field ionization

Sensitivity of PECD

Enantiomeric excess (e.e.)

A.Kastner, et al., ChemPhysChem 17, 1119-1122, (2016)

 \rightarrow sensitivity < 1 % e.e.

see also L.Nahon et al., PCCP, 18, 12696, (2016)

A.Kastner, et al., ChemPhysChem 17, 1119-1122, (2016)

$$ightarrow$$
 sensitivity < 1 % e.e.

see also L.Nahon et al., PCCP, 18, 12696, (2016)

This Work 1R. 4S (-) 0.08 -[1S, 4R (+)] I: (HOMO) 1R. 4S (-) 0.06 -[1S, 4R (+)] 0.04 Fixed [6.2.2] Norman [6.2.2 b1^[+1] 0.02 0.00 -0.02 -0.04 20 10 24 Photon Energy (eV)

picture taken from L.Nahon et al., PCCP, 18, 12696, (2016)

1 Introduction

2 Experimental setup and Data evaluation

3 Results

- 3.1 Origin of PECD
- 3.2 Sensitivity of PECD

3.3 Wavelength dependence of PECD

3.4 Bichromatic field ionization

Wavelength Scan - VMI PADs LIN (fenchone)

A. Kastner et al., J. Chem. Phys. 147, 013926 (2017)

Wavelength Scan - VMI PADs LIN (fenchone)

A. Kastner et al., J. Chem. Phys. 147, 013926 (2017)

Wavelength Scan - PECD (fenchone)

How does the PECD depend on intermediate state and on photoelectron energy?

Wavelength Scan - PECD (fenchone)

How does the PECD depend on intermediate state and on photoelectron energy?

A. Kastner et al., J. Chem. Phys. 147, 013926 (2017)

Wavelength Scan - PECD (fenchone)

How does the PECD depend on intermediate state and on photoelectron energy?

A. Kastner et al., J. Chem. Phys. 147, 013926 (2017)

PECD of chiral molecules observed by resonance-enhanced multi-photon ionization
PECD of chiral molecules observed by resonance-enhanced multi-photon ionization
Overview

1 Introduction

2 Experimental setup and Data evaluation

3 Results

- 3.1 Origin of PECD
- 3.2 Sensitivity of PECD
- 3.3 Wavelength dependence of PECD
- 3.4 Bichromatic field ionization

VERSITAT

Bichromatic field ionization

VERSITAT

Bichromatic field ionization

VERSITAT

Bichromatic field ionization

Exp. results (work in progress) for two-colors

Exp. results (work in progress) for two-colors

VERSITAT

U N

Theoretical results bichromatic field

UNIKASSEL VERSITAT Overview

1 Introduction

2 Experimental setup and Data evaluation

3 Results

Summary and Outlook

Wavelength dependence

Summary and Outlook Wavelength dependence Bichromatic

U N I K A S S E L V E R S I T 'A' T

PECD of chiral molecules observed by resonance-enhanced multi-photon ionization

- Prof. T. Baumert
- Dr. A. Senftleben
- Dr. H. Braun
- Dr. H. Lee
- M. Adrian
- T. Kalas
- R. Savulea
- C. Sarpe
- T. Ring
- S. Ranecky
- A. Ungeheuer
- S. Vasudevan
- C. Witte
- B. Zielinski

U Oldenburg Prof. Dr. M. Wollenhaupt Dr. T. Bayer Dr. L. Englert S. Kerbstadt

U Göttingen B. C. Krüger Dr. B. G. Park Dr. T. Schäfer

Alumni

Dr. M. Krug Dr. C. Lux

Summary and Outlook Wavelength dependence Bichromatic

Chiral recognition in the gas phase

Terpenes

Amino acids and Sugars

UNIKASSEL VERSIT'A'T PECD of chiral molecules observed by resonance-enhanced multi-photon ionization

Chiral recognition in the gas phase

Amino acids and Sugars

Data processing - VMI (fenchone)

LIN

Data processing - VMI (fenchone)

LIN

LCP

RCP

LCP

-0.5

LCP - RCP

LIN

Data processing - VMI (fenchone)

LIN

LCP - RCP

I CP - RCP

PECD Antisymmetric

Part

I CP - RCP

Antisymmetric Part

Symmetric Part

LCP - RCP

PECD Antisymmetric Part

- wavelength dependent parent ion yield between 375-420 nm
- Excitation of B-band (3s←n, 5.95 eV) and of C-band (3p←n, 6.37 eV), energy separation 0.42 eV
- lifetime of 5.95 eV peak \sim 0.8 ps (3.3 ps in TR-PECD, S. Beaulieu et al., Far. Disc., 194, (2016), A. Comby et al., JPCL, 7, (2016))

Wavelength Scan - Photoelectron spectra (fenchone)

Scaling of photoelectron energy with excitation wavelength? \Rightarrow Consider Abel inverted photoelectron spectra

A. Kastner et al., J. Chem. Phys. 147, 013926 (2017)

Wavelength Scan - Photoelectron spectra (fenchone)

Scaling of photoelectron energy with excitation wavelength? \Rightarrow Consider Abel inverted photoelectron spectra

A. Kastner et al., J. Chem. Phys. 147, 013926 (2017)