| | | | | | | webmail : intra-extra| Accès VPN| Accès IST| Contact | English
Univ. Paris-Saclay

Sujet de stage / Master 2 Internship

Retour à la liste des stages


Calcul avec la dynamique non linéaire d'ondes de spin

Spécialité : PHYSIQUE / Physique de la matière condensée

Contact : DE-LOUBENS Gregoire,
e-Mail : gregoire.deloubens@cea.fr,   Tel : +33 1 69 08 71 60
Laboratoire : SPEC/LNO

Stage pouvant se poursuivre en thèse : Oui
Durée du stage : 0-3 mois
Date limite de constitution de dossier : 08/04/2021

Résumé :
Dans les nanostructures magnétiques, les modes propres d'excitation (ondes de spin) sont couplés entre eux via des interactions non linéaires. L'idée est d'utiliser ce système dynamique pour accomplir des tâches de calcul neuromorphique.

Sujet détaillé :
Les ondes de spin (OdS) sont les excitations collectives de l'aimantation dans les matériaux ferromagnétiques. Leur fréquence propre se situe typiquement dans la gamme GHz avec des longueurs de propagation de plusieurs microns en fonction de l'amortissement intrinsèque du matériau. En raison des interactions d'échange et dipolaires, leur dynamique est par nature non linéaire et présente une physique très riche. Dans les géométries confinées à base de couches minces, les OdS sont quantifiées avec un spectre fréquentiel contrôlé par les dimensions latérales de l'échantillon. Ce spectre d'OdS peut également être modifié par des stimuli externes comme un champ magnétique ou un couple de transfert de spin. Des stimuli de grande amplitude peuvent aussi déclencher des processus non linéaires comme la conversion de mode et les instabilités de mode, conduisant à une redistribution d'énergie entre OdS [1,2].

Au cours de ce stage, nous étudierons expérimentalement les possibilités offertes par les OdS dans des couches minces nanostructurées pour effectuer du reservoir computing [3]. Le mécanisme de contrôle de base est le couplage non linéaire entre OdS, qui permet aux modes propres orthogonaux de l'état d'équilibre d'interagir les uns avec les autres à mesure que leurs amplitudes augmentent. Parce qu'un tel couplage implique des événements de seuil [1], comme observé dans les neurones, il est possible de réaliser des tâches de calcul de nature cognitive, comme par exemple de la classification. Pour cela, nous réaliserons une spectroscopie multifréquence de nanostructures magnétiques à très faible amortissement dans le régime non linéaire [2]. Nous utiliserons un microscope de force à résonance magnétique, une technique de champ proche développée au laboratoire capable de détecter la dynamique d'OdS dans des nanoaimants individuels [4]. Pour analyser les résultats expérimentaux et identifier les configurations utiles pour le reservoir computing basé sur un réseau de neurones récurrent, nous nous appuierons également sur des simulations micromagnétiques basées sur un code python open source [5]. À moyen terme, cela pourrait permettre une implémentation hardware de reservoir computing reposant sur le concept de "liquid state machine" [6] aux fréquences GHz, qui serait utile entre autres pour le traitement des signaux de télécommunications.

Ce stage se déroulera dans le cadre de deux projets récemment financés, l'un par l'Europe (k-NET) et l'autre par l'ANR (MARIN), et se déroulera donc dans un environnement collaboratif.

[1] V. Naletov et al., Ferromagnetic resonance spectroscopy of parametric magnons excited by a four-wave process, Phys. Rev. B 75, 140405 (2007)
[2] Y. Li et al., Nutation Spectroscopy of a Nanomagnet Driven into Deeply Nonlinear Ferromagnetic Resonance, Phys. Rev. X 9, 041036 (2019)
[3] W. Maass et al., Real-time computing without stable states: A new framework for neural computation based on perturbations, Neural Computation 14, 2531 (2002)
[4] O. Klein et al., Ferromagnetic resonance force spectroscopy of individual submicron-size samples, Phys. Rev. B 78, 144410 (2008)
[5] http://micromagnetics.org/software/
[6] C. Fernando & S. Sojakka, Pattern Recognition in a Bucket in Lecture Notes in Computer Science, vol 2801 (2003)
Techniques utilisées au cours du stage :
Microscopie à force magnétique ; techniques hyperfréquence ; simulations micromagnétiques

Mots clés : Dynamique de l'aimantation ; nanomagnétisme ; magnonique ; systèmes dynamiques ; calcul neuromorphique

Lien vers le laboratoire
Lien vers la page du tuteur

 

Retour en haut