

Photoemission electron microscopy: Pump-probe experiments

C. Mathieu, C. Lubin, N. Barrett

SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette

E4 - Phase solide

4 complementary end-stations share the solid state beamline at ATTOLab:

Spin-ARPES Karol HRICOVINI

Laser-Solide Stéphane GUIZARD

TR-ARPES Marino MARSI

TR-PEEM Nick BARRETT

PEEM pump-probe

Technical beamline requirements

Focusing optics into PEEM field of view Monochromator OPT2X narrow band line

 x, k_x

Mesoxcope

MesoXcope

Dedicated to high resolution band structure imaging of functional oxides & 2D materials

cea

Real & Reciprocal Space Imaging

MesoXcope : $\Delta E = 50-100 \text{ meV}$, $\Delta x = 50 \text{ nm}$, $\Delta k = 0.02 \text{ Å}^{-1}$, T = 30-600 K

cea

PRB2011

PEEM with laser

- band structure 2D materials, oxides
- Valence band edges
- shallow core levels
- Count-rate issues

Electron dynamics in BiFeO₃

Ultra fast optical spectroscopy

Ti-sapphire 100 fs 250 kHz 4 μ J/pulse BBO frequency doubled 383-398 nm

Photoferroelectricity in BiFeO₃

Open circuit voltages >> Si band gap Domain wall vs bulk photovoltage

With attolab:

Pump: UV pulse (frequency doubled) Probe: HHG PEEM Informations:

Electron-hole pair separation @ domain walls

Yang Nature Nanotech 2010

Parallel/Perpendicular J_{PV}

Bhatnagar Nature Comm 2013

Shift current origin

- DW related photocurrent
- □ Bulk Photovoltaic current opposite to J_{DW}
- Zero current parallel to DW
- Significant photocurrent perpendicular to film

Bonding – Anti-bonding transition
Polarization dependent shift vector

Young Phys. Rev. Lett. 2012 x2

Moving the MesoXcope

Installation at Elettra synchrotron (Trieste) 06 May - 16 June 2015

First results with UHV suitcase

Space charge

Rule of thumb: Space charge limit $2e/\mu m^2$ pulse

Pulse train 10x200 as, 1.3 fs separation, 10⁷ electrons emitted per pulse train

$\Delta E = 1 \text{ eV} @ 1 \text{ fs},$ 10-20 fs to minimize space-charge & optimize resolution

Mikkelson RSI 2009

Merci pour votre attention

