

lectronic properties of solids cited with intermediate laser power densities

Fausto Sirotti UR1 - CNRS - SOLEIL Synchrotron

Beamline

1^{ère} rencontre des utilisateurs Attolab 19-20/11/2015

Time resolved Experiments

Time resolved electronic structure:

- Real time experiments
 - Annealing processes
 - Phase transitions
 - Adsorption and desorption
- Pump Probe experiments
 - Spin injection & Magnetization dynamics
 - Device operation
 - Surface photovoltage

PRB, 2011, 83(2): art.n°020406

IFSRP 2013

ACSNano 6,6075 (2012)

18940 - 45

E – EF (eV)

Laser installation

Fs Pulsed laser Coherent REGA 9040

- **282 KHz synchronized**
- 40 fs, 6µJ/pulse
- **OPA 800 400 nm**

fs laser excitations in solid state

- Surface Chemical reactions
- Phase transitions
- Magnetization dynamics

Pump/probe experiments:

Enough power to induce modification of physical properties

But the solid sample is still there

Photoelectron spectroscopy

- Electronic structure =>
- all properties
 - physical, chemical, magnetic,
- Element and site specific
- Basis for all time resolved studies
 - In all phase transitions electrons, more mobile than nuclei could drive the observed behavior

Needed several mJ/cm²

High stability needed for both synchrotron and laser beamlines

The phase transition in FeRh

In FeRh the transition involves both the Magnetic Order and the Lattice Structure;

Below
$$T_c$$
Above T_c $Fe = \pm 3.3 \mu_B$ $Fe = 3.1 \mu_B$ $Rh = 0 \mu_B$ $Rh = 0.9 \mu_B$

The volume is expanded of about 1% bulk samples or in thick films;

- Isotropically in bulk or in thick films;
- Along the out of plane direction for thin films

FeRh : electronic structure -> + laser induced phase transition

(F. Pressacco, M. Gatti, A. Nicolaou, D.Krizmancic)

Magnetization dynamics

- Three temperature model
- Role of hot electrons
- IR laser excitation

extracted form [Nature Materials Vol: 9, Pg: 259-265 (2010)].

Gd: Temperature dependence of magnetization

N. Beaulieu et al. JESRP, 2013, 189 Supp: 40–45

Laser induced Fast demagnetization

Femtosecond Laser Excitation Drives Ferromagnetic Gadolinium out of Magnetic Equilibrium

Robert Carley,^{1,2} Kristian Döbrich,¹ Björn Frietsch,^{1,2} Cornelius Gahl,² Martin Teichmann,^{1,2} Olaf Schwarzkopf,³ Philippe Wernet,³ and Martin Weinelt^{2,*} ¹Max-Born-Institut, Max-Born-Straße 2A, 12489 Berlin, G ²Freie Universität Berlin, Fachbereich Physik, Arnimaltee 14, 14195 ³Helmholz Zentrum für Materialien und Energie (BESSY II), Albert-Einstein-Stra (Received 10 April 2012; published 31 July 2012) $F_{F_{f}}$ $(5d6s)^{3}$ $(fd6s)^{3}$ $(fd6s)^{4}$ $(fd6s)^{4}$ $(fd6s)^{4}$ $(fd6s)^{5}$ $(fd6s)^{5}$ $(fd6s)^{5}$ $(fd6s)^{6}$ $(fd6s)^{6}$ $(fd6s)^{6}$ $(fd6s)^{6}$ $(fd6s)^{6}$ $(fd6s)^{6}$ $(fd6s)^{7}$ $(fd6s)^{7}$

FIG. 1 (color online). Magnetic coupling (left) and calculated exchange-split valence band structure [31] of gadolinium (right). Majority spin band: blue, up arrows. Minority spin band: red, down arrows. The dashed line is the $5d_{z^2}$ majority spin surface state. Bands not seen in ARPES at 36 eV photon energy have been omitted.

HHG source

Relatively high power density Space charge created by pump pulse.

Photoemission as a function of the photons per pulse

A. Pietzsch et al., *Towards time resolve core level photoelectron spectroscopy with femtosecond x-ray free-electron lasers.* New J. Phys. **10**, 033004 **(2008)**

FLASH

N. Beaulieu, G. Malinowski, A. Bendounan, M. Silly, C. Chauvet, D.Krizmancic, F. Sirotti Space charge effects occurring during fast demagnetization processes.

In Ultrafast Magnetism I, vol.159, pp. 313-316. Springer, 2015

Multiphoton Photoemission

F. Sirotti, N.Beaulieu, A. Bendounan, M. G. Silly, C. Chauvet TEMPO Beamline SOLEIL

- G. Malinowski Université de Lorraine, Nancy
- G. Fratesi CNISM U. Milano-Bicocca, Italy & ETSF
- G. Onida Dip. Fisica, U. Milano, Italy & ETSF

Valerie Veniard, LSI Palaiseau & ETSF

Au(111) - 90 K

Phys Rev B 90, 035401 (2014)

Multiphoton photoemission

Multiphoton photoemission

Integrated Intensity

Multiphoton photoemission

Simple model to describe the excitation of the electron in the surface state

Time dependent Schrödinger equation

Multiple electronic excitations with laser pulses at high power densities

Good description of the Electronic excitation

Good agreement of laser power density

Transient excitons at metal surfaces

Xuefeng Cui¹, Cong Wang¹, Adam Argondizzo¹, Sean Garrett-Roe², Branko Gumhalter³ and Hrvoje Petek^{1*}

Conclusion:

electronic structure: photon energies in the range up to 100 eV

No need to destroy samples

- High repetition rate fs pulses
- Continuous reliable operation
- Dedicated optimized exp. stations

Thanks to

M. Silly A. Bendounan C. Chauvet F. Pressacco N. Beaulieu

Theory LSI Palaiseau & ETSF

M.Gatti V. Veniard G. Onida G. Fratesi

