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Resumé

La résonance magnétique est une branche de la science qui vise à détecter les
spins via leur absorption et leur émission de rayonnement électromagnétique.
On peut distinguer deux domaines : la résonance magnétique nucléaire (RMN)
qui vise à détecter les spins des noyaux, et la résonance de spin électronique
(ESR) qui concerne la détection du spin des électrons non appariés. Cette thèse
porte sur le développement d’une nouvelle méthodologie pour la spectroscopie
ESR.

La spectroscopie ESR a de multiples applications [1]. En chimie, elle per-
met la détection et l’identification des radicaux libres et l’étude de la structure
moléculaire et des réactions chimiques ; en biologie, elle fournit des informations
structurelles sur les molécules à l’aide d’étiquettes de spin ; en archéologie, elle
fournit une méthode de datation basée sur les dommages causés par les ray-
onnements ; en traitement quantique de l’information, elle permet d’aborder les
qubits de spin à longue durée de vie.

La méthode dominante pour effectuer des mesures de spectroscopie ESR con-
siste à coupler de manière résonante les spins à un résonateur micro-ondes à une
fréquence ω0 et à les piloter avec des séquences d’impulsions micro-ondes, comme
l’écho de Hahn. Elles conduisent à l’accumulation d’une aimantation transver-
sale oscillante transitoire, qui provoque l’émission d’une impulsion micro-onde
cohérente en phase, appelée écho de spin, dans la ligne de détection. Le signal
d’écho est ensuite amplifié, et ses quadraturesX,Y sont détectées par démodulation
homodyne. La spectroscopie ESR commerciale souffre d’une faible sensibilité
due au faible couplage entre les spins et le champ électromagnétique. Cela im-
plique que de grands ensembles de spins sont nécessaires pour générer un signal
suffisamment fort pour surmonter le bruit expérimental.

Une amélioration de la sensibilité a été démontrée avec l’utilisation de circuits
supraconducteurs. L’utilisation d’un résonateur supraconducteur micrométrique
à proximité de l’ensemble de spins permet de concentrer le champ micro-ondes
dans un petit volume (jusqu’au femtolitre), ce qui augmente le couplage spin-
photon. Ce couplage accru, combiné aux faibles pertes du résonateur supracon-
ducteur, permet d’atteindre le régime dit de Purcell, dans lequel le taux de relax-
ation radiative du spin est augmenté de plusieurs ordres de grandeur [2]. Cela
permet des temps de répétition rapides pour les expériences et donc un moyen-
nage rapide. Enfin, à basse température, l’ensemble des spins a une polarisa-
tion d’équilibre plus importante, et l’utilisation d’amplificateurs paramétriques
Josephson limités en quantum permet d’amplifier le signal de spin émis avec un
minimum de bruit ajouté. [3]. Avec cette méthode, une sensibilité de 12 spins/

√
Hz

a été démontrée [4]. Un gain supplémentaire en sensibilité serait cependant
souhaitable, afin d’atteindre la détection de spin unique.

Le but de cette thèse est d’introduire et de donner une preuve de principe
d’une nouvelle méthode de détection de spin, avec un potentiel accru pour la
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détection de petits nombres de spins. Contrairement à la détection par écho
de Hahn, cette nouvelle méthode consiste à détecter le signal de fluorescence
micro-onde incohérent émis par les spins se relaxant vers leur état fondamental
après une impulsion d’excitation. Nous exploitons le taux de relaxation radiative
amélioré par Purcell pour stimuler l’émission d’un signal de fluorescence micro-
onde à partir d’un petit (∼ 103) ensemble de spins électroniques appartenant à des
donneurs de bismuth dans du silicium. La sortie du résonateur est connectée à
l’entrée d’un détecteur de photons micro-ondes unique accordable en fréquence
(SMPD) récemment développé, basé sur un mélange à quatre ondes avec un qubit
supraconducteur. Nous comparons cette nouvelle technique à la détection par
écho de Hahn et discutons du potentiel de la détection par fluorescence pour de
petits nombres de spins.

La première partie du manuscrit fournit les outils conceptuels nécessaires
à la compréhension de l’expérience. Dans le chapitre 2, nous décrivons la de-
scription quantique des modes électromagnétiques, et des circuits quantiques
élémentaires tels que le résonateur LC. Dans le chapitre 3, nous décrivons la
dynamique des spins couplés à un résonateur, en mettant l’accent sur le champ
émis par les spins pendant une séquence d’écho de spin et lors de la relaxation
radiative.

La deuxième partie du manuscrit décrit la conception et la mise en œuvre
des deux dispositifs utilisés dans l’expérience. Le chapitre 4 se concentre sur le
dispositif de résonateur de spin, avec la caractérisation de l’écho de spin détecté
en quadrature des spins donneurs de bismuth utilisés dans l’expérience. Le
chapitre 5 décrit le principe, la conception et la caractérisation du SMPD.

La dernière partie du manuscrit présente les résultats expérimentaux démontrant
la détection de spin avec le SMPD, à la fois en fluorescence et en écho de spin.

0.1 Détection de la fluorescence du spin

Le principe de l’expérience est illustré dans la figure 0.1(a), nous considérons N
spins couplés avec une constante de couplage g0 à un résonateur LC supracon-
ducteur de fréquence ω0 et de taux de décroissance d’énergie totale κ = κint +
κext. Un champ magnétique statique B0 est appliqué à l’ensemble de spins afin
d’accorder leur fréquence de Larmor en résonance avec le résonateur ωs = ω0.
Nous considérons que les spins sont dans le régime de Purcell. La sortie du
résonateur est reliée par des câbles micro-ondes à un détecteur de photons micro-
ondes unique (SMPD), et les deux systèmes sont refroidis à des températures de
l’ordre du milliKelvin. Une source de micro-ondes permet d’envoyer des impul-
sions pour exciter l’ensemble de spin.

L’ensemble de spin est décrit par les opérateurs de spin total Ŝi =
∑
n Ŝ

(n)
i , avec

i ∈ {x, y, z}. Nous considérons l’ensemble initialement dans son état fondamental
〈Ŝz〉 = −N/2. Au temps t = 0, nous appliquons une impulsion π à l’ensemble (voir
Fig.0.1(b,c,d)), inversant sa polarisation. En raison de l’effet Purcell, l’ensemble
se relaxe spontanément avec un temps caractéristique TP en émettant un signal
photonique 〈â†â〉(t) dans la cavité. La fuite du signal, κext〈â†â〉(t), est acheminé
vers un détecteur de photons micro-ondes unique. La détection se fait sans bruit
intrinsèque, car la mesure est effectuée sur la base propre de l’énergie, où les
fluctuations du vide sont nulles. Les seules sources de bruit résident dans les
imperfections du détecteur et dans la température des lignes micro-ondes.



0.1. DÉTECTION DE LA FLUORESCENCE DU SPIN 5

0 1SMPD

g0 ω0

κc

κi

b)

P

c)

d)

+

a)
κ e

xt

-N/2

N/2

S
S

S

Figure 0.1: Principe de la détection de la fluorescence de spin. (a) Illus-
tration du montage pour la détection photonique de la fluorescence de spin. Un
ensemble de spins est couplé magnétiquement avec une constante de couplage
g0 à un résonateur LC résonnant, qui est lui-même couplé à une ligne externe
avec un taux de décroissance énergétique κext. Nous supposons un régime dans
lequel le couplage avec le résonateur augmente le taux de relaxation radiative
de l’ensemble de spins, en raison de l’effet Purcell. La ligne externe est utilisée
pour acheminer les impulsions micro-ondes vers le résonateur et la fuite du sig-
nal est acheminée vers un détecteur de photons micro-ondes unique. (b) Une
impulsion π est appliquée à l’ensemble de spins, inversant ainsi la polarisation
longitudinale moyenne 〈σ̂z〉 de chaque spin (voir (c)). L’ensemble de spins se re-
laxe ensuite spontanément pour revenir à son état d’équilibre par émission de
photons en un temps caractéristique TP, dû à l’effet Purcell. (d) Esquisse de
l’évolution du vecteur de Bloch de spin pendant la relaxation spontanée.
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Afin de décrire et d’interpréter l’expérience, nous avons besoin d’outils pour
modéliser l’interaction entre les différents systèmes. C’est pourquoi nous in-
troduisons des concepts de base dans la partie de la thèse consacrée au con-
texte. Nous commençons le chapitre 2 par la description quantique des modes
électromagnétiques, puis nous introduisons le concept de résonateur LC quan-
tique, utile à la fois pour le module de spin et le détecteur de photons. Dans
la section 2.4, nous présentons la jonction Josephson, l’élément non linéaire
au cœur du détecteur de photons uniques. Après un aperçu de l’amplificateur
linéaire, nous terminons le chapitre par la section 2.6, en établissant une com-
paraison entre la détection en quadrature et la détection de photons dans les cas
monomode et multimode pour différents états du champ. Nous montrons ici que
lorsqu’un petit nombre de photons est émis sur un grand nombre de modes, la
détection de photons présente un meilleur rapport signal/bruit que la détection
en quadrature.

Afin de décrire l’ensemble de spins et la dynamique résultant du couplage à
un résonateur, nous commençons le chapitre 3 par un modèle pour un seul spin
couplé à un résonateur LC. Nous généralisons ensuite le modèle à un seul spin
à un ensemble de N spins dans le régime où les effets collectifs sont négligeables
(faible coopérativité, ou de manière équivalente, pas d’amortissement par rayon-
nement). Nous calculons enfin le champ moyen et le nombre moyen de photons
émis par un ensemble de spins dans trois types d’expériences : fluorescence,
désintégration par induction libre et écho de Hahn.

0.2 Spectroscopie ESR des donneurs de bismuth dans
le silicium

Pour notre démonstration expérimentale de la détection de spin par fluorescence,
nous utilisons des spins donneurs de bismuth dans le silicium comme système
modèle. Dans la première partie du chapitre 4 nous décrivons leurs propriétés,
et justifions leur traitement comme un ensemble de spin effectif 1/2.

Nous décrivons ensuite la conception du résonateur de spin. Comme l’illustre
la figure 0.2, le dispositif consiste en un substrat de 28Si silicium enrichi dans
lequel des donneurs de bismuth ont été implantés sur une profondeur de ∼
100 nm. Un résonateur LC supraconducteur de fréquence ω0 est implanté dans
l’aluminium sur la surface de la puce. Un champ magnétique statique externe B0
est appliqué parallèlement au fil inducteur. Le champ externe permet d’accorder
la fréquence de transition de spin ωs en résonance avec ω0 (voir Fig.0.2(c)).

Afin de caractériser l’ensemble de spin, nous effectuons une spectroscopie
ESR pulsée en utilisant l’écho de spin détecté en quadrature. L’amplitude Ae(B0)
du signal de l’écho de Hahn montre que la première transition de bismuth se
produit à un champ de 16.7 mT (Fig.0.2(d)). Nous mesurons ensuite le temps de
relaxation de l’ensemble à l’aide d’une séquence de récupération par inversion,
et trouvons un temps de relaxation du spin TP = 300± 10 ms (Fig.0.2(e)).

0.3 Compteur de photons micro-ondes unique

Le chapitre 5 présente le principe de fonctionnement, la conception, et la car-
actérisation du dispositif SMPD opérationnel, qui sont résumés dans la Fig 0.3.
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Figure 0.2: RSE des donneurs de bismuth dans le silicium. (a,b) Une puce
de silicium intrinsèque est implantée avec des donneurs de bismuth sur une
profondeur de ∼ 100 nm. Sur la surface, un résonateur LC en aluminium est
modelé à l’aide de techniques lithographiques. Un courant alternatif passant
par le fil inducteur du résonateur LC produit un champ magnétique oscillant
à la fréquence ω0, qui se couple au moment magnétique du spin. Un champ
magnétique externe, dans le plan, B0 est appliqué afin d’accorder la fréquence
de Larmor du spin en résonance avec ω0 (c). (d) Amplitude mesurée de l’écho de
Hahn Ae en fonction du champ B0 utilisé pour accorder la fréquence du spin.
(e) Amplitude mesurée de l’écho de Hahn Ae après un temps de retard τ d’une
impulsion π sur l’ensemble de spins. Un ajustement exponentiel (ligne rouge
pleine) permet d’extraire un temps de relaxation de Purcell TP = 300± 10 ms.

Le principe du SMPD est l’excitation déterministe d’un qubit supraconducteur
lorsqu’un photon entre dans le détecteur. Le processus au cœur du SMPD est le
mélange à quatre ondes, illustré dans la figure 0.3(a) : la non-linéarité de la jonc-
tion Josephson convertit l’excitation du photon entrant à la fréquence ωb, collecté
dans un résonateur tampon, avec un photon provenant d’une pompe auxiliaire
à ωp, en une excitation du qubit à ωq plus un photon à une fréquence différente
ωw qui est libéré dans un résonateur de déchets suramorcé. Le mélange à qua-
tre ondes nécessite la satisfaction d’une condition de conservation de l’énergie :
ωb+ωp = ωq+ωw. Le qubit peut être réinitialisé à son état fondamental par le pro-
cessus inverse, qui est activé par l’émission de micro-ondes à ωw sur le résonateur
de déchets. Nous fournissons un modèle pour le fonctionnement du SMPD, qui
permet de calculer l’efficacité et la largeur de bande. Le modèle montre qu’il existe
une amplitude de pompe optimale pour laquelle l’efficacité du mélange à quatre
ondes atteint 1.

Dans la section 5.4, nous présentons la conception de la puce SMPD, com-
posée de deux résonateurs à guide d’ondes coplanaire agissant comme tampon
et déchet, couplés à un qubit transmon. Le résonateur tampon est rendu accord-
able en fréquence par l’insertion d’un SQUID dans l’inductance. Les paramètres
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Figure 0.3: SMPD. (a) Principe du processus de mélange à quatre ondes au
cœur du SMPD. La non-linéarité d’un qubit supraconducteur (carré noir barré)
permet le mélange en fréquence d’un photon entrant à la fréquence ωb et d’un sig-
nal de pompe à la fréquence ωp, favorisant l’excitation du qubit à la fréquence ωq
et la libération d’un photon dans un mode résiduel suramorcé à la fréquence ωw.
L’activation du processus est soumise à la condition d’adaptation de fréquence
ωp = ωq +ωw−ωb. (b) Accord de ωp à la condition de résonance. (En haut) Un état
cohérent faible à la fréquence ωb est envoyé au SMPD tandis qu’un son de pompe
de fréquence ωp et d’amplitude Ap est émis sur le qubit avant la lecture du qubit.
(En bas) Probabilité d’état excité du qubit pe en fonction de ωp et Ap. Les lignes
blanches indiquent les paramètres de fonctionnement choisis. (c) Efficacité de
détection SMPD mesurée (points bleus) et calculée (ligne orange) en fonction de
la fréquence du photon incidente ω. Une efficacité maximale de 0, 53 ± 1 est at-
teinte sur une largeur de bande ∆det = 2π ×2.1 MHz. (d) Fonctionnement cyclique
du SMPD. Une séquence de détection de 11, 7µs de long (en haut), composée
d’une réinitialisation du détecteur, d’une détection de photons et d’une mesure
de qubit, est jouée de manière cyclique afin de recueillir des informations en con-
tinu sur les photons qui frappent le détecteur. Lorsqu’aucun signal n’est envoyé
au SMDP, un taux de comptage sombre νdc = 1.53 comptes/ms est enregistré (en
bas, lignes rouges), lorsqu’un son cohérent est envoyé (en bas, lignes bleues),
le taux augmente proportionnellement au nombre moyen de photons jusqu’à ce
qu’une saturation se produise (non représenté).
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du circuit sont conçus à l’aide de simulations micro-ondes par éléments finis,
complétées par une bibliothèque Python pour calculer les couplages non linéaires.
La fabrication du circuit est réalisée sur une puce de silicium intrinsèque où une
couche d’aluminium de 60 nm d’épaisseur est modelée à l’aide de la lithographie
par faisceau d’électrons et de la gravure humide, la recette complète est décrite
dans la section 5.4.

Dans la section 5.5, nous présentons la configuration utilisée pour caractériser
le SMPD à des températures de l’ordre du milliKelvin. Dans la section 5.6 nous
mesurons les fréquences et les taux de décroissance d’énergie des éléments du
SMPD, du résonateur tampon, du résonateur résiduel et du qubit. Nous car-
actérisons ensuite le processus de mélange à quatre ondes en mode continu en
envoyant un son de pompe de fréquence ωp et d’amplitude Ap sur le qubit, tout en
alimentant le résonateur tampon en photons. L’activation du processus, en fonc-
tion de ωp et de Ap, est révélée par une augmentation de la probabilité d’excitation
du qubit pe, comme le montre la fig.0.3(b). Dans la section 5.6, nous mesurons
un pic d’efficacité de détection ηd = 0, 53 et une largeur de bande de détection
∆det = 2π × 2.1 MHz (voir fig.0.3(c)).

Le fonctionnement cyclique du SMPD est illustré à la Fig.0.3(d). Il se compose
de 3 étapes : une étape de réinitialisation où le qubit est placé dans son état
de base, une étape de détection où un photon est converti en une excitation
du qubit par le processus de mélange à quatre ondes, une étape de lecture du
qubit conduisant à la réponse ”click/no-click”. Le SMPD est caractérisé par une
efficacité de détection ηd, définie comme la probabilité moyenne de détecter un
clic dans une fenêtre de détection Td lorsqu’un photon est incident. D’autre part,
le taux de comptage sombre du détecteur νdc donne le nombre de comptages par
unité de temps enregistré lorsqu’aucun signal n’est envoyé au SMPD.

Figure 1.3(d) montre le détecteur de photons en fonctionnement lorsqu’aucun
signal n’est envoyé à l’entrée. De rares événements de clics sont enregistrés,
avec un ”taux de comptage sombre” νdc = 1.53 comptes/ms. Lorsqu’un faible son
cohérent est émis, comme décrit dans la section 5.6, un flux de photons est
détecté, comme illustré dans 0.3(d). Le cycle de détection est répété∼ 2.5× 103 times
sur 25 ms, à chaque cycle l’état du qubit apporte la réponse binaire ”click/no-
click”.

0.4 Mesure de la fluorescence des spins avec un
détecteur de photons micro-ondes

Dans le chapitre 6 nous décrivons les principaux résultats obtenus dans cette
thèse. La section 6.1 présente l’état de l’art sur la détection de la fluorescence de
spin, avec les expériences de Sleator et al. [5] et McCoy and Ernst [6], montrant
la détection de la fluorescence de spin par des mesures de bruit de puissance.

La section 6.2 décrit notre expérience, où nous connectons avec des câbles
micro-ondes la sortie du dispositif de spin à l’entrée du SMPD, comme le montre
la Fig. 0.1. Les spins sont accordés en résonance avec le résonateur couplé ωs =
ω0 et le résonateur tampon du SMPD est accordé en résonance avec le dispositif
de spin ωb = ω0.

La mesure de la fluorescence est présentée dans la section 6.2. Nous ap-
pliquons une impulsion π à l’ensemble de spin et détectons le signal photonique
en faisant fonctionner le SMPD de manière cyclique sur ∼ 1 s. Figure 0.4(a) mon-
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Figure 0.4: SMPD detection. (a) Trace de clics SMPD au début (0 sto0.1 s) et
à la fin (1 sto1.1 s) du temps td après une impulsion π appliquée sur l’ensemble
de spins. Plus de clics sont enregistrés aux premiers temps. (c) Histogramme
du taux de comptage SMPD 〈ċ〉 mesuré sur des intervalles de temps de 19 ms,
en fonction du temps td après une impulsion π (rose) ou sans impulsion (bleu)
sur l’ensemble de spins. Lorsque l’impulsion est appliquée, un signal de pho-
tons est enregistré, décroissant exponentiellement avec un temps caractéristique
∼ 309 ± 10 ms, compatible avec le temps de relaxation de Purcell du spin TP. (b)
Nombre moyen de comptages 〈c〉 enregistrés dans chaque 23µs de temps pendant
une séquence d’écho de Hahn. Une augmentation de 〈c〉 est observée en corre-
spondance des impulsions de Hahn et au temps d’écho 2τ . (d) Nombre intégré
moyen de comptages 〈Cspins〉 dans une fenêtre temporelle de 500ms de long (voir (c))
après une impulsion de longueur T et d’amplitude fixe A appliquée à l’ensemble
de spins. Les oscillations dans Cspins révèlent des nutations de Rabi de l’ensemble
de spins, avec une fréquence Ω, qui dépend linéairement de A (encadré).
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tre la trace de photocomptage obtenue, où nous observons plus de clics aux
premiers temps qu’aux temps ultérieurs. En répétant l’expérience 500 fois et
en traçant le taux de comptage mesuré pour chaque tranche de temps de 20 ms
(voir Fig.0.4(c)), nous observons un taux de comptage décroissant exponentielle-
ment vers la ligne de base du comptage sombre sur une échelle de temps 300 ms,
compatible avec le taux de décroissance radiative de Purcell de l’ensemble de
spins (voir Fig.0.2). L’efficacité globale est de η = 0.01, limitée par les pertes du
résonateur κext/κ = 0.22. Nous obtenons un SNR de ∼ 5 sur une seule mesure,
montrant une amélioration de cinq fois par rapport au SNR obtenu en détection
par écho quadrature sur le même échantillon. Dans la section 6.3, nous mon-
trons la détection de photons de l’écho de Hahn (voir Fig.0.4(b)), avec un rapport
signal/bruit similaire à celui de la détection en quadrature. Enfin, dans la sec-
tion 6.5, nous utilisons le détecteur de photons pour mesurer les oscillations de
Rabi (voir Fig.1.4(d)) et réalisons la spectroscopie de l’ensemble de spins, à la
fois avec des techniques de fluorescence et d’écho. Nous concluons ce chapitre
par une estimation du nombre de spins et quelques remarques concernant le
potentiel de cette nouvelle méthode de détection des spins.





Chapter 1

Introduction

Magnetic resonance is a branch of science that aims to detect spins via their
absorption and emission of electromagnetic radiation. Two areas can be distin-
guished: nuclear magnetic resonance (NMR) which aims at detecting the spins
of nuclei, and electron spin resonance (ESR) that concerns the detection of the
spin of unpaired electrons. This thesis focuses on the development of a new
methodology for ESR spectroscopy.

ESR spectroscopy has multiple applications [1]. In chemistry, it allows the
detection and identification of free radicals and the study of molecular structure
and chemical reactions; in biology it yields structural information on molecules
using spin labels; in archaeology it provides a dating method based on radiation
damage; in quantum information processing it provides a way to address long-
lived spin qubits.

The dominant method for performing ESR spectroscopy measurements is to
couple resonantly the spins to a microwave resonator at a frequency ω0 and drive
them with sequences of microwave pulses, such as the Hahn echo. They lead
to the build-up of a transient oscillating transverse magnetization, which causes
the emission of a phase-coherent microwave pulse called a spin-echo in the de-
tection line. The echo signal is then amplified, and its quadratures X,Y detected
by homodyne demodulation. Commercial ESR spectroscopy suffers from poor
sensitivity due to the weak coupling between spins and the electromagnetic field.
This implies that large spin ensembles are required to generate a signal strong
enough to overcome experimental noise.

An improvement in sensitivity has been demonstrated with the use of super-
conducting circuits. Using a micrometric superconducting resonator in close
vicinity to the spin ensemble allows to focus the microwave field in a small vol-
ume (down to the femtoliter), thus increasing the spin-photon coupling. This
increased coupling, combined with the low losses of the superconducting res-
onator, allows to reach the so-called Purcell regime, in which the spin radiative
relaxation rate is increased by several orders of magnitude [2]. This allows fast
repetition times for the experiments and thus fast averaging. Finally, at low tem-
peratures the spin ensemble has larger equilibrium polarization, and the use of
quantum-limited Josephson Parametric amplifiers allows for the amplification of
the emitted spin signal with minimum added noise [3]. With this method, a sen-
sitivity of 12 spins/

√
Hz has been demonstrated [4]. A further gain in sensitivity

would be however desirable, in order to reach single spin detection.
The aim of this thesis is to introduce and give a proof-of-principle of a new

method for spin sensing, with increased potential for the detection of small num-
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bers of spins. In contrast to Hahn echo detection, this novel method comprises
the detection of the incoherent microwave fluorescence signal emitted by spins
relaxing to their ground state after an excitation pulse. We exploit the Purcell-
enhanced radiative relaxation rate to stimulate the emission of a microwave flu-
orescence signal from a small (∼ 103) ensemble of electron spins belonging to
bismuth donors in silicon. The output of the resonator is connected to the input
of a newly-developed frequency-tunable single microwave photon detector (SMPD)
based on four-wave mixing with a superconducting qubit. We compare this new
technique to Hahn-echo detection and discuss the potential of fluorescence detec-
tion for small numbers of spins. The main results of this thesis are also reported
in Ref. [7].

The first part of the manuscript provides the necessary conceptual tools to
understand the experiment. In Chapter 2, we outline the quantum description
of electromagnetic modes, and of elementary quantum circuits such as the LC
resonator. In Chapter 3 we describe the dynamics of spins coupled to a resonator,
with an emphasis on the field emitted by the spins both during a spin-echo se-
quence, and upon radiative relaxation.

The second part of the manuscript describes the design and implementa-
tion of the two devices used in the experiment. Chapter 4 focuses on the spin
resonator device, with quadrature-detected spin-echo characterization of the bis-
muth donor spins used in the experiment. Chapter 5 describes the SMPD prin-
ciple, design and characterization.

The last part of the manuscript presents the experimental results demon-
strating spin detection with the SMPD, both in fluorescence and in spin-echo
detection.

1.1 Spin fluorescence detection

The principle of the experiment is illustrated in figure 1.1(a), we consider N
spins coupled with coupling constant g0 to a superconducting LC resonator of
frequency ω0 and total energy decay rate κ = κint + κext. A static magnetic field
B0 is applied to the spin ensemble in order to tune their Larmor frequency in
resonance with the resonator ωs = ω0. We consider the spins to be in the Purcell
regime. The output of the resonator is connected with microwave cables to a
single microwave photon detector (SMPD), and both systems are cooled down to
milliKelvin temperatures. A microwave source allows to send pulses to excite the
spin ensemble.

The spin ensemble is described by the total spin operators Ŝi =
∑
n Ŝ

(n)
i , with

i ∈ {x, y, z}. We consider the ensemble initially in its ground state 〈Ŝz〉 = −N/2.
At time t = 0 we apply a π-pulse to the ensemble (see Fig.1.1(b,c,d)), inverting its
polarization. Due to the Purcell effect, the ensemble spontaneously relaxes with
characteristic time TP by emitting a photon signal 〈â†â〉(t) into the cavity. The
signal leaking, κext〈â†â〉(t), is routed towards a single microwave photon detector.
The detection happens without intrinsic noise, because the measurement is per-
formed on the energy eigenbasis, where vacuum fluctuations are zero. The only
noise sources are in the imperfections of the detector and in the temperature of
microwave lines.

In order to describe and interpret the experiment we need tools to model the
interplay between different systems. For this reason in the background part of
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Figure 1.1: Principle of spin fluorescence detection. (a) Illustration of the
setup for the photon detection of spin fluorescence. An ensemble of spins is
magnetically coupled with coupling constant g0 to a resonant LC resonator, which
is itself coupled to an external line with energy decay rate κext. We assume a
regime in which the coupling with the resonator enhances the radiative relaxation
rate of the spin ensemble, due to the Purcell effect. The external line is used to
convey microwave pulses to the resonator and the signal leaking is routed towards
a single microwave photon detector. (b) A π-pulse is applied to the spin ensemble,
thus flipping the average longitudinal polarization 〈σ̂z〉 of each spin (see (c)). The
spin ensemble then spontaneously relaxes back to its equilibrium state by photon
emission in a characteristic time TP, due to the Purcell effect. (d) Sketch of the
spin Bloch vector evolution during spontaneous relaxation.

the thesis we introduce basic concepts. We begin chapter 2 with the quantum
description of electromagnetic modes, we then introduce the concept of quantum
LC resonator, useful both for the spin module and the photon detector. In section
2.4 we introduce the Josephson junction, the non-linear element at the heart of
the single photon detector. After an overview of linear amplifier, we finish the
chapter with section 2.6, drawing a comparison between quadrature detection
and photon detection in the single-mode and multi-mode cases for different states
of the field. Here, we show that when a small number of photons is emitted
on a large number of modes photon detection has larger SNR than quadrature
detection.

In order to describe the spin ensemble and the dynamics arising due to the
coupling to a resonator we start chapter 3 with a model for a single spin coupled
to an LC resonator. We then generalize the single-spin model to an ensemble
of N spins in the regime where collective effects are negligible (low cooperativity,
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Figure 1.2: ESR spectroscopy of bismuth donors in silicon. (a,b) An intrinsic-
silicon chip is implanted with bismuth donors over a depth of ∼ 100 nm. On
top of the surface an aluminium LC resonator is patterned using lithographic
techniques, ac current passing through the inductor wire of the LC resonator
produces an oscillating magnetic field at frequency ω0, which couples to the spin
magnetic moment. An external, in-plane, magnetic field B0 is applied in order
to tune the spin Larmor frequency in resonance with ω0 (c). (d) Measured Hahn
echo amplitude Ae as a function of the field B0 used to tune the spin frequency.
(e) Measured Hahn echo amplitude Ae after a delay time τ from a π-pulse on
the spin ensemble. An exponential fit (solid red line) allows to extract a Purcell
relaxation time TP = 300± 10 ms.

or equivalently no radiation damping). We finally compute the average field and
average photon number emitted by a spin ensemble in three types of experiments:
fluorescence, free-induction decay and Hahn-echo.

1.2 ESR spectroscopy of bismuth donors in silicon

For our experimental demonstration of spin detection by fluorescence, we use
bismuth donor spins in silicon as a model system. In the first part of chapter
4 we describe their properties, and justify their treatment as an ensemble of
effective spin 1/2.

We then describe the design of the spin resonator. As illustrated in figure
1.2, the device consists in a substrate of 28Si-enriched silicon in which bismuth
donors have been implanted over a depth of ∼ 100 nm. A superconducting lumped
LC resonator of frequency ω0 is patterned in aluminium on top of the chip surface.
An external static magnetic field B0 is applied parallel to the inductor wire. The
external field allows to tune the spin transition frequency ωs into resonance with
ω0 (see Fig.1.2(c)).

In order to characterize the spin ensemble, we perform pulsed ESR spec-
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troscopy using quadrature-detected spin-echo. The amplitudeAe(B0) of the Hahn
echo signal shows the first bismuth transition occurring at a field of 16.7 mT
(Fig.1.2(d)). We then measure the relaxation time of the ensemble with an inver-
sion recovery sequence, finding a spin relaxation time TP = 300±10 ms (Fig.1.2(e)).

1.3 Single microwave photon counter

Chapter 5 presents the working principle, design, and characterization of the
operational SMPD device, which are summarized in Fig 1.3.

The SMPD principle is the deterministic excitation of a superconducting qubit
when a photon enters the detector. The process at the heart of the SMPD is
four wave mixing, illustrated in figure 1.3(a): the non-linearity of the Josephson
junction converts the incoming photon excitation at frequency ωb, collected in
a buffer resonator, together with a photon from an auxiliary pump tone at ωp,
into a qubit excitation at ωq plus a photon at a different frequency ωw which
is released into an overdamped waste resonator. Four-wave mixing requires an
energy-conserving condition to be satisfied: ωb + ωp = ωq + ωw. The qubit can
be reset to its ground state by the reverse process, which is activated by shining
microwave at ωw on the waste resonator. We provide a model for SMPD operation,
which allows to calculate efficiency and bandwidth. The model shows that there
is an optimal pump amplitude for which the four-wave-mixing efficiency reaches
1.

In section 5.4 we report the design of the SMPD chip, consisting of two coplanar-
waveguide resonators acting as buffer and waste, coupled to a transmon qubit.
The buffer resonator is made frequency-tunable by inserting a SQUID in the in-
ductance. The circuit parameters are designed using microwave finite-element
simulations, complemented by a Python library package to compute the non-
linear couplings. Fabrication of the circuit is realized on an instrinsic silicon chip
where a 60 nm-thick aluminium layer is patterned using electron-beam lithogra-
phy and wet etching, the full recipe is described in section 5.4.

In section 5.5 we present the setup used to characterize the SMPD at mil-
liKelvin temperatures. In section 5.6 we measure the frequencies and energy
decay rates of the SMPD elements, buffer resonator, waste resonator and qubit.
We then characterize the four-wave mixing process in continuous mode by shin-
ing a pump tone of frequency ωp and amplitude Ap on the qubit, while populating
the buffer resonator with photons. The activation of the process, as a function
of ωp and Ap, is revealed by an increased qubit excited probability pe, as shown
in fig.1.3(b). In section 5.6, we measure a peak detection efficiency ηd = 0.53 and
a detector bandwidth ∆det = 2π × 2.1 MHz (see Fig.1.3(c)).

Cyclic operation of the SMPD is shown in Fig. 1.3(d). It consists in 3 steps:
a reset step where the qubit is set to its ground state, a detection step where
a photon is converted into a qubit excitation through the four-wave mixing pro-
cess, a qubit readout step leading the response ”click/no-click”. The SMPD is
characterized by a detection efficiency ηd, defined as the average probability of
detecting a click in a detection window Td when a photon is impinging. On the
other hand, the detector dark count rate νdc gives the number of counts per unit
time recorded when no signal is sent to the SMPD.

Figure 1.3(d) shows the photon detector in operation when no signal is shined
on the input. Rare click events are recorded, with a ”dark count rate” νdc =
1.53 counts/ms. When a weak coherent tone is shined, as described in section
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Figure 1.3: SMPD. (a) Principle of the four-wave mixing process at the heart of
the SMPD. The non-linearity of a superconducting qubit (black crossed square)
allows frequency mixing of an incoming photon at frequency ωb and a pump tone
at frequency ωp, promoting the excitation of the qubit at frequency ωq and the re-
leasing of a photon in an overdamped waste mode at frequency ωw. The activation
of the process is submitted to the frequency matching condition ωp = ωq +ωw−ωb.
(b) Tuning ωp to the resonance condition. (Top) A weak coherent state at frequency
ωb is sent to the SMPD while a pump tone of frequency ωp and amplitude Ap is
shined on the qubit prior to qubit readout. (Bottom) Qubit excited state prob-
ability pe as a function of ωp and Ap. White lines indicate the chosen operation
parameters. (c) Measured (blue dots) and computed (orange line) SMPD detection
efficiency as a function of the impinging photon frequency ω. A peak efficiency
of 0.53 ± 1 is reached over a bandwidth ∆det = 2π × 2.1 MHz. (d) Cyclic operation
of the SMPD. A 11.7µs-long detection sequence (top), consisting of detector reset,
photon detection and qubit measurement, is played cyclically in order to gather
information continuously on the photons impinging on the detector. When no
signal is sent to the SMDP a dark count rate νdc = 1.53 counts/ms is recorded
(bottom, red lines), when a coherent tone is sent (bottom, blue lines) the rate
increases proportionally to the average photon number until saturation occurs
(not shown).
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5.6, a stream of photons are detected, as seen in 1.3(d). The detection cycle
is repeated ∼ 2.5× 103 times over 25 ms, on each cycle the qubit state brings the
binary response ”click/no-click”.

1.4 Measuring spins fluorescence with a microwave
photon detector

In chapter 6 we describe the main results obtained in this thesis. Section 6.1
introduces the state of the art about spin fluorescence detection, with the exper-
iments of Sleator et al. [5] and McCoy and Ernst [6], showing detection of spin
fluorescence through power noise measurements.

Section 6.2 describes our experiment, where we connect with microwave ca-
bles the output of the spin device to the input of the SMPD, as shown in Fig.1.1.
The spins are tuned into resonance with the coupled resonator ωs = ω0 and
the buffer resonator of the SMPD is tuned into resonance with the spin device
ωb = ω0.

Fluorescence measurement is presented in section 6.2. We apply a π-pulse
to the spin ensemble and detect the photon signal by operating the SMPD cycli-
cally over ∼ 1 s. Figure 1.4(a) shows the obtained photo-counting trace, were we
observe more clicks at earlier times than at later times. Repeating the exper-
iment 500 times and plotting the measured count rate for each 20 ms-time bin
(see Fig.1.4(c)) we observe a count rate exponentially decaying towards the dark
count baseline within a timescale ∼ 300 ms, compatible with the Purcell radiative
decay rate of the spin ensemble (see Fig.1.2). The overall efficiency is η = 0.01,
limited by resonator losses κext/κ = 0.22. We obtain a SNR of ∼ 5 over a single
measurement, showing a five-fold improvement with respect to the SNR obtained
in echo quadrature detection on the same sample. In section 6.3 we show photon
detection of the Hahn-echo (see Fig.1.4(b)), with a similar SNR as in quadrature
detection. Finally, in section 6.5 we use the photon detector to measure Rabi
oscillations (see Fig.1.4(d)) and perform spectroscopy of the spin ensemble, both
with fluorescence and echo techniques. We conclude the chapter with an estima-
tion of the number of spins and some remarks concerning the potential of this
new spin detection method.
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Figure 1.4: SMPD detection. (a) SMPD click trace at early (0 sto0.1 s) and late
(1 sto1.1 s) time td after a π-pulse applied on the spin ensemble. More clicks are
recorded at early times. (c) Histogram of the SMPD count rate 〈ċ〉 measured on
19 ms-long time bins, as a function of the time td after a π-pulse (pink) or no-
pulse (blue) on the spin ensemble. When the pulse is applied a photon signal is
recorded, exponentially decaying with characteristic time ∼ 309± 10 ms, compat-
ible with the spin Purcell relaxation time TP. (b) Average number of counts 〈c〉
recorded in each 23µs-long time bin during a Hahn echo sequence. Increased 〈c〉
is observed in correspondence of the Hahn pulses and at the echo time 2τ . (d)
Average integrated number of counts 〈Cspins〉 in a 500 ms-long time window (see
(c)) after a pulse of length T and fixed amplitude A applied to the spin ensemble.
Oscillations in Cspins reveal Rabi nutations of the spin ensemble, with a frequency
Ω, which is linearly dependent on A (inset).
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Chapter 2

Quantum circuits

In this chapter we will provide the background on superconducting quantum
circuits that is necessary to understand the experiments described in this thesis.

In section 2.1 we present the quantum description of some relevant states of
the electromagnetic field, all appearing at various stages through the manuscript.
Sections 2.2 and 2.3 introduce the theory of quantum LC resonators and lossless
transmission lines. In section 2.4 we introduce the Josephson junction and basic
circuits such as the SQUID. In section 2.5 we discuss quantum-limited amplifica-
tion and its implementation at microwave frequencies with so-called Josephson
Parametric Amplifiers. In section 2.6 we compare the detection of electromag-
netic field states using quadrature (i.e. linear) or energy (i.e. quadratic) detectors,
showing the achievable SNR and the performances of each method in different
cases.

2.1 Quantum description of an electromagnetic mode

For full quantization of the electromagnetic field the reader can refer to Ref. [8],
here we just give results used through this thesis.

The Hamiltonian for a single electromagnetic mode of frequency ω can be writ-
ten in terms of the operator â, which acts on a quantum state by removing a
quantum of energy ~ω, as:

Ĥ = ~ωâ†â (2.1)

where we neglected the constant zero-point energy, not playing any role in the
equations of motion. The relevant field observables that we will measure to char-
acterise a particular state of the field are the number of photons n̂ = â†â, and the
dimensionless field quadratures X̂ and Ŷ , defined as:

X̂ = â† + â

2 , Ŷ = â† − â
2i , (2.2)

which satisfy the commutation relation [X̂, Ŷ ] = i/2, and whose standard devia-
tions ∆X =

√
〈∆X̂2〉 and ∆Y =

√
〈∆Ŷ 2〉 are bounded by the Heisenberg uncer-

tainty relation:
∆X∆Y ≥ 1

4 . (2.3)

In the following we will briefly go through some states of the electromagnetic field
that will appear in this thesis: vacuum, Fock, coherent and thermal states.

23
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Figure 2.1: Wigner quasiprobability distributions. From left to right, top to
down the Wigner distributions of: (a) Vacuum state, (b) Coherent state with α = 2,
(c) Fock state n = 5, (d) thermal state n̄ = 5. The axes indicate the values of the
quadratures of the field.

Note on graphical representation of quantum states

One can represent graphically a quantum state in multiple ways, here we will
adopt Wigner’s method and represent a generic quantum state |ψ〉 by means of
its Wigner quasi-probability distribution in phase space W (x, y). This approach
has the advantageous property that the marginal distributions p(x) =

∫
W (x, y)dy

and p(y)
∫
W (x, y)dx provide directly the probability density of the outcome of each

quadrature measurement.

Fock states

Fock states |n〉 are eigenstates of the Hamiltonian 2.1, n being the number of ex-
citations (photons) populating the mode of interest. For instance, a single photon
is described by the Fock state |n = 1〉. The expectation values of field quadratures
on a Fock state are

〈X̂〉 = 〈Ŷ 〉 = 0 (2.4)

and their standard deviations are

∆X = ∆Y = 1
2
√

2n+ 1. (2.5)
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Mean value and standard deviation of the photon number operator are:

〈n̂〉 = n (2.6)
∆n̂ = 0. (2.7)

The Wigner distribution of a Fock state is [9]:

W (x, y) = 2
π

(−1)nLn(4 |x+ iy|2)e−2|x+iy|2 (2.8)

where Ln are Laguerre polynomials. Fig.2.1a and c shows the Wigners for the
vacuum state n = 0 and the Fock state n = 5, respectively.

Coherent states

The electromagnetic classical signals used as drives for spins and cavity, as well
as the echo signal emitted by a spin ensemble in a typical electron spin resonance
(ESR) experiment can be described as coherent states |α〉, that are eigenstates of
the annihilation operator â. A coherent state of amplitude α can be written as

|α〉 = e−
|α|2

2

∞∑
n=0

αn√
n!
|n〉 . (2.9)

From this equation we see that |α = 0〉 coincides with |n = 0〉. Another property of
coherent states is that they verify |α〉 = D(α) |0〉, where D(α) is the displacement
operator. As a consequence the Wigner function of a coherent state is a Gaussian
of standard deviation σ = 1/2 centred around (x0, y0) with α = x0 + iy0, as shown
in Fig. 2.1b for α = 2.

As seen from Eq.2.9, the photon number distribution p(n) = |〈α| |n〉|2 is Pois-
sonian, with mean value and standard deviation:

〈n̂〉 = |α|2 (2.10)
∆n = |α| , (2.11)

while the field quadratures X̂ and Ŷ show the same standard deviation of the
vacuum:

∆X = ∆Y = 1
2 . (2.12)

Thermal states

A thermal state describes an electromagnetic mode at thermal equilibrium with
a bath at temperature T . In the Fock states basis, it is represented by a statistical
mixture with probability given by the Boltzmann distribution. The density matrix
of a thermal state is:

ρ̂ = 1
nth + 1

∞∑
n=0

(
nth

nth + 1

)n
|n〉 〈n| (2.13)

with average number of thermal photons:

〈n̂〉 ≡ nth = 1

e
~ω
kBT − 1

, (2.14)
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and standard deviation:
∆n =

√
nth (nth + 1) (2.15)

The expectation value and standard deviation of quadratures are:

〈X̂〉 = 〈Ŷ 〉 = 0 (2.16)

∆X = ∆Y =
√
nth + 1

2 (2.17)

Being a statistical mixture of different Fock states, a thermal state doesn’t have a
well defined phase, as seen by the Wigner representation in Fig. 2.1. We will use
thermal states to model the fluorescence emitted by an ensemble of emitters.

2.2 Cavities and propagating modes

In this section, I will introduce the quantum description of LC resonators (or
cavities), and transmission lines that support propagating microwave fields.

Quantum LC resonator

One way to implement the single-mode field Hamiltonian Eq. 2.1 is through a
LC resonator, consisting of a parallel capacitor and inductor, supporting a single
mode of the electromagnetic field at frequency ω0 = 1/

√
LC. The reader can find

a pedagogical description of the quantization of the LC resonator Hamiltonian in
appendix B.2, here we present the known results useful for this work. This type
of resonator is called ”lumped-element” because the capacitor and inductance
dimensions may be arbitrarily smaller than the wavelength.

The LC resonator Hamiltonian reads:

Ĥ = ~ω0â
†â. (2.18)

The oscillating mode sustains across the inductor an oscillating current Î, whose
expression in term of the field-mode quantum annihilation operator â is:

Î = Izpf
(
â+ â†

)
, (2.19)

where Izpf =
√
~ω2

0/2Z0 are the fluctuations of the current in the field vacuum
state, with Z0 =

√
L/C is the resonator characteristic impedance. Such current

produces an oscillating magnetic field in the space surrounding the inductance,
this field can be expressed as:

B̂(r) = Bzpf(r)
(
â+ â†

)
, (2.20)

where the magnitude of Bzpf is proportional to the current zero point fluctuations
Izpf . In this work, we will use LC resonators to couple to the spins.

Coplanar waveguide resonators

A second way to implement an electromagnetic mode at microwave frequency is
through a distributed resonator in a coplanar waveguide (CPW) geometry. As
reported in Fig. 2.3a, the CPW geometry consists of a central conducting track
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I(t)

Figure 2.2: LC resonator. (a) Lumped-elements model of an LC resonator, cur-
rent passing through the inductance L generated a spatially-dependent magnetic
field B̂(r). (b) Realistic illustration of an LC resonator design, here the role of the
inductance (blue) is played by a wire shunting the two capacitor plates (red).

on top of a dielectric substrate and surrounded by two grounded conductors,
ideally infinite planes. A segment of a coplanar waveguide can be modeled as a
chain of infinitesimal lumped elements LC circuits with series capacitance and
inductance per unit length respectively C and L, as illustrated in Fig. 2.3b.

A CPW distributed resonator is obtained from a coplanar waveguide of length
L by imposing current and voltage boundary conditions at the two extrema, by
means of a characteristic-impedance mismatch (Fig. 2.3c). Standing waves at
fundamental frequency ω0 and upper harmonics, both determined by the nature
of the boundary conditions, are supported in such a distributed resonator. A
CPW resonator is ”1-dimensional” in the sense that its transverse dimensions
can be arbitrarily small compared to the wavelength but its length is a multiple
of order 1.

In this work, we will make use of ”open-circuit” boundary conditions, imposing
a current node and thus voltage anti-node. If c is the speed of light propagating
along the waveguide, the modes supported have frequencies ωn = nc/L with n =
1, 2, ....

Lumped vs distributed resonators

In this work, we use both lumped-element and CPW resonators.
Lumped-element resonators may have small size, and moreover the current is

constant throughout the inductance. They are therefore well-suited for coupling
to spins and will be used in the spin resonator device.

On the other hand, the resonance frequency of CPW resonators can be easily
controlled because it is governed by its length. For this property, it will be used
for designing the SMPD device.

Lossless transmission line

In our experiments, the quantum devices are measured and inter-connected by
lossless transmission lines, implemented by coaxial cables; they also need to be
treated quantum-mechanically. For a complete treatment the reader can refer to
ref. [10].
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Figure 2.3: Coplanar waveguide geometry. (a) Typical coplanar waveguide
geometry consisting of a central conducting line surrounded by two grounded
planes. Each infinitesimal section dx of waveguide can be modeled as the lumped
element circuit (b), characterized by capacitance and inductance per unit length
C and L. (c) Example of a coplanar waveguide resonator. Boundary conditions
given by the interruption of the waveguide allows resonant modes to be supported
in the isolated section. Current and voltage profiles of the fundamental mode are
showed.

A classical transmission line can be modeled as a chain of infinitesimal lumped
element LC circuits, described by a series inductance L and a parallel capaci-
tance C per unit length, as already introduced above in the particular case of a
CPW transmission line (Fig. 2.3). The electromagnetic modes, obtained as solu-
tion of the wave equation associated to the circuit, consist of a left-propagating
and a right-propagating wave, whose sum gives the voltage at time t across the
infinitesimal capacitance C dx at located between x and x+ dx:

V (x, t) = V⇁(x, t) + V↼(x, t) (2.21)
V �(x, t) = V �

0 cos(ωt± xω/c+ φ�0 ) (2.22)

with the phase velocity c = 1/
√
LC and the initial phases φ�0 . The current flow-

ing in the infinitesimal inductance L dx is related to V � via the characteristic
impedance Zc =

√
L/C

I(x, t) = V⇁(x, t)− V↼(x, t)
Zc

(2.23)

where the sign accounts for opposite flowing direction in the case of left or right
propagating wave. In the case of an infinite transmission line the left- and right-
propagating waves are independent, on the contrary if a load of impedance Zl is
present (at x = 0 for convenience) the two waves should respect current-voltage
relation at the load boundary:

Zl = V (0, t)
I(0, t) = V⇁(t) + V↼(t)

V⇁(t)− V↼(t)Zc (2.24)
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which allows to relate the left- and right-propagating wave amplitudes to the
impedance mismatch

V↼(t)
V⇁(t) = Zc − Zl

Zc + Zl
=: R (2.25)

where R is the reflection coefficient.

Quantum description

We will now turn to the quantum description of a lossless transmission line. The
reader can find a full review in [11].
For each direction of propagation in a transmission line (left and right), and for
each monochromatic mode of the electromagnetic field (identified by its frequency
ω) one can associate a pair of operators â�(ω) and â�†(ω) which respectively an-
nihilate and create a photon in that mode and propagation direction. These op-
erators satisfy the commutation relation [â�(ω), â�†(ω′)] = 2πδ(ω− ω′), which im-
plies orthogonality of different modes. Since we are here generally interested in
narrow-band signals of central frequency ω0, it is convenient to work in the time-
domain in a frame rotating at ω0. Neglecting contributions from frequencies far
from ω0, the rotating wave approximation leads to the following expression for the
propagating field operator at x = 0:

V̂ �(t) =

√
~ω0Zc

4π
(
â�(t) + â�†(t)

)
(2.26)

where â�(t) is the Fourier transform of â�(ω) satisfying [â�(t), â�†(t′), ] = 2πδ(t−t′)
(performing a Markov approximation). â�(t) are operators describing the field
amplitude flux associated to a propagating mode, thus the power carried by the
quasi-monochromatic wave of frequency ω0 is described by the quantum observ-
able

P̂�(t) = ~ω0â
�†(t)â�(t). (2.27)

Note that â�(t) describes a mode of infinite bandwidth, in realistic experi-
ments this is almost never the case and a typical electromagnetic signal have
finite temporal and spectral extensions. For this reason we introduce the or-
thonormal envelopes ui(t) of the propagating mode of bandwidth ∆ω and duration
∆τ = 2π/∆ω satisfying: ∫

ui(t)u∗j (t)dt = δi,j (2.28)

The index i labels the discrete wavelet basis tiling the time-frequency plane. We
define a new operator describing the annihilation of the mode:

â�i =
∫
â�(t)ui(t)dt. (2.29)

Note that the commutation relation becomes now the well known [â�i , â
�†
i ] = 1

and the description becomes analogous to that of section 2.1.

2.3 Cavity coupled to a transmission line

In our experiments, microwave resonators are used to interface quantum systems
(spins, or superconducting qubits), and are inter-connected by propagating mi-
crowave fields that carry the signal of interest. A complete quantum description
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âin

âout

Figure 2.4: Resonator coupled to transmission line. (a) Representation of a
resonator coupled to a transmission line. Input and output fields are associated
to the quantum operators âin and âout. The energy stored in the mode of the LC
resonator is dissipated into the internal resistance at rate κint and leaks out into
the capacitively coupled transmission line with rate κext. (b) Norton equivalent
circuit. (c) Quantum optics equivalent representation.

of both the intra-resonator field and its coupling to propagating fields is therefore
needed. This is provided by the input-output theory, which can be found in detail
in Ref.[12] and which is briefly outlined in this section.

Equivalent circuit and cavity damping rates

The coupling of a LC resonator to a transmission line results in the appearance
of losses. We thus consider a LC resonator, with internal losses modeled by a
resistor R, and coupled to a Z0 = 50 Ohms transmission line through a coupling
capacitance Cc (see Fig.2.4a) The bare frequency and impedance of a parallel RLC
circuit are given by:

ω0 = 1√
LC

(2.30)

1
Z0(ω) = 1

R
+ iCω + 1

iωL
, (2.31)

but as a result of the presence of the coupling capacitanceCc and of the impedance
Zc of the transmission line, these bare values get renormalized. In the low cou-
pling limit ZcCcω0 � 1 and for frequencies close to resonance ω ∼ ω0 an equivalent
approximate RLC circuit can be built using the renormalized capacitance and re-
sistance

C ′ ≈ C + Cc (2.32)
1
R′
≈ 1
R

+ 1
Rext

, with Rext ≈
1

ZcC2
cω

2
0
. (2.33)
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The damping of the resonator is determined by its loaded quality factor Q−1 =
R′−1√L/C ′ which can be decomposed as the sum of two contributions, describing
internal and external losses:

Q−1
int = R−1

√
L

C ′
(2.34)

Q−1
ext = R−1

ext

√
L

C ′
(2.35)

Qint is often referred as unloaded quality factor. From the above relations one
can obtain the two energy dissipation rates κint = ω0/Qint and κext = ω0/Qext.

Input-output theory for a driven damped cavity

With these definitions, we can now give the main results of the input-output
theory which provides the link between the intra-cavity field operator â(t) (in the
Heisenberg picture) and the input and output fields (see Fig.2.4).

In addition of the input and output operators âin and âout defined starting
from Eqs.2.26, we also need to introduce operators âin,int and âout,int for the fields
dissipated in the resonator internal losses, by treating internal losses as fictitious
transmission lines. The evolution of â(t) in the Heisenberg picture is given by the
following master equation:

∂tâ(t) = 1
i~

[â, Ĥ]− κ

2 â(t) +
√
κintâin,int(t) +

√
κextâin(t) (2.36)

where κ = κint + κext is the total cavity damping rate. The right term consists of
three main contributions: the Heisenberg evolution of â under the Hamiltonian
Ĥ (which may include for instance terms describing the coupling to spins), the
field damping at rate κ, and finally the coupling to the input field âin.
At the interface between the cavity and the transmission line the sum of left-
and right-propagating fields must equal the field radiated by the cavity, thus the
following continuity equation holds:

âin(t) + âout(t) =
√
κiâ. (2.37)

Cavity under coherent driving

The classical fields we send to the cavity in our experiments are described by the
coherent states |α〉 introduced in Sec.2.1. Under this classical drive, the cavity
input mode is in the eigenstate |αin〉 of the propagating operator âin, carrying
the power Pin = ~ω |αin|2 Eq.2.27. The expectation value of the intra-cavity field
〈â〉(t) = α(t) is then obtained from Eq. 2.36:

∂tα(t) = −iω0α(t)− 1
2(κext + κint)α(t) +

√
kextαin(t). (2.38)

We now perform a Fourier transform to find that the α(ω) Fourier component of
the field satisfies:

α(ω) =
2√κext

κint + κext − 2i(ω − ω0)αin(ω). (2.39)

The amplitude of the coherent intra-cavity field determines the photon pop-
ulation, relevant for the functioning of the photon detector, and the transverse
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Figure 2.5: Scattering matrix measurements. Reflection coefficient S11(ω)
module (left panel) and phase (right panel) calculated in the case κint = 10κext
(green), κint = κext (blue), and κint = 0.25κext (red).

magnetic field generated by the inductance L, relevant for driving the spin en-
semble through coherent oscillations.
At resonance ω = ω0, driving a cavity with a power Pin will generate in the steady-
state a mean photon number n̄ = |α|2 given by:

n̄ = 4κext|αin|
~ω0(κext + κint)2 , (2.40)

leading to an oscillating current and magnetic fields:

〈I〉(t) = 2Izpf
√
n̄ cos(ω0t) (2.41)

〈B〉(t) = 2Bzpf
√
n̄ cos(ω0t). (2.42)

Scattering matrix measurements

The behavior of an n-port linear device connected to n transmission lines is fully
described by the n×n scattering matrix Ŝ, whose elements are the reflection and
transmission coefficients Ŝi,j of the propagating fields:

Ŝi,j = âout,i
âin,j

measured when âin,k = 0, ∀k 6= j (2.43)

The scattering coefficients Ŝi,j are usually measured using classical coherent in-
put drives, through a Vector Network Analyzer (VNA). In this case, the propagat-
ing field operators can be replaced by the coherent amplitudes αin,i and αout,i, the
same holds for the coherent intra-cavity field α(ω). We can now exploit the con-
tinuity equation 2.37 and the expression of the intra-cavity field 2.39 to give an
explicit expression for the S11 scattering coefficient in the case of a cavity coupled
to a transmission line:

S11(ω) =
√
κextα(ω)− αin

αin
= κext − κint + 2i(ω − ω0)
κext + κint − 2i(ω − ω0) . (2.44)

The relative strength of the external and internal damping rates defines three
different regimes, as illustrated in Fig.2.5:

• Under-coupling (κint � κext): most of the signal impinging on the cavity is
reflected back, only a small absorption dip and phase shift are observed.
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• Critical coupling (κint ≈ κext): all the impinging power is absorbed by the
cavity, which behaves as an impedance-matched load. The phase of S11(ω)
changes sign when ω crosses ω0, by consequence a phase change is observed
in the reflected signal.

• Over-coupling (κint � κext): the signal is partly absorbed by the cavity and
partly reflected and the phase of the reflected signal rotates by 2π across
the resonance.

The above analysis took into account the reflection S11 parameter for a cavity
under coherent drive. This is relevant for most of the analysis needed in this
work, as both spin resonator and the single microwave photon detector are probed
in reflection.

Internal loss sources

In this subsection we will discuss the mechanisms leading to internal losses in
superconducting microwave resonators, contributing to the internal cavity damp-
ing rate κint. The three main sources of microwave losses discussed here are (i)
dielectric losses, (ii) vortices and (iii) quasiparticles. For a more detailed descrip-
tion of these loss mechanisms the reader can refer to [13] for dielectric losses,
[14] for vortices and [15] for quasiparticles .

Dielectric losses

The microscopic origin of most dielectric losses in superconducting circuits is
still unknown, but many clues point towards the presence of unwanted two-
levels systems (TLS) in the dielectrics surrounding the circuit, which absorb part
of the microwave field energy. Potential sources of dielectric loss are (i) the oxides
formed at the metal-air interfaces by the atmosphere exposure during the fabri-
cation process, (ii) oxides and unterminated dangling bonds at the substrate-air
interface of the chip and (iii) defects in the bulk of the material or at the inter-
face between the substrate and the metal [13]. These TLS couple electrically to
the field, absorbing part of the energy and causing losses. TLS contributions
manifest at low temperature and low electromagnetic powers, when at thermal
equilibrium the defects are mostly in their ground state. Increasing the tempera-
ture or the injected power saturates the TLS transitions, thus inhibiting further
energy absorption. Losses by TLS absorption therefore lead to a power and tem-
perature dependent internal quality factor, a clear experimental signature that
we will encounter in our measurements.

Mitigation of dielectric losses is realized mostly through improvement of the fab-
rication process, with a particular care on the cleanliness of all interfaces and
on the removal of amorphous oxides. Moreover use of substrate trenching and
specific aspect ratios for transmission lines dimension allows to reduce further
the fraction of electric field interacting with lossy surfaces [16].

Magnetic vortices

When subjected to a magnetic field, superconductors expel this field by generat-
ing a screening current - this is the Meissner effect. In Type-2 superconductors,
the field can nevertheless penetrate the superconductor in the form of ”magnetic
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vortices”. In such a vortex, the magnetic field penetrates along a narrow metal-
lic region that becomes non-superconducting (the normal core), around which
screening currents flow in the superconducting part. A magnetic vortex carries
a quantum of magnetic flux Φ0.

All thin-film superconductors can be penetrated by magnetic vortices (in that
sense, they all behave as type-2 superconductors) when they are placed in an ex-
ternally generated magnetic field. In a thin-film microwave resonator, vortices can
cause microwave losses through the following mechanism. Oscillating currents
act on the vortex via the Lorentz force; and the displacement of these vortices is
dissipative and therefore leads to internal microwave losses.

In our experiment, the spin resonator is subject to a moderately large magnetic
field, which causes the penetration of vortices, and the appearance of additional
losses at high magnetic field.

Quasiparticles

Quasiparticles are above-gap excitations of the superconducting condensate and
can be qualitatively understood as normal electrons. Their presence in the su-
perconducting thin-film leads to dissipation at non-zero frequency. Indeed, due
to the inductive surface impedance of the superconductor, a finite fraction of ac
currents is always carried by the quasi-particles and is therefore dissipated by
Joule effect.

It is thus essential to minimize quasiparticles in superconducting quantum
circuits : resonators and qubits. At mK temperatures, the thermal equilibrium
population of quasiparticles should be vanishingly small. However, it is well-
known [17] that a non-equilibrium population of quasiparticles is systematically
observed. Recent work identified at least two sources of out-of-equilibrium quasi-
particles : absorption of high-energy photons (above-gap) by the superconduct-
ing film, and high-energy phonons generated in the substrate by cosmic rays or
gamma photons. Superconducting quantum cricuits therefore need to be care-
fully shielded against high-energy photons, in particular in the 100 GHz to in-
frared frequency range. This is achieved by inserting infra-red absorbers in all
measurement lines, and in carefully designing the sample holder and its shield-
ing.

2.4 The Josephson junction

In this section we introduce the concept of Josephson junction, one of the build-
ing blocks of circuit quantum electrodynamics experiments, as it provides the
non-linearity required to build artificial two-level systems or couple different mi-
crowave modes. We present here a brief analysis of the physics of the Josephson
junction, for a complete approach see for example ref. [18].

A Josephson junction consists of two pieces of superconductors separated by
a thin (∼ 2 nm) barrier of insulating material. When the barrier is thin enough to
allow tunneling of electrons between the two sides, one can derive the so called
Josephson relations that link the electric current I through the barrier with the
superconducting phase difference ϕ between the two sides and this latter with
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Figure 2.6: SQUID. Schematic of a SQUID (left) constituted by a loop interrupted
by two Josephson junctions, described by superconducting phase differences ϕ1
and ϕ2. External flux Φext threading the loop allows to tune the effective in-
ductance of the SQUID. Embedding a SQUID in a resonator allows frequency
tunability (right panel).

the voltage drop V across the junction:

I = Ic sinϕ (2.45)
∂ϕ

∂t
= 2e

~
V (2.46)

where Ic is known as critical current and e is the electron charge. From these
equations, by using the flux-phase relation Φ = (~/2e)ϕ = φ0ϕ one can verify that
the inductance associated to the junction has a non-linear behavior:

L(ϕ) = ∂Φ/∂t
∂I/∂t

= φ0
Ic

1
cos(ϕ) . (2.47)

The inductive energy associated with the Josephson junction is

UJ(t) =
∫ t

−∞
V Idt′ = φ0

∫ t

−∞
Idϕ = −EJ cosϕ(t) (2.48)

where EJ = φ0Ic is called Josephson energy and we have made use of eqs. 2.45
and 2.46.

Superconducting Quantum Interference Device

One of the prominent superconducting circuits is the superconducting quantum
interference device (SQUID). This device behaves as a tunable inductor and can
thus be embedded in superconducting resonators to make them tunable. In this
thesis it is employed for the design of the buffer resonator of the tunable single
microwave photon detector, and it is also used in the functioning of the Josephson
parametric amplifier.

A SQUID is a superconducting loop interrupted by one (RF SQUID) or two
(DC SQUID) Josephson junctions, here we present the basic working principle
of the symmetric DC SQUID [19], the one used in this work. The current-phase
relation describing the device is:

I = 2Ic cos
(
φ

Φext
Φ0

)
sin
(
ϕ1 + ϕ2

2

)
(2.49)
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where Ic is the critical current of the two junctions, Φext is the external flux bias
through the SQUID loop and ϕ1, ϕ2 are the superconducting phase differences
across the two junctions. One directly sees that Eq. 2.49 corresponds to the
single-junction current-phase relation Eq. 2.45 with an effective critical current
that depends on the external flux applied. The tunable inductance associated
with the device is:

Lsquid = 1
2EJ cosπΦext

Φ0

. (2.50)

Tunable LC resonator

Since a SQUID effectively behaves as a variable inductor, it can be embedded in
an LC resonator to make its frequency tunable. One can deduce the tunability
range by considering the logarithmic derivative of the frequency ω = 1/

√
LC:

logω = −1
2 logL+ const (2.51)

δω

ω
= −1

2
δL

L
= −1

2p
δL

Lsquid
, (2.52)

so that the frequency range depends on the inductance tunability via the par-
ticipation ratio p = Lsquid/L of the SQUID inductance Lsquid to the total circuit
inductance L. In the most general case in which the junctions constituting the
SQUID are not equal, the inductance variation δL is obtained as (see Eq. B.37):

δL = 2L2
1L2

L2
1 − L2

2
(2.53)

where L1 and L2 are the inductances associated with the two junctions, and the
SQUID inductance can be taken approximately to be Lsquid ≈ (Lmin + Lmax)/2 =
L2

2L1/(L2
1 − L2

2). We can thus write:

δω

ω
= −pL1

L2
. (2.54)

This formula is used in the design of tunable resonator to calibrate the ratio of
SQUID inductances, the participation ratio p is usually obtained via electromag-
netic finite-element simulation, calculating the fraction of the field present in the
SQUID junctions.

Flux noise

The major drawback of embedding a SQUID in a resonator comes from the pres-
ence of magnetic flux noise in the system. This noise can have multiple sources
but the main contribution is supposed to come from vortices and fluctuations
of the external magnetic field Φext used to bias the SQUID at its working point.
This noise induces fluctuations in the resonance frequency of the tunable LC
resonator.

Consider an LC resonator subjected to noise on its resonance frequency ω(t) =
ω0 + δω(t), the S11(ω) parameter introduced in Eq. 2.44 has now to be convolved
with some kernel f(ω) corresponding to the noise Fourier transform:

S̆11(ω) =
∫ +∞

−∞
dω′f(ω − ω′)S11(ω′), (2.55)



2.5. NOISE AND AMPLIFICATION 37

if we assume Gaussian noise centred at the resonator frequency ω0 with variance
σ2 we can write:

S̆11(ω) = 1
σ
√

2π

∫ +∞

−∞
dω′

κext − κint + 2i(ω′ − ω0)
κext + κint − 2i(ω′ − ω0)e

− (ω−ω′−ω0)2

2σ2 (2.56)

This expression will be used to model the presence of flux noise in the case tun-
able resonators.

2.5 Noise and amplification

In the experiments reported in this thesis, we will detect two types of signals,
either spin-echoes, or qubit readout pulses (to operate the SMPD). Both signals
originate from quantum devices and have ultra-low amplitudes, on the order of
1 fW− 1 pW, and corresponding to a few microwave photons.

It is therefore essential to have a low noise amplification chain. The best com-
mercially available low-noise amplifiers are High-Electron-Mobility Transistors
with a noise temperature of a few Kelvin when cooled at 4K, corresponding to
∼ 10-20 noise photons at 4-8 GHz. They are not sufficient for our experiments,
which require the best possible amplifiers allowed by quantum mechanics. This
can be obtained through the use of superconducting amplifiers cooled at 10 mK,
called Josephson Parametric Amplifiers (JPAs). In this section, we give a brief
account of the theory of quantum-limited amplification, and of the operating
principle of the JPA used in this thesis.

Amplification at the quantum limit

A microwave amplifier of gain G is a two port device (see Fig.2.7). The input
and output signals of frequency ω and of narrow bandwidth ∆ω are conveniently
described by the right propagating spatio-temporal modes âin and âout introduced
in Eq.2.29.
The amplified signal is measured at the end of the output transmission line by
homodyne demodulation, yielding the quadratures I and Q. The I and Q quadra-
tures obtained by the homodyne demodulation are proportional to the X̂ and Ŷ
operators, with arbitrary rotation in the XY plane tuned via the local oscillator
phase. The average signal in one quadrature is then proportional to 〈X̂〉 and the
variance to 〈∆X̂2〉.
If we naively applied the classical relations between input and output quadratures
of a linear amplifier to the quantum case, we would define X̂out =

√
GX̂in and

Ŷout =
√
GŶin. This definition however does not satisfy the commutation relation

for the operators âout and âin, besides the trivial case G = 1:

[âout, â
†
out] =

√
G[âin, â

†
in] =

√
G 6= 1. (2.57)

The appropriate quantum theory of amplification was expressed by Caves [20],
and we will give a brief account of it in the following.

Phase-preserving amplifier

Phase-preserving amplifiers have identical gain on both quadratures GX = GY =
G. To satisfy the commutation relation for the amplified operators [âout, â

†
out] = 1
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Figure 2.7: Linear amplifiers. (a) A linear amplifier of gain G and noise tem-
perature TN is used to detect a narrow-band signal. (b)-(c) Phase-preserving and
phase-sensitive amplification in phase-plane representation in the limit of high
gain. The disks indicate the contour of the Wigner function. A phase preserving
amplifier degrades the SNR, with the added noise represented in red. In phase-
sensitive amplification, one quadrature is amplified at the expense of the other,
but one can evade the noise added by the Heisenberg uncertainty principle.

one needs to introduce a mode b̂in internal to the amplifier, that commutes with
âin:

âout =
√
Gâin +

√
1−Gb̂†in (2.58)

satisfying [b̂in, b̂†in] = 1 and [b̂in, â†in] = 0. By imposing 〈b̂in〉 = 0, one finds:

〈X̂out〉 =
√
G〈X̂in〉 (2.59)

〈Ŷout〉 =
√
G〈Ŷin〉 (2.60)

which are the expected relations for the amplified signal.

Quantum limits on amplification

For a phase-preserving amplifier, one can derive from the input-output equations
(Eq. 2.58) that the outcoming noise referred to the input in the absence of a signal
is:

〈∆X̂2
out〉+ 〈∆Ŷ 2

out〉
G

= 〈∆X̂2
in〉+ 〈∆Ŷ 2

in〉+
(

1− 1
G

)(
〈∆X̂2

b〉+ 〈∆Ŷ 2
b 〉
)

(2.61)

where X̂2
b are the internal mode fluctuations. The output noise is thus the sum

of two contributions: the input noise and the noise added by the amplifier due to
internal mode fluctuations. We define the noise detected on a single quadrature
as:

n = 〈∆X̂
2
out〉
G

= 〈∆X̂2
in〉+ 〈∆X̂2

b〉 (2.62)



2.5. NOISE AND AMPLIFICATION 39

For an incoming field in a thermal equilibrium state, the input noise 〈∆X̂2
in〉

is given by Eq. 2.14. For sufficiently low temperatures kBT � ~ω the vacuum
state is reached and the fluctuations saturate the Heisenberg uncertainty rela-
tion 〈∆X̂2

in〉 = 1/4, while in general:

〈∆X̂2
in〉 ≥ 1/4 (2.63)

The noise added by the amplifier is also bounded by the Heisenberg relation
〈∆X̂2

b〉 ≥ 1/4 in the case of phase-preserving amplification.

Phase-sensitive amplifier

A phase-sensitive device amplifies one quadrature at the expense of the other.
We consider here only amplifiers for which Gs = GX = 1/GY, so that the condition√
GXGY = 1 is satisfied. In that case, the input and output quadratures are

linked by the relation:

X̂out =
√
GsX̂in (2.64)

Ŷout = 1√
Gs
Ŷin. (2.65)

Interestingly, the phase-sensitive amplifier is just a particular case of the phase-
preserving amplifier. Writing âout =

√
GsX̂in + i 1√

Gs
Ŷin yields Eq. 2.58 by choosing

b̂in = âin and
√
Gs =

√
G−

√
G− 1. At large gains, one can identify

√
Gs = 2

√
G.

Quantum limits on amplification

A phase-sensitive amplifier can escape on one quadrature the quantum-limit of
amplification:

〈∆X̂2
b〉 ≥ 0 (2.66)

The price to pay for this noiseless amplification is that we access only one quadra-
ture of the field. This does not necessarily constitute an issue if the output sig-
nal phase is deterministic and constant, as is the case for spin echoes and qubit
readout pulses. Upon quantum-limited amplification with a noiseless phase-
preserving amplifier, the only remaining noise is therefore the quantum fluctua-
tions of the input field 〈∆X̂2

in〉 = 1/4.

Josephson Parametric Amplifier

In the last decade, various designs for an amplifier operating at the quantum limit
have been developed [21, 22, 23, 24, 25, 26, 27, 28]. These designs are based on
Josephson junctions embedded in superconducting resonators following pioneer-
ing work by Yurke et al. [29]. These elements enable parametric amplification of
a signal at frequency ωs ≈ ω0 by transfer of energy from a pump at frequency ωp
to the signal and to a complementary idler of frequency ωI . In the device used in
this thesis, we exploit the tunability of a SQUID array (see Sec. 2.4) to modulate
the resonator frequency at ωp ≈ 2ω0 and create a three-wave mixing process with
ωp = ωs + ωI [25, 26, 27, 28]. Due to the use of dissipationless elements these
amplifiers can add the minimum amount of noise allowed quantum mechanically
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Figure 2.8: Josephson parametric amplifier. (a) The JPA comprises a geo-
metrical inductance and capacitance in parallel with an array of SQUIDs, it is
probed in reflexion via a transmission line capacitively coupled. (b) Modulation
of the frequency of the resonator as a function of the SQUIDs DC flux bias. (c)
Phase-preserving amplification operation of the JPA: a pump applied at ωp ≈ 2ω0
amplifies the signal and generates an idler signal. The idler signal can be removed
by filtering.

when operated in phase-preserving mode (ωs 6= ωI) and no noise in the amplified
quadrature for phase-sensitive amplification (ωs = ωI). In this paragraph, we only
intend to give an overview of the device operating principle. We refer the reader
to [28, 30, 31] for more details and rigorous demonstrations.

The tunability of the SQUID inductance is exploited to provide parametric
amplification. Consider a resonator with the geometry shown in Fig. 2.8a: a
capacitance Cg in parallel with an inductance Lg and an array of N symmet-
ric SQUID loops, probed via a transmission line of characteristic impedance Zc
coupled by a capacitance Cc to the resonator. As illustrated in Fig. 2.8a, the
resonator is probed in reflexion: a circulator is needed to route the input signal
to the resonator, and the output signal towards the output line.

The tunability of ω0 with respect to Φ is obtained by placing a flux line nearby the
SQUIDs array (see Figure 2.8a). For a resonator of bare frequency ω0(0) = 8 GHz
and characteristic impedance Z0 = 100 Ω, the frequency tunability ranges over
several hundreds of MHz, as shown in Fig. 2.8b.

According to Landau [32], modulating the resonator frequency at a frequency
close to 2ω0, gives rise to the phenomenon of parametric amplification. The am-
plifier thus consists in a tunable resonator ω0(ΦDC), a pump signal sent through
the flux-line at frequency ωp ≈ 2ω0, and an input port through which a signal
at a frequency ω ≈ ω0 is sent, with the reflected signal being amplified.The JPA

being composed of dissipation-less elements and based on the simple paramet-
ric amplification process, it reaches the quantum limit of amplifier-added noise
discussed earlier. More precisely, it can be used in either of the two modes of
operation:
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• Phase-preserving amplification: non degenerate pumping (ωp 6= 2ωs)
In this operation mode both the signal frequency ωs and the idler one ωI
gets amplified (see Figure 2.8c). The power gain G achieved on the signal
increases by increasing the pump amplitude, until it exceeds the damp-
ing occurring via the transmission line, thus entering in an auto-oscillating
regime. Below this threshold the system behaves as a phase-preserving am-
plifier, adding a noise corresponding to half a photon to each quadrature. In
practice a narrow band filter is then used to get rid of the idler contribution.

In this work, phase preserving amplification is use to perform homodyne
detection.

• Phase-sensitive amplification: degenerate pumping (ωp = 2ωs)
In this case interferences between the idler mode and the input signal leads
to a phase sensitive amplification depending on the relative phase between
the signal and the pump ∆φ:

G(∆φ) =
(
Gs −

1
Gs

)
cos2 ∆φ+ 1

Gs
(2.67)

As discussed earlier, this degenerate amplifier does not add noise to the
incoming signal and amplifies noiselessly one of its quadratures.

In this work, phase sensitive amplification with a JPA is employed to readout
the state of the Transmon qubit as a part of the microwave photo-detection
process. This operation mode is justified by the high readout fidelity re-
quired to reach the best performances during photon detection.

2.6 Quadrature and photon detection

In this thesis, we will use a single-microwave-photon detector to detect spin sig-
nals, which are more usually detected with linear amplification followed by de-
modulation (ie, quadrature detection). In this section, we compare the SNRs of
quadrature and photon detection for various input field statistics.

Model

Our model is sketched in Fig. 2.9. We consider a source, emitting a field in a
state:

ρ̂ =
∑
n,m

ρnm |n〉 〈m| (2.68)

where |n〉 is the Fock basis. The fields is routed in a transmission line towards a
detector.

The transmission line may have losses, reducing the field energy by a factor
ηc, the collection efficiency. Another non-ideality is the possible presence in the
line of a background microwave field, at a non-zero temperature. This is always
the case in the experiments, first because they are performed at non-zero tem-
perature, resulting in an equilibrium thermal field, but also because of thermal
radiation propagating through the input (or output) lines and being insufficiently
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Figure 2.9: Detector imperfections. Schematic model for quadrature and
photon detector non-idealities. A quantum beam-splitter model accounts for the
finite collection efficiency ηc and thermal dark counts ρ̂th. In addition to these
non-idealities, quadrature detection has noise contribution ∆X2

b, ∆Y 2
b from the

quantum-limited linear amplifier. On the other hand, photon counting has ad-
ditional contributions ηd, pd to efficiency and dark count due to detector imper-
fections.

attenuated or filtered. This results in a background field with approximately ther-
mal statistics, but with an effective temperature which may be much higher than
the cryostat physical temperature. The physical quantity that describes best this
temperature is the average number of photons per mode, which we call pth.

We model both the losses and the thermal population by the introduction of a
beam-splitter in-between the source and the detector, with transmission ηc. The
source is on one input port, and the other input port is connected to a fictitious
thermal field, with an average photon number pth/(1− ηc).

When we apply the beam splitter model to a state ρ̂, it is transformed in a
non trivial way. The explicit expression for the transformed state traced over the
non-measured port of the beam-splitter, in the case of a coherent state, and a
Fock state |1〉 in the limit ηcpth � 1 are:

|α〉 〈α| ⊗ ρ̂th → (1− pth) |α√ηc〉 〈α
√
ηc|+ pth |1, α

√
ηc〉 〈1, α

√
ηc| (2.69)

|1〉 〈1| ⊗ ρ̂th → (1− ηc)(1− pth) |0〉 〈0|+ (pth + ηc) |1〉 〈1| (2.70)

where |1, α√ηc〉 = D(α√ηc)â† |0〉 is a displaced number state. These expressions
will be used in the following to calculate average values of observables.

We consider two detection modalities: quadrature detection, and photon count-
ing.

Quadrature detection

Quadrature detection measures projectively the operator:

X̂j,θ = 1
2
(
âje
−iθ + â†je

iθ
)

(2.71)

where âj and â†j are the single-mode annihilation and creation operators and
where θ a phase identifying the quadrature that is measured. This is the case of
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homodyne detection, in which mixing of the signal with a local oscillator allows
to extract the quadratures I and Q of the field, proportional to the X̂ and Ŷ
operators introduced in section 2.1.

In order to model a real detector we will adopt the above mentioned beam
splitter model. In addition to this non-ideality we recall that a phase-preserving
(pp) linear amplifier adds to the input quadrature the equivalent noise of half
photon, while a phase-sensitive (ps) amplifier can escape this limit at the expense
of arbitrarily large noise on the orthogonal quadrature. If we restrict to a single
mode, disregard the orthogonal quadrature and take X̂j,θ = X̂ the expressions
for standard deviations in these two regimes are:

∆Xout,pp√
G

=
√
〈∆X2

in〉+ 1
4 (2.72)

∆Xout,ps√
G

= ∆Xin. (2.73)

Photon detection

In this thesis, we use a single-photon detector. This detector measures the field
in the energy eigenbasis. Nevertheless, it does not exactly detect the photon
number operator a†a, because it saturates for incoming photon numbers larger
than 1. Therefore, the correct description is that it measures the operator:

P̂⊥ = 1− |0〉 〈0| . (2.74)

The click probability therefore yields the probability that the field contains one
photon or more.

A real photon detector can be modeled with the beam-splitter model reported
above, with an additional non-ideality coming from the imperfections of the de-
tector. All such non-idealities factor into two main effects: inefficiency and dark
counts. The detector can miss a signal photon (finite efficiency), or instead click
when no photon is present (dark count).

The two distinct processes that can lower the detection efficiency are:

• as seen in the beam splitter model, the signal may be absorbed or reflected
during the propagation from the source to the detector, this occurs with a
probability 1− ηc.

• moreover an incoming photon at the detector may not be detected because
of the detector imperfections; this occurs with a probability 1 − ηd. ηd is
called the detector efficiency.

The total detector efficiency is η = ηcηd. Dark counts are also due to two types of
processes:

• Unwanted photons may arrive on the detector, due to radiation either at
thermal equilibrium or (more likely) leaking from the higher temperature
stages of the cryostat, and leading to a click. This happens with a probability
pth, defined in the beam splitter model.

• Moreover, even in absence of physical photons, imperfect detector operation
may lead to a click, with a probability pd.
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State p0

Vacuum 1− pth

Fock |n〉 (1− ηc)n − pth
[
(1− ηc)n − nηc(1− ηc)n−1]

Coherent |α〉
[
1− pth

(
1− ηc |α|2

)]
e−ηc|α|2

Table 2.1: Detector click probability

The total dark count probability per detector cycle is then pdc = pth + pd. All im-
perfections occurring during photon counting can be taken into account through
a straightforward calculation reported in appendix A. If we consider a field state
described by the density matrix ρ̂, the total probability of measuring a click when
the state impinges on the detector is:

pclick = pdp0 + ηd(1− p0) (2.75)

where:

p0 = (1− pth)
∞∑
n=0

ρnn(1− ηc)n + pth

∞∑
n=0

nρnnηc(1− ηc)n−1. (2.76)

2.7 Signal-to-noise ratios in single-mode detection

The aim of this section is to compare the performances of quadrature detection
and photon detection for some states of the electromagnetic field in a known
mode. In order to compare the two measurements we will make use of the SNRs,
defined for a generic operator Ô as the ratio between the average signal above the
average vacuum signal 〈Ô〉|0〉 = 〈0| Ô |0〉, and its standard deviation:

SNR =
〈Ô〉 − 〈Ô〉|0〉√
〈∆Ô2〉

. (2.77)

We remark that, in the case of a photon counter, Ô = P̂⊥ is a projection operator
(i.e. P̂ 2

⊥ = P̂⊥ ) so that the variance is easily obtained from the mean value as:

〈∆P̂ 2
⊥〉 = 〈P̂⊥〉 − 〈P̂⊥〉2 = pclick(1− pclick) (2.78)

which – as expected – is the variance of a binomial distribution, and the photon
counting SNR is:

SNRpc = pclick − p
|0〉
click√

pclick (1− pclick)
. (2.79)

For quadrature detection we take Ô = X̂out, the quadrature operator after the
amplifier, in the following we will omit the subscript to keep the notation light.
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To compare SNRs for quadrature and photon detection we will often take the
limits pd � 1, pd � ηd, pth � 1, pth � ηc, which are relevant for our experi-
ments. We will now consider various states, and compute the signal and noise
for quadrature and photon-counting detection, taking into account detector im-
perfections.

Coherent state

Consider the case where the source emits a coherent state ρ̂ = |α〉 〈α|.

Quadrature We calculate the expectation value of a quadrature measurement
using Eq. 2.69:

〈X̂〉√
G

= Re[α]√ηc. (2.80)

The variance is:
〈∆X̂2〉
G

= 1
4 + pth

2 + 〈∆X̂2〉amp (2.81)

If the phase of the coherent state is known, as in our experiments we can take
α to be real. In the limit where 〈∆X̂2〉amp = 0 (phase-sensitive amplification) and
pth � 1, we get

SNRqd = 2α√ηc. (2.82)

Photon counting For abritrary α, the SMPD signal is a complicated expression
because of saturation. The relevant limit is α� 1, in which case:

pclick = ηd
(
ηc|α|2 + pth(1− ηc|α|2)2

)
+ pd

(
1− ηc|α|2 − pth(1− ηc|α|2)2

)
(2.83)

and in the limit pth � 1, pd � 1:

SNRpc = α
√
ηcηd (2.84)

Note that, in this limit, the only source of photo-counting noise is the shot-noise
due to the probabilistic nature of vacuum/no-vacuum measurement on a coher-
ent state. The ratio of SNRs is:

SNRpc
SNRqd

=
√
ηd
2 (2.85)

This implies that detecting a single-mode coherent state with a photon counter
is less sensitive of at least a factor 2 compared to quadrature detection. Both
detection modalities are limited by the same physical phenomenon: shot-noise.

One-photon Fock state

Consider a single-mode Fock state ρ̂ = |1〉 〈1|.

Quadrature Measuring X̂ in quadrature detection has no interest since 〈1| X̂ |1〉 =
0. Instead, one can measure X̂2.

〈X̂2〉 − 〈X̂2〉|0〉
G

= ηc
1 + pth

2 . (2.86)
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Figure 2.10: SNR ratio for Fock state |1〉. Computed ratio of SNRs in the case
of photon and quadrature detection of a single photon Fock state, as a function
of collection and detection efficiencies ηc and ηd.

The variance of X̂2 (assuming noiseless phase-sensitive amplification) is

〈X̂4〉 − 〈X̂2〉2

G2 = 1
8 + ηc

2 −
η2

c
4 , (2.87)

so that the SNR in the limit pth � 1 is:

SNRqd = 2ηc√
2 + 8ηc − 4η2

c
. (2.88)

Photon counting For a single-photon counter one has:

pclick = ηd(ηc + pth(1− ηc)) + pd(1− ηc − pth(1− ηc)) (2.89)

and the associated SNR in the limit pth � 1, pd � 1 is:

SNRpc = ηdηc√
ηdηc(1− ηdηc)

(2.90)

The above expression increases without bound in the limit of perfect detection
ηcηd → 1. This means that for sufficiently high efficiencies, photon counting is
more adapted at detecting Fock states with respect to quadrature detection. This
is because the Fock state is an eigenstate of the measured operator. The ratio of
the SNR in quadrature and photon-counting is plotted in Fig.2.10. We see that
photon counting is more efficient than quadrature detection over a large range of
parameters.

2.8 Signal-to-noise ratios in multi-mode detection

We have since now examined signals emitted and detected in a known mode of
the electromagnetic field. In this section we consider the detection of a microwave
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signal that can be emitted on one of many modes. This case is relevant for this
thesis because it describes the detection of fluorescence signal emitted on many
temporal modes by a spin ensemble coupled to a microwave cavity.

Consider a state |ψ〉 of the field, emitted in a stochastic way in an unknown
mode out of M electromagnetic modes, the associated density matrix is:

ρ̂in = 1
M

M∑
m=1
|0..ψm..0〉 〈0..ψm..0| (2.91)

= 1
M

M∑
m=1
|ψ〉 〈ψ|m

⊗
m′ 6=m

|0〉 〈0|m′ (2.92)

where the index m labels the modes. We use a beam splitter interaction to model
thermal noise injected on each mode. For modes in the vacuum, the state after
the beam splitter traced on the ancillary degree of freedom is a thermal state
ρ̂th with average number of photons pth � 1. For the general state |ψ〉 〈ψ|m the
evolution is not trivial, we define ρ̂ψ as:

ρ̂ψ := Trth
[
B† |ψ〉 〈ψ|m ⊗ ρ̂th,inB

]
where B denotes the beam-splitter evolution, ρ̂th,in is the thermal state before the
beam splitter and Trth the partial trace on the thermal state subspace. We write
the full density matrix after the beam-splitter and traced on the ancillary mode
as:

ρ̂ = 1
M

M∑
m=1

M⊗
m′=1

ρ̂m′ . (2.93)

where:

ρ̂m′ =
{
ρ̂ψ if m′ = m

ρ̂th if m′ 6= m
(2.94)

Since the mode hosting the state |ψ〉 is not known in advance, in order to measure
any single-mode operator Ôm one needs to sum on all modes:

Ô =
M∑
m=1

Ôm ⊗ 1⊗M−1. (2.95)

The average value is thus the sum of average values:

〈Ô〉ψ = 1
M

M∑
k=1

M∑
m=1

Tr[ρ̂mÔm
M⊗

k′ 6=m
ρ̂k′ ⊗ 1] = (M − 1)〈Ôm〉th + 〈Ôm〉ψ. (2.96)

where 〈Ôm〉th = Tr[ρ̂thÔm] and 〈Ôm〉ψ = Tr[ρ̂ψÔm] We observe that this value con-
tains contributions from all modes, which become relevant when Tr[ρ̂th,mÔm] 6= 0.
In the following we take M � 1, so M − 1 'M .

Multi-mode quadrature detection

In quadrature detection the measured multi-mode operator is:

X̂ =
M∑
m=1

X̂m ⊗ 1⊗M−1 (2.97)
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its average value, in the sense of Eq.2.96, is always equal to the single-mode case,
because thermally populated modes have 〈X̂m〉th = 0:

〈X̂〉ψ = 〈X̂m〉ψ. (2.98)

In contrast, each mode contributes to the noise:

〈X̂2〉ψ = M

(
pth
2 + 1

4

)
+ 〈X̂2

m〉ψ, (2.99)

the SNR is:

SNRqd = 〈X̂m〉ψ√
M
(
pth
2 + 1

4

)
+ 〈X̂2

m〉ψ
→ 2〈X̂m〉ψ√

M
(2.100)

where we took the limit of low thermal occupation pth � 1 and M � 〈X̂2
m〉ψ due

to the large number of modes. This expression shows that the SNR is lower than
in the single-mode case, due to the contribution of all the modes to the signal
noise. This added noise cannot be eliminated, being due to vacuum zero point
fluctuations.

In cases in which 〈X̂〉ψ = 0, one can measure the operator:

X̂2 =
M∑
m=1

X̂2
m ⊗ 1⊗M−1 (2.101)

and the signal above noise is:

〈X̂2〉ψ − 〈X̂2〉th = 〈X̂2
m〉ψ −

(
pth
2 + 1

4

)
(2.102)

which is equal to the single-mode case. Again, the noise has contribution from
all modes:

〈X̂4
m〉ψ − 〈X̂2

m〉2ψ + M

8 (2pth + 1)2 , (2.103)

In the limit pth � 1 and M � 〈X̂4
m〉ψ − 〈X̂2

m〉2ψ, we can write for the SNR:

SNRqd = 〈X̂
2
m〉ψ − 1/4√
M/8

. (2.104)

Again, even in the limit of vanishingly low thermal noise, the SNR is reduced by
a factor

√
M/8 compared to the single mode case, because of the vacuum noise

contribution of all the modes.

Multi-mode photon detection

In the case of photon detection the measured operator is:

P̂⊥ =
M∑
m=1

P̂⊥m ⊗ 1⊗M−1. (2.105)

The signal is given by:

〈P̂⊥〉ψ − 〈P̂⊥〉th = 〈P̂⊥m〉ψ − pth (2.106)
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which is equal to the single-mode case. For the noise we have:

〈∆P 2
⊥〉 = M(1− pth)pth + 〈∆P 2

⊥m〉ψ (2.107)

The variance is the single mode variance, with in addition terms arising from the
finite thermal population pth of the modes. The term (1−pth)pth is the variance of
the dark counts of each mode, typical of a binomial process. In the limit pth � 1,
the SNR is:

SNRpc = 〈P̂⊥m〉ψ − pth√
Mpth + 〈∆P 2

⊥m〉ψ
. (2.108)

Importantly, we note that the noise added by the M modes vanishes in the limit
of zero temperature (pth = 0). In this limit, there is no difference between multi-
mode and single-mode photon detection.

Using Eqs. 2.108 and 2.104, the ratio of SNRs for quadrature and photon
detection in the multimode case, in the limit pth � 1 and large number of modes
is approximately equal to:

SNRpc
SNRqd

' 〈P̂⊥m〉ψ
〈X̂2

m〉ψ
×
{

1/√pth, if Mpth � 〈∆P 2
⊥m〉ψ√

M, if Mpth � 〈∆P 2
⊥m〉ψ

(2.109)

In both cases, photon detection is more sensitive than quadrature detection
in the limit M � 1 and pth � 1.

Finally, note that in the case in which the modes are spatio-temporal modes
impinging sequentially during a time T , we can rewrite SNRpc defining a dark
count rate νdc := pthM/T :

SNRpc = 〈P̂⊥m〉ψ − pth√
νdcT + 〈∆P 2

⊥m〉ψ
. (2.110)

The important conclusion of this chapter is therefore that photon counting
is much more sensitive for detecting weak incoherent signals (i.e., small photon
numbers) emitted randomly over many modes. This is particularly true in optics.
For instance, the fluorescence of an individual NV consists of ∼ 105 photons
emitted over a bandwidth ∆ω/2π ∼ 10 THz during 1 s. This corresponds to M =
1013 modes. Even assuming quadrature detection would be possible over such a
large bandwidth (which is obviously not the case), we see from Eq. 2.104 that
the 105 photons signal would be completely blurred by vacuum noise. Photon
counters, on the other hand, have dark count rates in the kCount/s in a 10 THz
bandwidth, which corresponds to an effective pth ∼ 10−10. Low dark-count photon
counters in the optical domain are therefore a key resource for the detection of
individual quantum emitters, which emit weak incoherent photons. We thus
anticipate that the counterpart at microwave frequency will open the way to many
novel experiments.

Photon detection of a multi-mode Fock state

The fluorescence signal emitted by an ensemble of spin relaxing spontaneously
is described by a multimode Fock state, containing N � M photons, each one
on a different mode. The SNR formula in the case of photon detection will turn
to be useful in chapter 6:

SNRpc = Nη√
νdcT +Nη(1− η)

. (2.111)
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As one expects, the signal is given by the number of photons multiplied by the
total efficiency ηcηd. The noise has one contribution from dark counts νdcT and
one contribution from the partition noise due to finite detection efficiency.



Chapter 3

Spins coupled to a resonator

In this chapter we present the dynamics of one and many spins coupled to a
cavity, and the effects arising from this interaction.

3.1 Single spin in an external magnetic field

We consider a spin-1
2 described by the dimensionless vector operator:

Ŝ = 1
2(σ̂x, σ̂y, σ̂z), (3.1)

[σ̂i, σ̂j ] = 2iεijkσ̂k, (3.2)

where σ̂i are the Pauli matrices. The associated magnetic dipole is:

µ̂ = −γe~Ŝ, (3.3)

where the gyromagnetic ratio is γe = 28 GHz/T. A classical external magnetic field
B0 is applied in order to lift the energy degeneracy of spin states with different
orientations. The spin-field interaction is described by the Hamiltonian:

Ĥs = −µ̂ ·B0 = ~ωs
2 σ̂z, (3.4)

with ωs = γeB0 and where we assumed without loss of generality that the magnetic
field is directed along êz. The presence of B0 introduces a quantization axis in
the system, such that the energy degeneracy of the states with Ŝz eigenvalues
mz = ±1 is lifted. We denote the ground and excited state of the spin system as
|g〉 and |e〉, eigenvectors of σ̂z. On this basis, the Pauli operators can be explicitly
written as

σ̂x =
(

0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
. (3.5)

3.2 Single spin coupled to a harmonic resonator

Consider now an LC resonator placed in the vicinity of the spin, such that the
current flowing in the inductor generates a quantum magnetic field B̂1(t) at the
spin position. The total Hamiltonian describing the system is:

Ĥ = Ĥr + Ĥs + Ĥint = ~ω0

(
â†â+ 1

2

)
+ ~ωs

2 σ̂z + Ĥint, (3.6)

51
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with the interaction Hamiltonian:

Ĥint = −µ̂ · B̂1 = ~γeŜ ·Bzpf(â+ â†). (3.7)

This Hamiltonian can be expressed on the basis of the spin eigenstates |g〉 , |e〉 as:

Ĥint = ~(â+ â†) (g0σ̂+ + g∗0σ̂− + αg |g〉 〈g|+ αe |e〉 〈e|) , (3.8)
where:

g0 = γe 〈e| Ŝ ·Bzpf |g〉 ,
αj = γe 〈j| Ŝ ·Bzpf |j〉 .

The diagonal elements αj represent Note that in the following we assume a real
transition matrix element g0 = g∗0, allowed by an appropriate redefinition of |e〉
and |g〉.

In order to perform the rotating wave approximation, we move to interaction
picture with respect to Ĥ0 = Ĥr + Ĥs, such that Ĥint takes the form:

ˆ̃Hint(t) = e
iĤ0t
~ Ĥinte

− iĤ0t
~ =

= ~g0
(
âσ̂+e

i(ωs−ω0)t + âσ̂−e
−i(ωs+ω0)t + â†σ̂+e

i(ωs+ω0)t + â†σ̂−e
−i(ωs−ω0)t

)
+ ~(âe−iω0t + â†eiω0t)Diag(αe, αg), (3.9)

where Diag(αe, αg) is a diagonal matrix with αe and αg on the diagonal. One can
now apply the rotating wave approximation that consists in discarding the fast
rotating terms ±(ωs+ω0) and keeping the slow rotating ones ±(ωs−ω0). Reverting
back to the Schrodinger picture, leads to the full Jaynes-Cummings Hamiltonian:

Ĥ = ~ω0

(
â†â+ 1

2

)
+ ~ωs

2 σ̂z + ~g0
(
âσ̂+ + â†σ̂−

)
, (3.10)

which describes the interaction between the spin and the resonator in terms of
the exchange of a quantum of excitation.

Open system

In order to model the environment surrounding the spin (lattice phonons, nearby
spins) and the resonator (loss channels, external drive), we add the following
elements to the description of the system:

• Drive: in a usual experiment a coherent tone of amplitude β and frequency
ωd is used to the drive the resonator. With this additional term, the Hamil-
tonian of Eq. 3.10 becomes:

Ĥ =~ω0â
†â+ ~

2ωsσ̂z + ~g0
(
âσ̂+ + â†σ̂−

)
+ i~
√
κext

(
βâ†e−iωdt + β∗âeiωdt

)
.

(3.11)

• Spin relaxation: resonant coupling of the spin with a lattice-phonon bath
containing on average nph phonons, causes energy exchange between the
two at rate Γphon. The net effect is the relaxation of the longitudinal com-
ponent of the spin magnetization vector 〈σ̂z〉 towards thermal equilibrium.
This process is taken into account through the Lindblad operators:

L̂phon- =
√

Γphon(1 + nph)σ̂−, (3.12)

L̂phon+ =
√

Γphonnphσ̂+. (3.13)
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• Homogeneous broadening: fluctuations of the magnetic environment of
the spin over typical evolution timescales are at the origin of a decoherence
effect called homogeneous broadening. Fluctuating magnetic fields cause
a dynamical variation of the resonance frequency of the spin, leading it to
dephase with a rate Γ2 = 1/T2, affecting the decay of transverse components
〈σ̂x,y〉 of the magnetization vector. In our system this effect is due to fluc-
tuating nearby electronic or nuclear spins, and is described through the
Lindblad operator:

L̂2 =

√
Γ2
2 σ̂z. (3.14)

• Resonator dissipation: the resonator exchanges energy with uncontrolled
internal degrees of freedom at rate κint and with an external transmission
line at rate κext. This process is described through the Lindblad operators:

L̂phot- =
√
κ(1 + nth)â, (3.15)

L̂phot+ = √κnthâ
†, (3.16)

where nth is the mean number of excitation of the coupled photon bath.

Master equation

In presence of loss channels describing the coupling with the environment, the
reduced dynamics of the system is determined by a master equation in the Lind-
blad form, namely:

˙̂ρ = L̂(ρ̂) = 1
i~

[Ĥ, ρ̂] +
∑
i

DL̂i(ρ̂) (3.17)

where the Lindblad super-operatorsDL̂i have explicit action on the density matrix
given by:

DL̂i(ρ̂) = L̂iρ̂L̂
†
i −

1
2
{
L̂†i L̂i, ρ̂

}
(3.18)

and the L̂i operators are the ones listed above.

Adiabatic elimination and Purcell effect

In this section, we perform adiabatic elimination of the resonator degrees of free-
dom, in order to obtain a master equation for the reduced spin density matrix.
Adiabatic elimination will also turn to be useful for the treatment of the single
microwave photon detector, a step-by-step derivation is reported in appendix C.

If κ � g0,Γphon,Γ2, the degrees of freedom of the resonator evolve on a much
shorter timescale than that of spin-resonator interaction and spin-environment
interaction. One can thus consider the state of the intra-resonator field to have
reached its stationary value over these slow timescales. If no drive is applied the
intra-resonator field is exponentially damped towards the vacuum, thus, any
field emitted by the spin is dissipated before any back-interaction can occur.
This evolution, induced by the coupling of the spin with the resonator, effectively
increases the spin radiative relaxation rate producing an effect known as Purcell
effect.
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Formally, adiabatic elimination is achieved by expanding the system density
matrix ρ̂ in terms of the low-photons intra-resonator field states {δm+n |m〉 〈n|}m+n≤2,
with δ ∼ g0/κ. Solving the equations of motion for ρ̂mn, plugging them back in
the expression of ρ̂, and finally tracing over the field degrees of freedom leads to
the dynamics of the reduced spin system. The master equation obtained after
adiabatic elimination reads:

˙̂ρs = 1
i~

[Ĥs, ρ̂s] +DP̂ (ρ̂s) +
∑
i

DL̂i(ρ̂s), (3.19)

where Ĥs = 〈0| Ĥ |0〉 is the reduced Hamiltonian, and:

P̂ =
√

Γp(∆)σ̂−, (3.20)

Γp(∆) = κg2
0(

κ
2
)2 + ∆2

. (3.21)

where ∆ = ωs − ω0. The new Lindbladian term DP̂ , is the result of the adiabatic
elimination process, it describes the radiative relaxation of the spin through the
resonator at rate Γp. This enhanced relaxation phenomenon, the Purcell effect,
allows for a regime in which radiative relaxation is dominant over non radiative
relaxation Γp � Γphon. In our experiments this regime is attained, we will thus
neglect non-radiative spin relaxation channels in the following.

Bloch equations in the drive frame at zero temperature

The evolution of the spin Bloch vector in the displaced frame rotating at the drive
frequency, when taking into account the coupled decoherence and dissipation
channels, is directly computed using the master equation in the adiabatic ap-
proximation Eq. 3.19:

d

dt

〈σx〉〈σy〉
〈σz〉

 =

 0 ∆s −2ig0Im[α]
−∆s 0 −2ig0Re[α]

2ig0Im[α] 2ig0Re[α] 0


〈σx〉〈σy〉
〈σz〉


(3.22)

− 1
2

Γphon + Γp + 2Γ2
Γphon + Γp + 2Γ2

2Γphon + 2Γp


 〈σx〉
〈σy〉
〈σz〉+ 1

 ,
where ∆s = ωs − ωd. Assuming for simplicity α = α∗, the first term describes the
rotation of the magnetization vector around the axis (−2g0α)êx + ∆sêz at the Rabi
frequency:

ΩR =
√

∆2
s + (2g0α)2 (3.23)

The second term describes the decay of the magnetization components due to
coupling with external channels.

Single spin fluorescence signal

Because of the Purcell effect, spin relaxation gives rise to the emission of a flux
of photons in the detection line, the fluorescence signal. This can be seen as
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follows. Consider the evolution of the spin-cavity system from time t0 to time t1.
The number of photons emitted in the line is given by:

F = κext

∫ t1

t0
〈â†â〉dt. (3.24)

But, from the master equation 3.17 one finds the following relations:

d

dt
〈 σ̂z2 〉 = 1

2i~Tr[ρ̂[σ̂z, Ĥ]] = −ig0〈âσ̂+ − â†σ̂−〉 (3.25)

d

dt
〈â†â〉 = ig0〈âσ̂+ − â†σ̂−〉 − κ〈â†â〉 = − d

dt
〈 σ̂z2 〉 − κ〈â

†â〉 (3.26)

where we assumed no drive, neglected the slow non-radiative spin relaxation
channel (Γphon � Γp), and used the commutation relations [σ̂z, σ̂±] = ±2σ̂±. Thus,
we get that:

F = κext
κ

[1
2〈σ̂z〉(t0)− 〈σ̂z〉(t1)− 〈â†â〉(t1)− 〈â†â〉(t0)

]
. (3.27)

This relation expresses the conservation of energy, the photons leaking from the
cavity must equal the variation of 〈σ̂z〉 over the time interval minus the number of
photons left in the cavity, up to a multiplicative term κext/κ due to cavity losses.

Since moreover in the weak coupling limit Γp � κ, the intra-resonator photon
number is small at all times, such that 〈â†â〉(t0) ∼ 〈â†â〉(t1) ∼ 0. We then get
a direct link between the change in longitudinal polarization and the number
of fluorescence photons emitted. This allows to rewrite Eq. 3.27 neglecting the
second term on the right hand side:

F = κext

∫ t1

t0
〈â†â〉dt = κext

κ

〈σ̂z〉(t0)− 〈σ̂z〉(t1)
2 (3.28)

This result shows that the fluorescence signal is directly proportional to the vari-
ation of 〈σ̂z〉 through the ratio κext/κ, the latter accounting for the part of emitted
photons that gets lost in internal losses.

3.3 Spin ensemble coupled to a harmonic oscillator

We have since now considered a single spin coupled to a LC resonator in the weak
coupling limit, here we extend this analysis to an ensemble of N spins.

It is well known that when N identical spins are coupled symmetrically to an
electromagnetic mode, collective effects appear in the dynamics [33, 34, 35]; for
instance, spontaneous relaxation may occur by super-fluorescence, a process in
which the spin ensemble emits spontaneously and collectively a strong pulse of
radiation (pulsed maser regime). In our case however, the spins are not identi-
cal; they have slightly different Larmor frequency because of variations in their
local environment (due to strain in the crystal, distribution of nuclear or elec-
tron spins, ...). This inhomogeneous broadening is characterized by the FWHM
linewidth Γ∗2 of the spin ensemble. For sufficiently large Γ∗2, the spins are no
longer identical; collective relaxation effects are washed out, and spins behave
and relax as independent emitters. The criterion for this weak coupling regime
is that the so-called cooperativity parameter is:

C ≡ 2g2
0N

κΓ∗2
= N

ΓP
2Γ∗2
� 1. (3.29)
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This is the regime in which all the experiments of this thesis are conducted. In
this regime, the dynamics of each individual spin is independent of the dynamics
of the other spins, and in particular this also applies to the relaxation. Thus, the
results derived in the single-spin case apply by replacing single-spin variables
with collective variables:

Ŝi → Ŝi =
∑
n

Ŝ
(n)
i (3.30)

where i = x, y, z. Note that −N/2 < 〈Ŝi〉 < N/2. The output fields can be computed
making use of 〈Ŝi〉.

Field observables in the N spin case

In the single-spin case the adiabatic approximation allows to obtain a direct re-
lation between the average value of the photon number and cavity field and the
components 〈σ̂i〉 of the magnetization vector. Such relations are derived in the
appendix, Eqs. C.27 and C.28, in the single-spin case, and keep holding in the
case of a N-spin ensemble where decoherence and damping effect are present,
as detailed above. In the drive frame one has:

〈â†â〉(t) =
∑
n

Γp(∆n)
κ

〈1 + σ̂
(n)
z 〉(t)
2 (3.31)

〈â〉(t) =
∑
n

−ig0
κ
2 + i∆n

〈σ̂(n)
x − iσ̂(n)

y 〉(t)
2 e−i∆nt (3.32)

where the variable ∆n denotes the inhomogeneous frequency shift of each spin
with respect to the average spin Larmor frequency ωs.

Note that, while in the N-spins case the number of photons is an additive ob-
servable, the evolution of the field amplitude depends on the ensemble frequency
inhomogeneity. Thus, unless a particular pulse sequence is employed to get rid
of this inhomogeneous broadening, the transversal magnetization quickly decays
to zero due to ensemble-average effects:

〈â〉 ≈ 0. (3.33)

In the following, we will see how a Hahn echo sequence suppresses the inhomo-
geneous broadening, allowing to recover a non-zero field amplitude.

In the next sections, we derive the electromagnetic signal emitted by a spin en-
semble after three different excitation pulses. First, the case of a π-pulse, which
causes the emission of a spin fluorescence signal. Second, the case of a π/2-
pulse, which stimulates the emission of a free-induction-decay (FID) signal, ex-
ponentially damped due to inhomogeneous broadening. Third, a Hahn echo se-
quence, which counteracts the effect of inhomogeneous broadening and stimu-
lates the emission of a coherent echo from the spin ensemble.

Model for analytical derivation

Analytical results for computing the signal emitted by a spin ensemble can only
be obtained under some approximations that do not necessarily reflect the exper-
imental situation. Nevertheless, these results are interesting because they allow
to estimate the dependence of emitted signals from relevant parameters. Exact
results can be obtained through numerical simulations.
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In the following calculations, we consider an ensemble of N spins in a static
magnetic field B0, we consider each spin to have a Larmor frequency ωs+∆, where
the detuning ∆, due to inhomogeneous broadening, has a Lorentzian distribution
f(∆) of HWHM Γ∗2:

f(∆) = 1
π

Γ∗2
Γ∗22 + ∆2 . (3.34)

We consider that the spin-resonator system is in the low cooperativity regime
C � 1, and is in the Purcell regime. Moreover, we consider an identical spin-
resonator coupling g0 for all spins. Finally, we assume that the resonator linewidth
is larger than the spin inhomogeneous linewidth, κ � Γ∗2. In that limit, ideal
control pulses can be applied to the spins (ie, with an identical Rabi angle, and
quasi-instantaneous).

Under these approximations all the spins relax with the same Purcell rate
Γp = 4g2

0/κ. In the continuum limit, by replacing the sum over spins with an
integral over detunings, Eq.3.31 and 3.32 become:

〈â†â〉(t) = Γp
κ

(
N

2 + 〈Ŝz〉(t)
)

(3.35)

〈â〉(t) = −4ig0
κ
〈Ŝ−〉(0)

∫
f(∆)e−i∆td∆ (3.36)

where 〈Ŝ−〉 = 〈Ŝx − iŜy〉/2.
In the following, the starting condition is the spin ensemble in its ground

state, with a polarization p = 2〈Ŝz〉/N = −1, and 〈Ŝx〉 = 〈Ŝy〉 = 0.

Fluorescence

Consider a π-pulse applied to the spin ensemble at t = 0. The resulting state (all
spins excited) verifies 〈Ŝz〉(0) = N/2. From Eq. 3.22, the evolution of 〈Ŝz〉 is an
exponential decay with rate ΓP:

〈Ŝz〉(t) = −N2 +Ne−ΓPt, (3.37)

while at any time 〈Ŝx〉(t) = 〈Ŝy〉(t) = 0. The signal emitted by the spins is obtained
from Eqs.3.31 and 3.32:

〈â†â〉(t) = ΓP
κ

(
N

2 + 〈Ŝz〉(t)
)

= ΓPN

κ
e−ΓPt (3.38)

〈â〉(t) = 0 (3.39)

The spin ensemble relaxes to the equilibrium state by emitting a stream of pho-
tons exponentially decaying at rate Γp, the fluorescence signal. A fraction κext
of photons leaks from the cavity and can be detected, while the rest is lost into
internal cavity losses. These photons are incoherent, as can be seen from the
fact that 〈a〉(t) = 0.

We now estimate the SNR for photon detection of the fluorescence signal, tak-
ing into account the imperfect detector, following the discussion in Chapter 2.
The number of counts detected are integrated over a time window tw (with tw ∼ T1
to maximize the photon counting signal). The number of clicks expected is equal
to ηN with η = ηcηdηint, where ηint = 1 − e−ΓPtw a factor of order unity caused by
the finite integration window. Therefore, Eq. 2.111 leads to:

SNRpc = ηN√
νdctw + η(1− η)N

. (3.40)
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Figure 3.1: Spin fluorescence emission. Evolution of average field and spin
observables after a π-pulse on the spin ensemble. (a) A flux of photons leaks from
the resonator and decays over a characteristic time equal to the spin Purcell
relaxation time TP. This is the spin fluorescence signal. (b) The average field
amplitude at the output of the resonator is zero. (c) The total spin component Ŝz
is flipped and relaxes back to the ground state with characteristic decay time TP.

It is interesting to note that this SNR can in principle become arbitrarily large
for an ideal SMPD for which νdc ∼ 0 and η ∼ 1, even for N approaching 1. This
reflects the fact that in the Purcell regime, N spins once excited will emit N
photons over a timescale of a few T1, and that an ideal SMPD will detect them
all noiselessly. SMPD detection of spin fluorescence in the Purcell regime thus
appears as a particularly promising method for detecting small numbers of spins,
which motivates the experimental effort undertaken in this thesis.

Free induction decay

Consider now the evolution of the spin ensemble after a π/2-pulse along the x
direction, as showed in Fig. 3.2. The average total spin values at t = 0, after the
pulse, are 〈Ŝx〉 = 0, 〈Ŝy〉 = N/2 and 〈Ŝz〉 = 0. We have:

〈Ŝz〉(t) = −N2 +
(
〈Ŝz〉(0) + N

2

)
e−ΓPt, (3.41)

〈Ŝ−〉(t) = 〈Ŝ−〉(0)e−Γ∗2t. (3.42)

The transverse spin component 〈Ŝ−〉 is exponentially damped at rate Γ∗2 due to
the inhomogeneous distribution of spin frequencies, while the longitudinal spin
component is damped at rate ΓP � Γ∗2 due to Purcell relaxation.
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Figure 3.2: Free induction decay. Evolution of average field and spin observ-
ables after a π/2-pulse on the spin ensemble. (a) A flux of fluorescence photons
leaks from the resonator and vanishes with characteristic TP. (b) A non-zero aver-
age field amplitude is emitted at the output of the resonator, constituting the FID
signal emitted by the spin precessing vector precessing in the equatorial plane.
This signal decays over a timescale T ∗2 � TP. (c) Evolution of the average Ŝz and
Ŝ− spin components.

The microwave field generated in the resonator by the spin dynamics is:

〈â†â〉(t) = ΓpN

2κ e−ΓPt (3.43)

〈â〉(t) = −g0N

2κ e−Γ∗2t (3.44)

The term 〈â†â〉 describes the fluorescence due to Purcell relaxation, occurring on
a timescale TP = Γ−1

P , as seen above. The field 〈â〉 describes an oscillating signal
decaying exponentially with time T ∗2 = Γ∗−1

2 � Tp, the so-called free-induction
decay.

Hahn echo

Finally, we show how the exponential suppression of the FID signal can be coun-
teracted with the Hahn echo pulse sequence [36]; showed in Fig.3.3.

A π/2 pulse is applied to the spins along the x axis, such that a state with
〈Ŝy〉 = N/2 is prepared, which then decays in T ∗2 by FID. After a delay τ � T ∗2 ,
a π pulse is applied along the y axis, reversing the spin evolution: as a result,
after another waiting time τ , the transverse total spin component recovers to its
initial value, generating a signal in the detection circuit known as ”spin-echo”.
This echo signal decays as a function of 2τ , with time constant T2 due to spin
decoherence associated to homogeneous broadening.



60 CHAPTER 3. SPINS COUPLED TO A RESONATOR

a)

b)
N/2

-N/2

S
S -

√κ
ex

t

a)

P

+
κ e

xt

Figure 3.3: Hahn echo. Evolution of average field and spin observables after
a Hahn-echo sequence on the spin ensemble. (a) A flux of fluorescence photons
leaks from the resonator and vanishes with characteristic TP. On top of the
fluorescence a weaker photon signal is emitted in correspondence of the spin
echo. (b) The first π/2 pulse stimulates the emission of a FID signal, appearing
as a non-zero field amplitude decaying over T ∗2 . Application of a π-pulse after a
time τ allows to refocus the spin ensemble, producing a coherent echo signal at
time 2τ . (c) Evolution of the average Ŝz and Ŝ− spin components. At echo time
2τ refocusing of the average transversal spin component Ŝ− is at the origin of
the echo signal. Moreover, photons are emitted causing a drop in the average
longitudinal spin component Ŝz.

Taking the origin of times when the echo emission happens, the first π/2 pulse
about the x-axis at t = −2τ , takes each spin to the state 〈Ŝ(j)

− (−2τ)〉 = −i/4, and
after the refocusing π-pulse, the free evolution will bring the spin back in phase
at t = 0:

〈Ŝ(j)
− 〉(t) = − i4e

−i∆jt. (3.45)

In the continuous limit, integrating on detunings leads to:

〈Ŝ−〉(t) = − iN4 e−Γ∗2|t|, (3.46)

such that the intra-resonator field is:

〈â〉(t) = −g0N

κ
e−Γ∗2|t|. (3.47)

The field leaving the resonator is 〈âout〉(t) = √κext〈â〉(t), and assuming that 〈â(t)〉
is real-valued in our calculations the mean signal is carried by the quadrature
X̂out = (âout + â†out)/2.
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We now define single modes of the propagating field using a real-valued nor-
malized mode function u(t):

âout =
∫
âout(t)u(t)dt (3.48)

X̂out =
∫
X̂out(t)u(t)dt. (3.49)

The optimal choice for u(t) is the one that maximizes the weighted signal, in an
experiment it may be the measured shape of the emitted pulse averaged over
many experimental runs. Since we are interested in analytical estimates, we
choose:

u(t) = 〈X̂out〉(t)
〈X̂out〉

. (3.50)

The correct normalization
∫
|u(t)|2dt = 1 is satisfied if:

〈X̂out〉2 =
∫
〈X̂out〉(t)2dt = κext

g2
0N

2

κ2Γ∗2
(3.51)

which leads to an integrated echo signal:

〈X̂out〉 = N

√
κext
κ

ΓP
2Γ∗2

. (3.52)

The Hahn echo is with good approximation a single-mode coherent state of
amplitude Re[α] = 〈X̂out〉 (assumed real since the known phase reference is set
by the exciting pulse). The SNRs for quadrature and photon detection are thus
readily calculated from Eqs. 2.82 and 2.84, with a collection efficiency ηc =
κext/κ:

SNRqd = 2N
√
ηc

ΓP
2Γ∗2

, (3.53)

SNRpc = N

√
ηdηc

ΓP
2Γ∗2

. (3.54)

In contrast with the fluorescence detection (see previous paragraph), the SNR
of echo detection is always lower than 2N

√
ΓP /2Γ∗2 for an ideal quadrature detec-

tion, and N
√

ΓP /2Γ∗2 for an ideal photon counter. This is due to vacuum fluctua-
tions, or equivalently shot noise.

Fluorescence detection versus Hahn-echo detection of a spin
ensemble

A number of interesting aspects are worth underlining at this point, in the com-
parison between fluorescence and Hahn echo signals.

First, we note that the echo intensity (i.e., mean photon number 〈X̂out〉2) scales
like N2 (see Eq.3.51), in contrast with the number of photons emitted by fluores-
cence (Eq.3.38), which scales like N . This reflects the fact that the spin-echo
results from the constructive interference of the fields radiated by all spins when
their dipole comes back in phase at the echo time, and is therefore in essence
a super-radiant process in the sense of Dicke [33]. In contrast, fluorescence is
emitted by each spin independently from the others, and is therefore incoherent.
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Figure 3.4: Fluorescence versus echo detection. Ratio of SNRs in the case of
fluorescence photo-detection and echo quadrature detection, for different num-
bers N of spins, and realistic experimental parameters. The sensitivity favours
fluorescence photo-detection at low number of spins N ≤ 105 while at large
N > 105 echo quadrature detection has better performances.

Another aspect noteworthy is that spin echoes contain much less photons
than fluorescence. This is expected, since N excited spins can produce at most N
photons; in that sense the integrated fluorescence signal contains as much signal
as possible from a spin ensemble. It is not immediately visible that the echo inten-
sity 〈Xout〉2 = N2ηcΓP /(2Γ∗2) is much lower than N . It is indeed the case, because
of the low cooperativity condition Eq. 3.29 which states that NΓP /(2Γ∗2) � 1. In
the vocabulary of magnetic resonance, this condition is also equivalent to negli-
gible radiation damping.

Finally, we wish to compare the SNRs for quadrature detection of a Hahn-
echo and photon detection of the fluorescence signal. Because of the different
scaling of the number of photons emitted in an echo and in fluorescence, one
can expect that in the limit of large N , echo detection gives a better SNR than
fluorescence; however, in the limit of low spin numbers, fluorescence may, for
certain parameters, become more advantageous. This intuition is confirmed by
the figure 3.4, which shows SNRpc,fluo/SNRqd,echo as a function of ηd and νdc for
differentN , using our experimental values of κ = 4.23×106 s−1,ΓP = 3.33 s−1,Γ∗2 ' κ
(see experimental chapters below). We see that for large N ∼ 105 quadrature echo
detection is more sensitive, while at low number of spinsN < 103 photon counting
of fluorescence signal becomes more adapted for spin detection for a large range
of parameters ηd and νdc.

3.4 Simulating spin dynamics

In this work we will often make use of numerical simulations to reproduce and
validate the measurements performed on the spin ensemble. For this, we employ
a simulation code, which, starting from the master equation 3.19, computes the
spin ensemble dynamics and extract the components of the magnetisation vector.
The software allows to initialise the density matrix of the system based on the spin
relaxation times, and the experimental repetition time. It also includes the back-
action of the spin-generated field on the spin dynamics, i.e., radiation damping.
Finally, the software can take into account inhomogeneity in the spin-photon
coupling g0 by simulating multiple experiments with different coupling values
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and convoluting the obtained result with the computed ρ(g0) distribution.
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Chapter 4

Spin device

The experiment at the heart of this thesis consists in the measurement of the
fluorescence signal of an ensemble of electron spins by means of a microwave
photon counter.

The first part of this chapter is devoted to the description of the spin device. In
section 4.1 we give a short introduction to bismuth donors in silicon, presenting
the elements useful to understand the results of this work, and the character-
istics of the chip employed in the experiment. In section 4.2 we describe the
design of the superconducting LC resonator used to couple the spin to the field,
show relevant simulations of the field profile and coupling constant and detail
the fabrication process.

In the second part, section 4.3, we characterize the spin ensemble. We mea-
sure the spin relaxation time T1 ' TP, estimate the average spin-photon coupling
ḡ0 and its standard deviation σg0 and finally estimate the spectral density of spins
ρspin. The latter will be used in chapter 6 to infer the total efficiency of the photo-
detection process.

4.1 Bismuth donor spins in silicon

Physical description

Figure 4.1: Bismuth donor in silicon. (a) A single bismuth substitutional
impurity in silicon diamond lattice. (b) Silicon energy band diagram; valence
band maximum and conduction band minimum highlighted in red and yellow,
respectively.

67
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Figure 4.2: Bismuth energy spectrum. Energy-levels computed from the di-
agonalisation of the Si:Bi Hamiltonian as a function of B0 (Eq.4.2). The coupled
energy-levels E±m are color-coded from purple to red, the uncoupled energy-levels
are in black. Figure adapted from [37, 38]

Silicon is an element of the IV-group crystallizing in a diamond structure, where
each silicon atom is at the center of a tetrahedron whose vertices are occupied
by its four first neighbours to which is covalently bound (see Fig.4.1(a)). The
band structure represented in Fig.4.1(b), shows an indirect band-gap of energy
Eg = 1.1 eV at 300 K.

A donor is a group-V impurity substituting a silicon atom in the lattice. Four
of its valence electrons form covalent bonds with the four neighbouring silicon
atoms, keeping almost unaltered the local geometry (see Fig.4.1). The fifth elec-
tron is either bound to the donor nucleus Coulombic potential (’neutral donor’)
or ionized to the conduction band. In this thesis, we work with bismuth donors.
Their ionization energy isED =71 meV. Given the concentration of bismuth donors
in our sample ≈ 1016 cm−3 and an ionization energy of 71 meV, bismuth donors
are found in their neutral state for temperatures up to 40 K. In our experiment,
which is performed at T <20 mK, all donors are expected to be in their neutral
state.

Spin Hamiltonian and energy levels

In this thesis, we are interested in the electron spin degree of freedom S = 1/2
of the neutral bismuth donor. In this section we provide a brief qualitative de-
scription of their Hamiltonian and energy states; much more details can be found
in [38] for instance.

This electron spin is coupled by the contact hyperfine interaction with a strength
A/2π = 1.4754 GHz to the nuclear spin I = 9/2 of the bismuth atom. In presence
of a static magnetic field B0 = B0ez applied along z, the spin Hamiltonian reads
[39]:
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Ĥ/~ = B0 ·
(
γeŜ ⊗ 1− γn1⊗ Î

)
+AŜ · Î = (4.1)

AŜz Îz + A

2 (Ŝ+Î− + Ŝ−Î+) + ωs(Ŝz − δÎz), (4.2)

where γe/2π = 27.997 GHz/T and γn/2π = 6.962 MHz/T are the electronic and
nuclear gyromagnetic ratios, respectively, and we defined ωs = B0γe and δ =
γn/γe = 10−3. The first term describes the Zeeman effect and the second the
hyperfine coupling. Due to this hyperfine term, the energy eigenstates are hy-
bridized electro-nuclear states where the hybridization degree depends on the
relative magnitude of the Zeeman and hyperfine terms. The computed spectrum
is shown in Fig. 4.2.

Because the operator Sz + Iz commutes with the Hamiltonian, its eigenvalue
m (which varies between −5 and +5) is a good quantum number that can be used
to label the states. At B = 0, the eigenstates are grouped in two degenerate mul-
tiplets of respectively 9 and 11 states, corresponding to the total spin eigenvalue
F ∈ {4, 5}, and separated by 5A = 2π×7.377 GHz. States from the ground (excited)
multiplet are labeled as − (+). In the experiments performed in this thesis we will
address the spin transition |−,−4〉 → |+,−5〉. The associated transition-matrix
element can be computed :

〈+,−5
∣∣∣Ŝx∣∣∣−,−4〉 = 0.47. (4.3)

In the experiment we will treat this transition as an effective spin 1/2, a good
approximation since other transitions are not within the resonator bandwidth.

Sensitivity to strain

Bismuth donor spins are sensitive to mechanical strain in the substrate. Indeed,
strain affects the donor orbital wavefunction, which in turn impacts the value of
the hyperfine coupling constant A. This effect was quantified in recent work [40]
by direct measurement of the bismuth donor ESR spectrum under the applica-
tion of strain; a sensitivity ∂A/∂ε = 28 GHz/strain was measured, where ε is the
hydrostatic strain.

Coherence properties

We now give a brief qualitative account of bismuth donor spin decoherence at
millikelvin temperatures.

Non-radiative relaxation The only measurement of bismuth non-radiative en-
ergy relaxation at temperatures compared to the ones of our experiment has been
reported by Bienfait et al. [2]. In their work they measure Γ−1

1 = 1500 s at 20 mK
using a superconducting resonator similar to the one of our experiments. In our
experiment, performed in similar conditions, we take the same estimation of the
spin non-radiative relaxation rate Γnon−rad = 1/1500 s−1. As we will see, the Purcell
relaxation time is orders of magnitude shorter, and is therefore the only relevant
spin relaxation mechanism in our experimental conditions.
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Coherence time In Chapter 2, spin decoherence was modelled by a rate Γ2,
in the framework of the Bloch equations, which predict an exponential damp-
ing of the transverse spin operator. This description is only phenomenological,
and does not apply well to the dominant decoherence mechanisms for spins in
solids, which is spectral diffusion caused by changes in the spin magnetic envi-
ronment. In natural silicon, the dominant spectral diffusion mechanism is due
to 29Si nuclear spins, which are present at a 4.7% abundance, and it limits the
spin coherence time T2 to ∼ 600 − 800µs [39]. In our experiment, we use a sil-
icon substrate that has been isotopically enriched in the nuclear-spin-free 28Si
isotope, so that nuclear-spin spectral diffusion is suppressed. In such samples,
the electron spin coherence time can be very long, up to 1 s [41]. However, in our
device, the spins are close to the silicon/silicon oxide interface, where dangling
bonds cause additional decoherence [42] with a typical T2 ∼ 2− 8 ms.

Bismuth-implanted sample

The chip measured in this work consists in a silicon substrate implanted with bis-
muth atoms (Fig. 4.3a). The implantation depth is about 100 nm with a peak den-
sity of ∼ 8× 1016 cm−3, as shown in fig. 4.3b. An external in-plane magnetic field
B0 is applied to lift the degeneracy of the spin states, as explained above. Figure
4.3c shows the computed transition frequency of several EPR-allowed transitions
as a function ofB0, at low magnetic fields. The |+,−5〉 ↔ |−,−4〉 transition crosses
the spin resonator frequency ω0/2π = 6.95 GHz (see below) around B0 = 17 mT.

4.2 Superconducting lumped LC resonator

In this section we present the superconducting LC resonator that inductively
couples to the bismuth electron spins.

Design

Reaching the Purcell regime requires a sufficiently high spin-photon coupling
constant g0, and a low energy loss rate κ.
The resonator design is based on the previous work of Bienfait et al. [2].

Geometry

The resonator design is shown in Fig. 4.4a. It is a millimeter-sized lumped
LC resonator formed by an interdigitated capacitor, shunted with a 1 µm-wide,
450 µm-long inductive wire, patterned on top of the silicon sample by evaporation
of a 50 nm-thick aluminum film. The resonator interacts with implanted bismuth
donors through the ac magnetic field B1 generated in the inductor, as shown in
Figs. 4.3d-e.

Coupling to the measurement line

The total resonator damping rate κ = κint + κext has contribution from unwanted
internal losses (κint) and losses due to the coupling to the measurement line (κext).

In order to suppress radiation losses, the sample is enclosed in a leak-tight
copper box (Fig. 4.4b), whose modes lay well above the LC resonator frequency.
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Figure 4.3: Spin chip. (a) Bismuth donors are implanted below the surface of
an silicon chip isotopically-enriched in 28Si. The implantation profile (b) is spread
over the first few hundred nanometers, with a peak density of ≈ 8× 1016 cm−3. (c)
Transition frequencies between bismuth spin levels as a function of the applied
external magnetic field B0, used to tune a spin ensemble transition in resonance
with a microwave resonator patterned on the chip surface (d). (e) Illustration of
the magnetic field generated by microwave radiation oscillating in the resonator,
the field is perpendicular to B0 and used to drive and detect the spin magnetic
moment. (f) Simulation of the spin-resonator coupling constant g0 for a 1 µm-
wide wire at position x = 0 (shown schematically as an orange rectangle), as a
function of the spin location with respect to the sample surface y = 0. The dashed
rectangle shows the approximate location of the spins measured throughout this
thesis.

The choice of copper with respect to less lossy superconducting boxes is due to
the necessity of applying external magnetic fields to tune the spin into resonance
with the LC resonator. The coupling rate to the measurement line κext is set by
the value of the coupling capacitance to the external lines. This capacitance is
set by an antenna that is entering the box through a drilled hole (see Fig. 4.4b).
The antenna is soldered to the inner conductor of a SMA connector screwed in
the cavity wall. The insertion-depth of the SMA in the box wall determines the
length of the antenna inside the box, and therefore κext.

Resonant frequency

The resonator frequency is designed to be ω0/2π = 7.0 GHz, not far from the Si:Bi
zero-field splitting of about 7.4 GHz, and within the tunability range of the mi-
crowave photon detector.

Electromagnetic simulations

The resonator frequency ω0/2π ' 7 GHz and coupling to the measurement line
κext ' 1× 106 s−1 via the copper box and the antenna are designed using 3D elec-
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a) b)

c)

0.5 mm

d)

Figure 4.4: Spin box. (a) Optical image of the aluminum resonator patterned
on the surface of the silicon chip, the 1 µm-long inductor wire shunting the two
capacitor is barely visible in the center of the resonator. (b) Copper box containing
the patterned spin chip. Coupled to the external line used to inject field and
collect signal is done via a tunable antenna protruding into the cavity (left image).
(c) The copper cavity hosting the chip is inserted in a cylindrical coil used to
generate the in-plane magnetic field B0, everything is then inserted in a cryoperm
shield (d) in order to minimize magnetic interferences from external sources.

tromagnetic simulations realized with CST microwave studio and ANSYS HFSS
(see Fig. 4.5).

Always using the simulations, the resonator impedance Z0 = 45Ω is obtained
by computing the current flowing in the circuit for fixed eigenmode energy. The
vacuum fluctuations of the current flowing in the wire are then computed us-
ing this value (see paragraph 2.2). Using COMSOL simulations, we can then
compute the spatial profile of |Bzpf |, the vacuum fluctuations of B1 generated by
this current around the wire. And using Eq. 3.8, the spatial profile of the spin-
resonator coupling constant g0 is finally obtained (see Fig. 4.3f). Below the wire,
g0/2π ' 300 Hz is predicted.

Fabrication

The whole circuit is fabricated out of a 50 nm-thick aluminum film, evaporated
on the implanted silicon substrate through a PMMA resist mask patterned using
electron beam lithography. A subsequent lift-off step allows to remove the metal
in excess. A scaning electron microscopy image of the resonator is showed in Fig.
4.4a, the fabrication steps are:

1. Substrate cleaning: acetone/isopropanol/water + ultrasonic bath

2. Resist spinning:

a) dehydratation bake (7’/156°C)

b) MAA(8.5) spinning (5s@4000rpm/60s@6000rpm/2s@8000rpm)

c) bake (3’/156°C)
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a)

b)

Figure 4.5: Spin chip simulations. (a) HFSS electromagnetic simulation of the
electric field associated to the mode of the aluminum resonator, the outermost
boundary denotes the copper box holding the sample chip (in the middle where
the field is more intense). (b) Electromagnetic simulation of the absolute value
of the surface current across the resonator, when the resonant mode is excited
with 1 Joule of energy.

d) PMMA A3 spinning (5s@4000rpm/60s@5000rpm/2s@8000rpm)

e) bake (15’/175°C)

3. Electron-beam lithography (Raith):

a) Voltage: 10 kV

b) Options: meander mode

c) Pads and fingers: aperture(60 µm)/dose(160 µC cm−2)/wfield(500 µm)

d) Wire: aperture(10 µm)/dose(140 µC cm−2)/wfield(500 µm)

e) : develop MIBK:IPA 1:3 for 55 s. Rince in IPA for 10 s.

f) Oxygen plasma cleaning: power(80W)/pressure(0.2 mbar)/30 s

4. Aluminum evaporation
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a) Aluminum: 50 nm @ 1nm/s
b) Lift-off: ultrasonication(15 s)/acetone(2 h)/acetone(50°C/1 h + 70°C/10’).

4.3 ESR spectroscopy of bismuth donors in silicon

In what follows we present the results of ESR spectroscopy based on Hahn-echo
detection for the bismuth-implanted chip introduced in the previous sections.

Sample mounting

The bismuth-implanted silicon chip on which surface the superconducting LC
resonator has been patterned, is inserted in a 3D copper cavity (Fig. 4.4b). This
cavity is then positioned inside a superconducting coil (Fig. 4.4c) that will be
used to generate the static magnetic field B0, parallel to the superconducting
inductor wire, in order to tune the spin resonant frequency. The coil is inserted
in a 1-mm-thick cryoperm magnetic shield (Fig. 4.4d) to minimize stray magnetic
field which may introduce vortices in the film during cool down. The whole packet
is then mounted at the 20 mK stage of a dilution refrigerator.

Experimental setup

In this thesis, both ESR spectroscopy and photon-counting are performed on the
same sample within the same experimental run. For this reason both measure-
ment setups are connected to the sample. However, only one device at a time is
used for the measurement, while the other is properly turned off, or detuned, not
to disturb the measurement. Each measurement setup will be introduced at the
time it is employed, unused devices are reported in transparency on figures and
assumed to perfectly reflect any signal at frequencies employed. Here we present
the necessary to perform homodyne detection of ESR signals.

The measurement setup consists of a room temperature part, used to generate
control pulses and collect output signals, and a low temperature part, comprising
sample, filters and low noise amplification stages. In the following paragraphs
we will present the details of both setup.

Room-temperature setup

The room-temperature setup is illustrated on the top part of Fig. 4.6, it includes
two microwave sources Keysight (yellow and purple) and a 4-channel arbitrary
waveform generator (AWG 5014 from Tektronix). All microwave pulses needed to
perform measurement sequences on the spins are generated by mixing signals
from yellow microwave source with 2 AWG outputs, used to drive the I and Q
ports of an I/Q mixer. The same source serves as local oscillator for homodyne
signal demodulation, to extract the quadratures of the electromagnetic field from
the output signal.

The JPA needs dc flux biasing to adjust the JPA frequency, this is provided
by an on-chip antenna close to the JPA SQUID array, fed by a constant voltage
source (red) biasing a resistor at room-temperature (input line 1 in Fig. 4.6).
The JPA also requires flux-pumping to achieve gain, in the homodyne-detection
configuration the pump tone is generated by the purple microwave source, and
the JPA is operated in non-degenerate mode.



4.3. ESR SPECTROSCOPY OF BISMUTH DONORS IN SILICON 75

4K

50K

100 mK

20 mK

IR

spin resonator

IR IR
-10

50 Ohm

-10

-20
-10

-20
IR

-20

IR

bias tee

JPA

IR

-20
-10

-20
IR

HEMT

φ

RF

LO

I

Q

AWG 5014

-
+

1 2 3 4 5 6 7

3 
kΩ

-20

-9

-7-x

I Q

DAQ
20 dB

-3

30 dB-20

RFLO

Figure 4.6: Spin characterization setup. Setup used to perform homodyne
detection of spin-echo signal. Pulses used to drive the spins are generated via
I/Q mixing of a microwave source (yellow), which is also used as reference local
oscillator for homodyne demodulation. Pulses are sent to the fridge through
line 3 and, after several attenuation stages, are routed to the spin resonator.
Reflected signal is directed towards a JPA without distortion from the detuned
SMPD (showed in transparency), additional amplification stage through a HEMT
and room temperature amplifiers is operated before the signal is demodulated
and digitized by an acquisition card (DAQ).
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Figure 4.7: Reflectometry of the spin resonator. Measured S11 parameter
phase, amplitude and complex resonance circle in absence of external magnetic
field B0 (a, b, c) and when B0 ' 16.7 mT, the working point where the spin ensem-
ble is in resonance with the resonator. A 4.3 MHz shift in frequency is observed
when B0 is ramped up, as well as an increase in internal losses due to degrading
superconductivity.

Low-temperature setup

The fridge input line (3 in Fig. 4.6) is connected to the spin resonator input via a
double circulator. The reflected signal is routed by the same circulator towards
the single microwave photon detector input (in transparency), which is however
detuned from the rest of the circuit and completely reflects the incoming signal,
which is finally routed by two double circulators towards the input of the JPA
and the detection chain.

The JPA output (reflected signal) is routed to a High-Electron-Mobility-Transistor
(HEMT) amplifier from Low-Noise Factory anchored at the 4K stage of the cryo-
stat, and then to output line. Infrared filters are inserted on all the lines leading
to the sample to minimize out-of-equilibrium quasi-particle generation leading
to microwave losses.

Resonator characterization

At first, the superconducting lumped-LC-resonator is characterized via reflec-
tometry by using a Vector Network Analyzer (VNA) to measure the reflection co-
efficient S11 as a function of frequency ω, as showed in Fig. 4.7. Fitting these
data with Eq. 2.44 yields the resonator frequency ω0/2π = 6.949 GHz, and the in-
ternal and external energy decay rates κint = 0.62×106 s−1 and κext = 0.99×106 s−1

at zero applied field (Fig. 4.7a,b,c). Measurement of the external and internal
energy decay rates κext, κint as a function of VNA power leads to characteristic be-
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a) b) c)

Figure 4.8: Spin resonator characterization and echo trace. (a) Spin res-
onator energy decay rate κ = κext + κint as a function of the probing VNA power.
High powers saturate spurious two-level-system absorbers, leading to lower κ.
(b) Dependence of resonator frequency ω0 on B0, black lines identify the working
point at which ωs(B0) = ω0. (c) I and Q quadratures of the field measured around
time 2τ in an Hahn sequence, showing the appearance of the echo.

havior showing the saturation of internal losses κint related to two-level-systems
at high powers (Fig. 4.8a).

In order to tune the bismuth donor spins in resonance with the resonator, we ap-
ply an external static magnetic field B0. The field causes a small shift in resonator
frequency (see Fig. 4.8b) and a deterioration of the internal quality factor, due
to vortex penetration (see Section 2.3). Close to the working point B0 ' 16.7 mT
we measure ω0/2π ' 6.9447 GHz, κint = 3.3 × 106 s−1 and κext = 0.93 × 106 s−1 (Fig.
4.7d,e,f).

Spectroscopy

Measurable signal from the spins is retrieved through the Hahn echo sequence,
exposed in section 3.3. After demodulation the signal is digitized by a fast ac-
quisition card which returns a time-dependent voltage value 〈X〉(t), 〈Y 〉(t) for
the two signal quadratures. After rotation of the complex voltage on the 〈X〉(t)
quadrature (see Fig. 4.8c), we define the echo signal as the integral:

Ae =
∫

∆T
〈X〉(t)dt, (4.4)

where ∆T is an appropriate time window (∼ 20µs) centered on the echo.
Spectroscopy is performed by measuring Ae(B0) from 15 to 17 mT. A peak is

observed around B0 ≈ 16.7 mT, as seen in Fig. 4.9a.
One specific aspect is that, as explained in [43] and [42], this peak corre-

sponds to spins located below the wire only. This is due to the strain imparted
by the aluminum wire onto the substrate, which is compressive below the wire
and tensile away from it, leading to 2 values for A as explained in Section 4.1 and
therefore to a characteristic split-peak spectrum.

Rabi oscillations

We then use the spin-echo detection to calibrate the Rabi rotation angles. We
apply a Hahn-echo-type sequence with amplitudes A and 2A respectively for the
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Figure 4.9: ESR spectroscopy of the spin ensemble. (a) Measured integrated
echo (blue dots) as a function B0. (b) Measured (blue dots) and simulated (solid
line) integrated echo as a function of the amplitude A of the π pulse of the Hahn
echo sequence revealing Rabi oscillations. (c) Measured (blue dots) and simulated
(solid line) integrated echo as a function of the delay τ between the inversion
π-pulse and the Hahn echo sequence. An exponential fit (not shown) yield a
characteristic decay time T1 = 300±10 ms. (d) Measured (blue dots) and simulated
(solid line) integrated echo as a function of the delay τ between π/2 and π pulses of
the Hahn echo sequence. An exponential fit (not showed) yields a characteristic
decay time T2 = 2.7 ms.
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first pulse and the refocusing pulse. The maximum echo amplitude Ae is reached
when the two pulses realize a π/2 and a π rotation respectively.

After pulse calibration, we measure Rabi oscillations of the spin ensemble. For
that, we apply a Hahn-echo sequence in which we sweep the π pulse amplitude
A. The resulting Rabi oscillations in Ae are shown in Fig. 4.9b.

The amplitude of these oscillations decays with the pulse amplitude. This de-
cay is not due to decoherence, but to the spread of Rabi frequencies among the
ensemble due to the spatial inhomogeneity of the B1 field. We phenomenologi-
cally model this distribution by a Gaussian ρ(g0) = e−(g0−ḡ0)2/2σ2

g0/N , N being a
normalization factor. We use the simulation program presented in section 3.4 to
determine the standard deviation that reproduces the Rabi oscillations decay (the
simulated curve is shown in Fig.4.9b), and find σg0/2π ≈ 30 Hz, and σg0/ḡ0 ∼ 0.1.

Note that this inhomogeneity in g0 is much smaller than what could be inferred
from Fig. 4.3f. The reason is that we detect only spins located below the wire,
as explained earlier. This area is shown as a dashed rectangle in Fig. 4.3f); and
indeed, in this rectangle, the coupling constant g0 shows little variation.

Spin relaxation

The spin relaxation time T1 is measured through an inversion recovery sequence:
a π pulse followed after time τ by a Hahn-echo detection sequence. Fig. 4.9c
shows Ae as a function of τ . An exponential fit yields a characteristic decay time
T1 = 300±10 ms. This relaxation time is directly linked to the Purcell rate through:

Γp(∆ = 0) = 4g
2
0
κ

= 1
T1
. (4.5)

Using the measured resonator decay rate κ = κint + κext, we infer an average
spin-photon coupling constant ḡ0/2π ≈ 300 Hz, in agreement with the simulations
shown in Fig.4.3f.

Coherence time

We then measure the spin coherence time by measuring Ae as a function of the
delay 2τ between the π/2 pulse and the echo (see Fig. 4.9d). An approximately
expponential decay is observed. A fit (shown in Fig. 4.9d) yields T2 = 2.7 ms.

Complementary measurements described in [42] show that this decoherence
is due to the dipolar coupling of the donor spins with dangling bond spins at the
silicon/silicon oxide interface. Spectral diffusion should result in a Gaussian
decay; but, because the echo signal results from the contribution of all spins in
the detection volume, the distribution of coherence time (due to the varying donor
depth) convoluted with the implantation profile conspires to give an effectively
exponential decay.

Spin density estimation

Here we show how by means of a numerical model one can reproduce experi-
mental data and estimate the number of spins addressed in an echo experiment.

We consider the realistic model introduced in section 3.4 in which the spin en-
semble has inhomogeneous linewidth Γ∗2 much larger than the cavity linewidth:
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Γ∗2 � κ. In this case we can approximate the spectral density of spins ρspin to
be constant over the cavity linewidth, ρspin is the only parameter that sets the
absolute amplitude of the echo signal, and can be estimated by reproducing ex-
perimental observation through simulation.

The experimental signal to be reproduced is the voltage trace issuing of a full
Hahn-echo sequence, comprising the π/2, π and echo amplitudes. For this mea-
surement, the same amplification is used on the echo and pulses in order to pre-
serve the correct amplitude ratio V (I)

e /V
(I)
π/2 with respect to the reference π/2 pulse.

Figure 4.10 shows the experimental data (blue dots) obtained after averaging over
∼ 200 repetitions. By means of the simulation tool we numerically reproduce the
experiment, adjusting ρspin to obtain the observed ratio 〈Xe〉/〈Xπ/2〉 (Fig. 4.10
orange curve). With this method we infer a spin density ρspin ≈ 14.6 spins/kHz,
which yields a total number of spins taking part in the Hahn echo N ≈ 1.46×104.
This value is obtained by computing the number of spins excited in the simula-
tion.

From the estimation of the spin density we can also estimate the cooperativity
through the expression:

C = ρspin
g2

0
κ

(4.6)

which gives C ' 5 × 10−3, consistent with the low-cooperativity limit (C � 1)
considered in the model of the spin ensemble.

Figure 4.10: Estimation of the spin spectral density. (a) Measured (blue dots)
and simulated (orange solid line) electromagnetic field amplitude at the output
of the spin cavity as a function of the time T from the π/2 pulse of an echo
sequence. The echo appears as a slight increase of the field amplitude at twice
the separation between the π/2 and π pulse (inset). The spin spectral density ρspin
is the only free parameter of the simulation, accordance with the experimental
data is achieved for ρspin = 14.6 spins kHz−1.



Chapter 5

Single microwave photon
detector

A single photon detector is a device able to reveal the presence of a photon by
triggering a measurable phenomenon. Efficient photon detectors in the opti-
cal domain rely on the photoelectric effect to convert incoming photons into an
electrical signal. Current applications include bioluminescence detection, DNA
sequencing, single-molecule spectroscopy, fluorescence measurement, quantum
metrology and quantum information processing [44]. Photon detection becomes
increasingly challenging at lower frequencies, since photons do not have enough
energy to induce photo-ionization or trigger other usually exploited phenomena
(e.g. Cooper pair breaking). For this reason, in the microwave domain single pho-
ton counters have remained elusive for a long time. Nevertheless, during the past
decade, the problem of single microwave photon detection has been addressed
in several experiments, leading to the development of devices based on circuit
quantum electrodynamics to perform microwave photodetection.

In order to be able to detect spin fluorescence we need the single microwave
photon detector (SMPD) to be operational. This implies five characteristics. High
efficiency and low dark counts are required in order to have an acceptable SNR
even at low number of spins. The detection efficiency must not depend on the
shape of the wave-packet or on the precise knowledge of its arrival time. Fre-
quency tunability is needed, to tune the detector in resonance with the spin
resonator frequency ω0. Finally, the detector must allow cyclic operation in order
to gather signal on timescales of the order of the spin decay rate TP ∼ 1 s.

In this chapter, we present our implementation of a single microwave photon
detector based on a transmon qubit. In section 5.1 we give an overview of the
existing solutions and present our approach to the problem (5.2), we then present
the transmon qubit (5.2) which forms the basis of our device. In section 5.2 we
give the Hamiltonian of the single microwave photon detector and derive a model
to calculate its efficiency and bandwidth, and we introduce the relevant figures
of merit in section 5.3. Section 5.4 is dedicate to the design, simulation and
fabrication of the SMPD, in section 5.6 we present the measurement apparatus
and characterize the detector.

81
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5.1 State of the art: detecting microwave photons with
superconducting circuits

The main challenge of detecting microwave photons is to identify measurable phe-
nomena triggered by their presence, as they have energies 5 orders of magnitude
lower than their optical counterparts. The leading strategy in the microwave do-
main consists of engineering individual quantum systems whose interaction with
the incoming photon will leave a robust imprint on the quantum system of in-
terest. From the point of view of quantum information processing, the task of
photon detection can be seen as the reliable transfer of the quantum informa-
tion carried by an incoming photon onto the state of a well-controlled two-level
system (qubit). The rapid development of quantum devices based on supercon-
ducting circuits [45, 46] has enabled the emergence of novel instruments in the
microwave domain comprising linear amplifiers operating close to the quantum
limit [47, 48, 49], squeezers [50, 51], lossless frequency converters [52], or mi-
crowave isolators [53]. As the key missing element of this quantum optics toolbox,
Single Microwave Photon Detectors (SMPD) have been an intense research topic
in the past decade with numerous theoretical proposals [54, 55, 56] as well as
various proof-of-principle demonstrations [57, 58, 59, 60, 61, 62, 63, 64, 65].
Among these, few different strategies are pursued. In the following we present a
brief description of two single-microwave-photon-detectors designs.

An SMPD design based on a similar principle to the one used in this thesis has
been introduced by Inomata et al. [61]. It relies on the deterministic switching
of an artificial Λ-type three-level system. This system is implemented using the
dressed states of a driven superconducting quantum circuit. Figure 5.1 shows
the device (a) and its working principle (b). The Λ-system consists of a super-
conducting flux qubit of frequency ωq dispersively coupled to a λ/2 resonator of
frequency ωr. The energy level of the system is pictured in Fig. 5.1(b), restricted
to the resonator being in the ground |0〉 or first excited |1〉 state.

During the detection step, when a drive pulse of frequency ωd and power Pd is
applied to the qubit, the four levels hybridize to form dressed states |1̃〉 , |2̃〉 , |3̃〉 , |4̃〉.
Under a proper choice of Pd, the two radiative decay rates from the upper levels
to the lowest-two levels become identical. This realizes an impedance-matched
Λ-system comprising |1̃〉, |2̃〉 and |4̃〉 (or |1̃〉, |2̃〉 and |3̃〉).

An incident single microwave photon, synchronously applied with the drive
pulse through the signal port and in resonance with the |1̃〉 → |4̃〉 transition, de-
terministically induces a Raman transition,|1̃〉 → |4̃〉 → |2̃〉, and is downconverted
to a photon at the |4̃〉 → |2̃〉 transition frequency. This process is accompanied
by an excitation of the qubit. Readout of the qubit state via a parametric phase-
locked oscillator leads to the binary answer click/no-click of the detector.

Note that this detector does not require any temporal shaping of the input
photons, nor precise time-dependent control of system parameters adapted to the
temporal mode of the input photons. Moreover, rapid resetting can be achieved
with a resonant drive inducing the |2̃〉 → |3̃〉 → |1̃〉 transition (see 5.1(c,e)).

As reported in Fig. 5.1(d), the authors measured a single-photon-detection
efficiency of 0.66 ± 0.06 over a detection bandwidth of 16 MHz. Each detection
cycle lasts 760 ns and the dark-count probability is 0.014± 0.001, corresponding to
a dark count rate of the order of 104 counts/s.

A second type of microwave photon detector based on the Ramsey interferom-
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Figure 5.1: SMPD using an artificial Λ-type three-level system. (a) Schematic
of the SMPD device from the work of Inomata et al. A flux qubit is dispersively
coupled to a λ/2 resonator, a port coupled to the qubit allows to apply drive
pulses. A parametric phase locked oscillator allows for fast qubit readout. (b)
Detection principle. After the system is set to its ground state a drive pulse is
applied during a time td, the four levels of the system hybridize and an imping-
ing photon at frequency |1̃〉 → |4̃〉 induces a Raman transition |1̃〉 → |4̃〉 → |2̃〉
accompanied by the emission of a photon (green) and the excitation of the qubit.
Readout of the qubit state leads to a click/no-click answer of the detector. (c)
Pulse sequence for the reset of the detector. The inverse Raman process is ac-
tivated by shining a tone at frequency corresponding to the |2̃〉 → |3̃〉 transition.
(d) Measured detection efficiency as a function of drive frequency and power. (e)
Qubit excited state probability p(e) as a function of the reset frequency and power.
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a)

b) c)

d)

e)

Figure 5.2: SMPD using conditional phase gate. (a) Illustration of the setup.
A transmon qubit is coupled to a detector resonator and a readout resonator.
The detector resonator is resonant with the first to second-excited transition of
the qubit. (b) Energy diagram of the qubit-resonator system when the qubit is
in the ground state. An impinging photon at the bare resonator frequency is
reflected with a phase ϕg = π. (c) Energy diagram of the qubit-resonator system
when the qubit is in the excited state. An impinging photon at the bare resonator
frequency does not interact with the system and is reflected with a phase ϕe = 0.
(d) The pulse scheme consisting of two π/2pulses on the qubit, separated by a
duration Tw. A single photon source is used for detector calibration, the angle θ
determining the weights of the superposition vacuum-single photon. A readout
pulse is used to measure the state of the detection-qubit at the end of the protocol,
as well as to preselect the single shot traces to discard thermal population. (e)
Dark count probability P (e|0) (blue), photon detection efficiency P (e|1) (yellow),
as a function of the detection window Tw.

etry of a transmon qubit has been developed by Besse at al. [64].
As depicted in figure 5.2(a), the detector consists of a transmon qubit coupled

to two resonators. One detector resonator and a readout resonator, used to dis-
persively readout the qubit state. The first to second-excited state transition of
the qubit |e〉 → |f〉 is tuned in resonance with the detector resonator.

The working principle of the detector is shown in Fig. 5.2. When the trans-
mon is in the ground state (b), photons impinging on the detector at the bare
resonator frequency acquire a phase ϕg = π as they are reflected. By contrast,
with the transmon in the first excited state (c), the cavity mode hybridizes with
the resonant qubit mode |e〉 ↔ |f〉, thus photons at the bare cavity frequency are
not resonant and reflected without interacting. By consequence they acquire no
phase ϕe = 0.

Note that the interaction between the photon and the qubit mediated by the
resonator is symmetric, thus the interaction can also be interpreted as a phase-
flip gate of the qubit induced by the reflection of the single photon. The detection
is based on the realization of a phase gate on the detection-qubit controlled by
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the presence of a photon.
The detection protocol is shown in figure 5.2(d). It consists in initializing the

transmon in the state (|g〉+ |e〉)/
√

2 by applying a π/2-pulse, then waiting a detec-
tion time Tw before applying a second π/2-pulse, effectively completing a Ramsey
sequence on the qubit. At the end, the qubit state is readout via the second
resonator.

The author demonstrated a detection efficiency ηd ' 0.7 over a bandwith of
∼ 20 MHz, equal to the detector resonator linewidth. Since this detector design
is based on the Ramsey interferometry of a transmon qubit, dark counts are
induced by the dephasing, leading to 104 − 105 count/s.

Other demonstrations are briefly touched on here. In Ref.[58],[60] and [65],
the photon mode must be known in advance for good performances, therefore
these proposals are not well suited for randomly emitted photons. Several wave-
form independent architectures present high efficiencies (η > 0.5), but dark count
rates are often not explicitly stated but can be inferred from measurements. In
Ref.[59] and [62], the incoming photon triggers a bifurcation in a superconduct-
ing circuit, the Josephson Photo-Multiplier. This scheme is optimized for speed
at the expense of the dark-count rate which is expected to be of the order of
106 counts/s for detection bandwidth larger than 20 MHz. Ref.[63], similar to the
device of Besse at al., is based on the Ramsey interferometry of a transmon
qubit, dark counts are therefore induced by the dephasing of the qubit leading
to 104 − 105 count/s for detection bandwidth of 3− 10 MHz.

In the past two years, it has been proposed and demonstrated a novel photon
detection architecture [57] with a dark count rate of 103 counts/s over a detection
bandwidth of 2 MHz. It relies on dissipation engineering [66] that consists of
steering a quantum system into irreversible dynamics using the friction brought
by open environments. The proposed microwave photon detector is a practical
architecture being not only high efficiency and intrinsically robust against dark
count but also the only one being continuously operated and frequency tunable.
In the following we present its working principle and characteristics.

5.2 SMPD working principle and theory

The single microwave photon detector designed, fabricated and employed in this
thesis is based on the process of four-wave mixing, sketched in Fig. 5.3. This
novel design has been introduced and first realized by Lescanne et al. [57], and
has the main advantage that dark counts are not affected by the properties of
coherence of the qubit.

Four-wave mixing is a parametric non-linear process in which the interac-
tion between excitations at two frequencies ωb and ωp (buffer and pump) produce
excitations at two new frequencies ωq and ωw (qubit and waste), provided that
the following energy conservation condition is satisfied: ωb + ωp = ωq + ωw. In
our particular instance, the non-linearity required to mediate this interaction is
provided by a superconducting qubit.

Consider a qubit of excitation frequency ωq, coupled to two baths at frequen-
cies ωb and ωw, and to a pump line at frequency ωp. As illustrated in figure 5.3:
the non-linearity of the qubit can be exploited to mix an incoming microwave
photon at frequency ωb, that we need to detect, with a classical pump tone at



86 CHAPTER 5. SINGLE MICROWAVE PHOTON DETECTOR

radio-frequency ωp (5.3b). The four-wave mixing process converts these two pho-
tons into the excitation of the qubit at frequency ωq and an outgoing photon at
frequency ωw = ωb + ωp − ωq (5.3c). The qubit is then readout leading to a ”click”
if it is found in the excited state, revealing the capture of the photon.

However, the process just described is reversible: the qubit and the outgoing
photon can still be converted back into two photons at frequencies ωb and ωp,
leading to a detection error. The solution is to make the capture process irre-
versible, by engineering the dissipation of the output bath at frequency ωw. In
fact, fast relaxation to the environment allows to keep its average photon occu-
pation number close to zero.

Finally, we remark that this detection scheme comes with an intrinsic way to
reset the system to its initial state. By populating the waste bath with photons
at frequency ωw, the reverse conversion process, suppressed during normal op-
eration, is stimulated. The possibly excited qubit is brought back to its ground
state and a photon at frequency ωw is converted into a buffer photon at frequency
ωb (Figure 5.3e).

In what follows, we will present the different elements taking part to the detection
process. A superconducting transmon qubit, and two coplanar-waveguide res-
onator acting as photonic baths. We will introduce the four-wave mixing Hamil-
tonian and the adiabatic elimination of the waste bath, we give a simple model
for the detector circuit and introduce the main figures of merit. Finally we will
move to the experimental realization.

The transmon qubit

Building upon the non-linearity afforded by the Josephson junction, we can con-
struct a variety of circuit elements capable of effectively encoding quantum bits of
information as well as performing non-linear mixing of modes. We exploit these
two aspects to build the single microwave photon counter: the four wave mix-
ing interaction where two excitations are converted into two other excitations in
distinct spatial modes and at distinct frequencies and the quantum bit which is
used as a witness on which the incoming photon leaves its imprint. The transmon
qubit enables us to combine both functions in a single element.

In transmon qubits, the transition between the first two energy levels is de-
tuned from that of its first to second excited state by the anharmonicity, which
is typically designed to be 200 − 300 MHz. With this configuration, transitions
between the two lowest levels of the transmon can be addressed with microwave
pulses as short as a few nanoseconds. Physically, transmon qubits are con-
structed with two large superconducting capacitor C structures in parallel with
a single Josephson junction with a Josephson energy EJ. The transmon Hamil-
tonian is simply given by;

Ĥ = Q̂2

2C − EJ cos 2πφ̂/φ0 (5.1)

In order to match with the literature notations, we introduce dimension-less
quantum variables, the number of cooper-pair on the capacitor plate N̂ = Q̂/2e
and the phase across the Josephson junction ϕ = 2πφ̂/φ0 with φ0 = h/2e the
quantum flux. The transmon Hamiltonian expresses as:

Ĥ = 4ECN̂
2 − EJ cos ϕ̂ (5.2)
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Figure 5.3: Four waves mixing. Schematic of irreversible photon capture using
four waves mixing and engineered dissipation. (a) A photon at frequency ωb im-
pinges on a qubit of frequency ωq. (b) The qubit is coupled to a bath at frequency
ωw, a pump tone is continuously shone on the qubit at frequency satisfying the
matching condition ωb + ωp = ωq + ωw. (c) The qubit non-linearity enables the
conversion of the two incoming excitations into an excitation of the qubit and
an outgoing photon at frequency ωw. (d) Engineered dissipation of the bath at
frequency ωw allows fast dissipation of the generated photon and ensures the
irreversibility of the conversion process. The incoming excitation is irreversibly
mapped on the qubit state. (e) Qubit reset protocol: the inverse mixing process,
resetting the qubit to the ground state and generating a photon at frequency ωb
is activated by shining a tone at frequency ωw with the pump on.
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Figure 5.4: Transmon qubit. (Top) Circuit representation of a superconduct-
ing qubit. The Josephson junction (crossed box) plays the role of a non-linear
inductor, lifting the degeneracy of harmonic oscillator transitions. (Bottom) Co-
sine potential of the transmon qubit (red line), dependent on the superconducting
phase ϕ. The resulting quantized energy ladder present an anharmonicity α. The
harmonic oscillator parabolic potential is shown for comparison (dashed line).

with the charging energy defined as EC = e2/2C.
The transmon qubit is characterised by a weak anharmonicity, its wavefunc-

tions are only weakly perturbed compared to the harmonic oscillator. Therefore,
it is convenient to directly express its Hamiltonian in the Fock state basis using
the annihilation and creation operator of the harmonic oscillator q̂ and q̂† where
[q̂, q̂†] = 1. The cooper-pair number and the phase across the junction are then
given by N̂ = NZPF(q̂ − q̂†)/i and ϕ̂ = ϕZPF(q̂ + q̂†) with NZPF = (EJ/32EC)1/4 and
ϕZPF = (2EC/EJ)1/4. In the Fock state basis, the transmon Hamiltonian is given
by:

Ĥ = −4ECN
2
ZPF(q̂ − q̂†)2 − EJ cos

(
ϕZPF(q̂ + q̂†)

)
(5.3)

The weak transmon anharmonicity means that transmon wave function only
explores the bottom of the cosine potential in its ground and first excited states.
It can be translated into the fact that the zero-point-fluctuations of the phase
variable remain small ϕZPF = (2EC/EJ)1/4 � 1. As a consequence, this regime is
therefore achieved in the limit where the charging energy remains small compared
to the Josephson energy EC � EJ, the Josephson junction must be in parallel
to a large capacitor. In practice, the transmon regime is reached for EJ/EC >



5.2. SMPD WORKING PRINCIPLE AND THEORY 89

40, for lower ratios, the transmon frequency becomes sensitive to charge offsets.
In this transmon limit, the Hamiltonian is well approximated by a fourth order
expansion of the cosine potential leading to the following Hamiltonian

Ĥ =

√
EJEC

2 (q̂ − q̂†)2 +

√
EJEC

2 (q̂ + q̂†)2

︸ ︷︷ ︸
harmonic oscillator

− EC
24 (q̂ + q̂†)4︸ ︷︷ ︸
non-linearity

+O(EC

√
EC
EJ

) (5.4)

By simplifying the expression, we obtain the transmon Hamiltonian under the
form of an harmonic oscillator combined with a strong four-wave mixing term.
This equation will be of great interest for the construction of the single microwave
photon detector.

Ĥ =
√

8EJECq̂
†q̂ − EC

12 (q̂ + q̂†)4 (5.5)

By expanding the non-linear term, we collect all combinations of q̂ and q̂†.
However, the only relevant terms are the energy conserving ones. The terms that
do not conserve energy lead to fast rotating contributions which average out on
timescales relevant for the system dynamics, such approximation is known as
the rotating wave approximation (RWA).

Ĥ = (
√

8EJEC − EC)q̂†q̂ − EC
2 q̂†2q̂2 (5.6)

Remarkably, the following Hamiltonian is diagonal in the Fock state basis.
The qubit frequency corresponds to the transition from the ground state |g〉 to
the first excited state |e〉. It is given by

ωq = (
√

8EJEC − EC)/~. (5.7)

Importantly, the transition frequency between the first excited state |e〉 and
second excited state |f〉 is given by ωefq = (

√
8EJEC − 2EC)/~. As expected, the

frequencies strongly differ from each other. The transmon anharmonicity, de-
fined as the mismatch between these two frequencies α = |ωefq − ωq| = EC/~, is
simply given by the charging energy. A typical anharmonicitiy of 200− 300 MHz is
much larger than the typical transmon linewidth (< 10 kHz), therefore the circuit’s
lowest transition behaves as a legitimate qubit.

Circuit electrodynamics

Having introduced two key components of circuit QED systems, superconducting
resonators and transmons, we now look into how they can be integrated to form
a useful quantum device. In particular, we will show how such resonators are
essential for the readout of the transmon qubit, the calibration of the photon
flux as well as the construction of the SMPD. Let’s first study the coupling of a
transmon to a single oscillator.

Transmon qubit dispersively coupled to a resonator

Physically, when a transmon is placed in proximity to a resonator, the charges of
one element can influence those of the other through a coupling capacitor. Im-
portantly, this is treated rigorously in appendix B.4 as it allows to extract circuit



90 CHAPTER 5. SINGLE MICROWAVE PHOTON DETECTOR

Hamiltonians from the finite element electromagnetic simulation. We summarise
this coupling by a parameter of the Hamiltonian, g, which can be computed ex-
actly for a given model of the circuit. The capacitive coupling translate as a simple
linear coupling between modes in the rotating wave approximation. The system
Hamiltonian is given by:

Ĥ = ~ωbb̂
†b̂︸ ︷︷ ︸

oscillator

+ ~(ωq + α)q̂†q̂ − α

12(q̂ + q̂†)4︸ ︷︷ ︸
transmon

+ ~g(b̂†q̂ + b̂q̂†)︸ ︷︷ ︸
capacitive coupling

(5.8)

The first step to treat this Hamiltonian consists in finding the dressed mode
associated the linear coupled system. In a second step, the dressed mode will be
injected into the transmon four-wave mixing term.

Let us focus on the linear part of the Hamitonian given by:

Ĥlin = ~ωbb̂
†b̂+ ~ωqq̂

†q̂ + ~g(b̂†q̂ + b̂q̂†) (5.9)

Due to the linear coupling, the two modes hybridise leading to two uncoupled
dressed modes. This hybridisation corresponds to a mode rotation with an angle
θ = 1

2 arctan 2g/∆ where ∆ = ωb−ωq is the frequency detuning between the modes.
We place ourselves in the dispersive limit where the coupling is much larger
than the detuning, g � ∆, for which the modes are only weakly hybridised. The
dressed modes are given by:

˜̂
b = cos(θ)b̂+ sin(θ)q̂ ≈ b̂+ g

∆ q̂ (5.10)

˜̂q = cos(θ)q̂ − sin(θ)b̂ ≈ q̂ − g

∆ b̂ (5.11)

In the dressed basis, the linear Hamiltonian is simply given by:

Ĥlin = ~ω̃b
˜̂
b†

˜̂
b+ ~ω̃q ˜̂q† ˜̂q (5.12)

where ω̃q = ωq − g2

2∆ and ω̃b = ωb + g2

2∆
The second step consists of rewriting the full Hamiltonian in the dressed basis.

Ĥ/~ = ω̃b
˜̂
b†

˜̂
b+ (ω̃q + α)˜̂q† ˜̂q − α

12(˜̂q + ˜̂q† + g

∆(˜̂b+ ˜̂
b†))4 (5.13)

Remarkably, the non-linearity is mixing the dressed modes in a non-trivial
way. The direct expansion of the non-linear term directly leads to the dispersive
Hamiltonian of circuit quantum electrodynamics after the rotating wave approx-
imation in which the non-energy-conserving terms are dropped. For simplicity,
we will give up the tilde notation associated to dressed modes. The dispersive
Hamiltonian reads:

Ĥ/~ = ωbb̂
†b̂+ ωqq̂

†q̂ − α

2 q̂
†2q̂2 − K

2 b̂
†2b̂2 − χb̂†b̂q̂†q̂ (5.14)

with

χ = 2α g
2

∆2 (5.15)

K = α
g4

∆4 (5.16)



5.2. SMPD WORKING PRINCIPLE AND THEORY 91

K and χ are referred to as the self-Kerr of the resonator and cross-Kerr between
the transmon and the resonator. For typical parameters such as α = 2π×200 MHz,
g = 2π × 100 MHz and ∆ = 2π × 1 GHz, on the one hand the self-Kerr is of the
order of K ∼ 2π× 10 kHz while the oscillator linewidth is typically κ = 2π× 1 MHz,
therefore self-Kerr is usually neglected in the circuit dynamics. On the other
hand, cross-Kerr is typically of the order of χ ∼ 2π × 1 MHz, therefore it plays a
crucial role in the oscillator-qubit dynamics.

The cross-Kerr term, also known as dispersive shift, can be understood as a
frequency shift of a given mode conditioned on the state of another one. It is of
great interest in circuit quantum electrodynamics as it allows for the quantum
non-demolition readout of the qubit state by probing the oscillator resonance
frequency as well as the absolute calibration of a photon flux by probing the
dephasing of the qubit while the resonator is illuminated.

Quantum non-demolition qubit readout

The dispersive Hamiltonian shown in Eq.5.14 can be recasted by factorizing the
cross-Kerr term into the harmonic oscillator energy. Neglecting the self-Kerr
contribution, we get:

Ĥ/~ = (ωb − χq̂†q̂)b̂†b̂+ ωqq̂
†q̂ − α

2 q̂
†2q̂2 (5.17)

This Hamiltonian implies that the frequency of the oscillator mode b̂ depends
on the state of the qubit mode q̂: when the qubit is its ground state |g〉, the
oscillator frequency is ωg

b = ωb while when the qubit is in its excited state ωe
b =

ωb−χ. A measure of the complex reflection coefficient with a probe tone at ωg
b or

ωe
b, allows for the discrimination of the resonator frequency and thus the readout

of the state of the qubit.

Photon-induced qubit dephasing

Another implication of the dispersive qubit-resonator Hamiltonian Eq.5.17, is
that the qubit frequency also depends on the absolute photon occupation of the
harmonic oscillator as the Hamiltonian can be rewritten as:

Ĥ/~ = ωbb̂
†b̂+ (ωq − χb̂†b̂)q̂†q̂ −

α

2 q̂
†2q̂2 (5.18)

When the resonator is continuously illuminated, it is populated by n̄ photons
on average. We expect the qubit transition frequency to be shifted by −~χn̄/2
on average. However, the photon population is strongly fluctuating due to the
photon shot noise, then it leads to a fluctuation of the qubit frequency and the
dephasing of the qubit at a rate of the order of κn̄ where κ is the linewidth of the
resonator.

A quantitative calculation [67] of this phenomenon can be performed in the
general case of arbitrary resonator linewidth κb and cross-Kerr χ. When a tone is
applied with an amplitude ε and a detuning δ with respect to the cavity resonance
frequency, it generates a coherent state |αg〉 and |αe〉 that depends on the state of
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the qubit ground or excited. Their complex amplitude is given by:

αg = ε

κb/2 + i(δ + χ/2) (5.19)

αe = ε

κb/2 + i(δ − χ/2) (5.20)

It corresponds to a photon occupancy of n̄g = |αg|2 or n̄e = |αe|2 depending on the
state of the qubit. The presence of intra-cavity photon induces both a frequency
shift of the qubit ∆q and dephasing of the qubit at a rate Γq. They are actually
the real and imaginary part of a quantity that depends on the overlap between
the two coherent states:

∆s + iΓs = −χαgᾱe = −4χ|ε|2

(κb + 2iδ)2 + χ2 (5.21)

Qualitatively, when the coherent states associated to ground and excited overlap,
the qubit gets only detuned and not dephased while when the coherent states are
far away from each other and thus the qubit measurement become effective, the
qubit dephasing dominates over its detuning.

This effect can be turned into a powerful calibration method for the deter-
mination of the absolute microwave power applied on the resonator. Indeed by
precisely measuring the qubit frequency and dephasing rate in a Ramsey se-
quence while illuminating the resonator, the resonator photon occupancy n̄e/g
can be accurately determined. From this, one can compute the incident power
applied on the resonator. When the incident tone is applied on resonance, the
incident power is given by:

Pin = 1
4

κ2
b

κb − κloss
b

~ωbn̄g = ~ωb
|ε|2

κb − κloss
b

(5.22)

with κloss
b the internal loss rate of the resonator.

To conclude, this calibration method is a key part of the experiment as it has
been employed to calibrate the absolute attenuation associated with the input
line of the cryostat and therefore the absolute efficiency of the photon detector.

The SMPD Hamiltonian

In this section, we will use the quantization method introduced above to derive
the SMPD Hamiltonian.

In the case of the SMPD circuit shown in Fig.5.5, the transmon qubit is capac-
itively coupled to two distinct harmonic modes: the buffer mode b̂ at a frequency
ωb with a coupling constant gb, the waste mode ŵ at a frequency ωw with a cou-
pling constant gw. The qubit hybridises with both modes leading to a dressed
qubit mode given by:

q̂ ← q̂ + gb
∆b

b̂+ gw
∆w

ŵ (5.23)

An extra ingredient is required for the SMPD, the four-wave-mixing process is
activated by a strong off-resonant pump tone. Being off-resonance, it is well de-
scribed by a complex amplitude ξt = ξ0e

−iωpt oscillating at the pump frequency ωp
that displaces the qubit mode. Therefore the qubit mode dressed by the coupled
resonators and displaced by the pump tone reads

q̂ ← q̂ + gb
∆b

b̂+ gw
∆w

ŵ + ξt. (5.24)
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The overall dressed Hamiltonian is therefore given by:

Ĥ/~ = ωbb̂
†b̂+ωwŵ

†ŵ+(ωq+α)q̂†q̂− α

12(q̂+q̂†+ gb
∆b

(b̂+b̂†)+ gw
∆w

(ŵ+ŵ†)+ξt+ξ∗t )4 (5.25)

We can then expand the four-wave mixing term. We keep the energy con-
serving processes according to the rotating wave approximation and neglect the
self-Kerr contributions.

Ĥ/~ = ωbb̂
†b̂+ ωwŵ

†ŵ + ωqq̂
†q̂ − α

2 q̂
†2q̂2 (5.26)

−χbb̂
†b̂q̂†q̂ − χwŵ

†ŵq̂†q̂ − 2α|ξ(t)|2q̂†q̂ (5.27)
−√χbχw(ξtb̂q̂†ŵ† + ξ∗t b̂

†q̂ŵ) (5.28)

Owing to the presence of the oscillating pump, a non-trivial term emerges
from the four-wave mixing and survives from the rotating wave approximation
when the pump frequency is chosen to be:

ωp = ωq + ωw − ωb − χw (5.29)

This Hamiltonian is describing the SMPD photon capture process.

ĤSMPD/~ = −√χbχw( ξtb̂q̂
†ŵ†︸ ︷︷ ︸

photon absorption

+ ξ∗t b̂
†q̂ŵ︸ ︷︷ ︸

inhibited photon emission

) (5.30)

As described earlier, this Hamiltonian makes the absorption of an incoming pho-
ton in the buffer mode b̂ by the qubit irreversible by linking this process to the
creation to an extra photon into an highly damped waste mode ŵ. As the photon
in the waste mode ŵ is quickly damped out, the qubit cannot emit its excitation
back into the buffer mode b̂ using the reciprocal process. The strength of the
interaction is given by √χbχw|ξ0|. It depends on the pump amplitude but also on
the cross-Kerr terms of the mode b̂ and ŵ with the qubit, leading to clear guideline
for the circuit design.

The SMPD irreversibility from dissipation engineering

In this section, we will study the SMPD dynamics under the light of bath engi-
neering in order to make explicit the irreversible character of the photon capture.

To describe the dynamics of the system in the presence of a strongly damped
waste mode ŵ, it is convenient to use the master equation which describe the
evolution of the system density matrix ρ̂ under the SMPD Hamiltonian dynamics
and the energy relaxation of the waste mode ŵ into a cold bath.

The energy relaxation of mode ŵ at a rate κw is described by the following
Linblad operator associated with the jump operator √κwŵ :

D[
√
κwŵ]ρ̂ = κw

(
ŵρ̂ŵ† − 1

2 ŵ
†ŵρ̂− 1

2 ρ̂ŵ
†ŵ

)
. (5.31)

In the interaction picture, the master equation is given by:

∂tρ̂ = 1
i~

[ĤSMPD, ρ̂]︸ ︷︷ ︸
Hamiltonian dynamics

+ D[
√
κwŵ]ρ̂︸ ︷︷ ︸

irreversible dynamics

(5.32)
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Figure 5.5: SMPD circuit illustration. Circuit representation of the SMPD. The
buffer resonator (orange) is tuned at the frequency of photons to be detected by
changing the magnetic flux Φ threading a SQUID (red). When a photon enters the
buffer resonator it interacts with a transmon qubit coupled capacitively (blue), if
a pump tone (purple) is shone on the qubit at the frequency-matching condition
ωp = ωq + ωw − ωb then the qubit is left excited and a photon at frequency ωw is
created in the waste resonator (green). Engineered dissipation of the waste allows
for fast decay of the photon into the transmission line, inhibiting the reverse
mixing process.

A very powerful approximation tool is the adiabatic elimination. In the limit
where the dissipation rate κw is large compared to the Hamiltonian dynamics
governed by √χbχw|ξ0|, one can consider that the waste mode ŵ is always close to
its ground state, therefore it does not contribute to the system dynamics anymore
and can be eliminated. This procedure can be carefully performed as described
in appendix B.4.

One can then derive an effective master equation for the reduced density ma-
trix where the waste mode has been traced out such that:

ρ̂bq = Trw[ρ̂] (5.33)

The adiabatic elimination leads to remarkably simple effective master equa-
tion:

∂tρ̂bq = D
[
ΓSMPDb̂q̂

†
]
ρ̂bq (5.34)

with
ΓSMPD = 4χbχw

κw
|ξ0|2 (5.35)

The Hamiltonian dynamics completely vanished and has been replaced by a
fully irreversible evolution described by the jump operators ΓSMPDb̂q̂

†. As opposed
to usual jump operator such as energy relaxation (b̂) or dephasing (b̂†b̂) , this one
describes a strongly correlated dynamics between two distinct modes. When a
photon in the input mode b̂ is annihilated, it irreversibly triggers an excitation of
the qubit state.

We now add the coupling of the buffer mode b̂ to the incoming lines at a rate
κb bringing a photon flux |εb|2 described with a drive term of strength εb:

∂tρ̂bq = D
[
ΓSMPDb̂q̂

†
]
ρ̂bq +D

[√
κbb̂

]
ρ̂bq − i[εb(b̂+ b̂†), ρ̂bq] (5.36)
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At early time, the qubit irreversibly absorbs the incoming photons flux |εb|2 at a
rate ∂tpe, the efficiency is then defined by the ratio:

η = ∂tpe
|εb|2

= 4C
(1 + C)2 (5.37)

where the cooperativity of the photon capture is defined as

C = ΓSMPD
κb

= 4|ξ0|2
χbχw
κbκw

. (5.38)

Unit efficiency is reached for C = 1. The pump strength |ξ0| being defined as
the phase across the Josephson junction induced by the pump, it must remain
much smaller than π. This finite pump strength establishes a design criterion
on the cross-Kerr coefficient and the dissipation rate to reach unit efficiency:

κbκw
χbχw

� 4π2 ≈ 40 (5.39)

In practice, for the design of the SMPD in this thesis, we used the following
criterion χbχw > κbκw . This criterion is used to carefully adjust the capacitive
coupling, the frequency detuning and the capacitive coupling to the lines. This
criterion also sets an upper bound on the bandwidth of the detector as it is
approximately set by the linewidth of the input mode leading to BWSMPD ∼ κb <
χbχw/κw

SMPD efficiency from a coupled cavity model

The dissipation engineering formalism requires that the bath dissipation rate κw
is much larger than the SMPD Hamiltonian dynamics for the adiabatic elimi-
nation procedure to perform well. We found out that for the purpose of photon
detection, a simpler model allows to evade this constraint and to compute the
SMPD efficiency with more general settings.

For the purpose of photon detection, the system dynamics is only relevant as
long as the qubit remains in its ground state. Indeed, once the qubit is excited,
the photon detector is saturated as the SMPD Hamiltonian is effectively switched
off. The following photons will be simply reflected off the cavity.

When the qubit is in its ground state and the incoming field contains much
less than a photon on average, then the effective system dynamics is identical
to the one of two resonantly coupled cavities with the qubit simply tracking the
position of the photon. It will be in its ground state if the photon is in the buffer
mode b̂ and in its excited state if the photon is in the waste mode ŵ. In other
words, the coupling dynamics between the states |1b, gq, 0w〉 ↔ |0b, eq, 1w〉 will be
identical to the linear dynamics between |1b, 0w〉 ↔ |0b, 1w〉.

For a resonantly coupled cavity, if a single photon is fully transmitted from
the transmission line on the buffer side into the transmission line of the waste
side, it implies that it will also the case for the SMPD and, as the qubit keeps
track of the photon flux from one side to the other, it will be excited with unit
probability.

We can then compute the detection efficiency as transmission probability of a
photon across two linearly coupled cavities with an effective coupling |ξ0|

√
χbχw.
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Figure 5.6: SMPD S21 for different pump detunings. (a) SMPD transmission
parameter |S21|2 as a function of δ and δp, as obtained from the coupled-cavities
model for realistic experimental parameters. (b) Cuts at δp = 0 (blue curve) and
δ = 0 (orange curve). (c) Detection bandwith as a function of κb and κw at optimal
transmission κnl = κb.

Using simple linear scattering theory as detailed in appendix B.4, we obtain
the detector efficiency as a function of the incoming photon detuning δ:

η(δ) = 4C∣∣∣1 + C − 4 δ(δ+δp)
κbκw

+ 2i δκb
+ 2i (δ+δp)

κw

∣∣∣2 . (5.40)

where C = 4|ξ0|2 χbχw
κbκw

is the cooperativity, δ is the detuning of the incoming
photon with the b̂ mode and δp the frequency detuning of the pump compared to
its optimal frequency, it translates to a detuning between the two coupled cavities
in the linear model.

We recover the expression found in Eq.5.37 when the photon is on resonance
with mode b̂ and the pump is optimal tuned:

η(δ = 0) = 4C
(1 + C)2 (5.41)

Remarkably, this efficiency formula extends well beyond the strong damping
approximation assumed in the adiabatic elimination treatment.

An extra quantity can be extracted from Eq.5.40, as it describes the efficency
behavior as function of the photon detuning, we can compute the bandwidth of
the detector for unit cooperativity defined as the full-width-half-maximum:

∆SMPD =
√

2

√√√√√
κ2

bκ
2
w +

(
κb − κw

2

)4
−
(
κb − κw

2

)2
(5.42)

Let’s evaluate the SMPD bandwidth for a few cases. For κb ≈ κw, one gets
∆SMPD ≈

√
2κbκw. For κb � κw, ∆SMPD ≈ 2κb and reciprocally for κb � κw,

∆SMPD ≈ 2κw.
To conclude, the SMPD design and working principle is well described by effec-

tive models. Realistic parameters enables to reach unit efficiency in the capture
process for detection bandwidth in the MHz range. We will now study the prac-
tical limitation of the device due to cyclic operation, non-zero qubit occupancy
and decoherence processes.
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Figure 5.7: SMPD detection cycle. (a) The detection cycle of the SMPD consti-
tuted by reset (R), detection (D) and qubit measurement (M) steps, respectively of
duration Tr, Td and Tm. Each pulse is applied on a specific element of the SMPD,
indicated on the left. (b) A photon impinging on the SMPD at time 0 < t < Td is
captured with probability p(e|1). After the capture, the probability of the qubit
still being excited decreases exponentially with characteristic time T1,q.

5.3 SMPD operation

In this section, we will describe how we operate the device in practice and what
are the main sources of inefficiencies.

SMPD detection cycle

We now describe more precisely the details of SMPD operation. SMPD operation
consists in repeated cycles, of total duration Tc, which can be separated in 3 steps:
qubit reset (R), detection (D), and qubit readout (M), as shown in fig. 5.7(a).

Reset (R): the qubit is set to its ground state by turning on the pump at frequency
ωp (violet pulse) while applying to the waste resonator a weak resonant coherent
tone at frequency ωw (green pulse) for a duration Tr.

Detection (D): the microwave at ωw is switched off, while the pump is kept on
for a time Td. Photon detection occurs via the 4-Wave-Mixing process described
earlier.

Measurement (M ): the qubit state is readout by probing the dispersive shift of
the buffer resonator with a pulse of duration Tm (orange pulse).

The fact that part of the cycle time is not used for detection leads to a finite duty
cycle ηduty = Td/Tc, which impacts the total detector efficiency. Finally, note that
the detector evidently saturates for signals providing more than 1 photon every
Td approximately.

SMPD figures of merits

Here we introduce the figures of merit of the SMPD: efficiency and dark count
rate, detailing how they are impacted by experimental parameters and imper-
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fections. In particular, we show that long qubit T1,q is beneficial for detector
performances, while qubit T2,q has no impact on them.

Efficiency

Efficiency is the average probability P (click|1) of measuring a ”click” when a pho-
ton is impinging on the detector. Consider a photon impinging on the buffer mode
at random time t, within the detection window of length Td. For an ideal qubit,
the detection efficiency would be given by formula Eq.5.41. However, the qubit is
imperfect and it can relax after being excited due to a finite relaxation time T1,q.
The probability of the qubit still being excited at the end of the detection window
is exp{−(Td−t)/T1,q}. A second source of imperfection is the qubit readout fidelity,
namely the probability of measuring a click if the qubit is excited p(click|e). By
averaging the photon arrival time t on the detection window, we find that the
average probability P (click|1) of measuring a ”click” is:

ηd = p(click|e)η4wm
1
Td

∫ Td

0
e−(Td−t)/T1,qdt = (5.43)

= p(click|e)η4wm
T1,q
Td

(
1− e−Td/T1,q

)
. (5.44)

ηd
Td�T1,q−−−−−→ p(click|e)η4wm

(
1− Td

T1,q

)
(5.45)

Dark count rate

The dark count rate is the rate of false positives measured by the detector. The
relevance of this figure of merit comes from the fact that it affects the maximum
SNR reachable with a photon detector, as highlighted in section 2.6. The proba-
bility of a false positive during a detection step starting at t = 0, after a reset of
the qubit, can have two origins. First, due to readout infidelity p(click|g) a qubit
measurement can lead to a click even if the qubit is in its ground state, this hap-
pens with probability p(click|g)p(g|0). Second, non-zero temperature of the qubit
can lead to thermal excitations with probability pth at equilibrium. After the reset
this thermal probability is pth(1− e−t/T1,q). Thus we expect an average dark count
rate:

νdc = p(click|g)p(g|0) + P (click|e)pth(1− e−Td/T1,q) (5.46)

In practice, the probability p(click|g) is extremely small thanks to the high
fidelity qubit detection. Indeed, readout outcomes of the ground and excited
states follow two distinct Gaussian distributions that are separated by at least
5σ in practice. This overlap is therefore vanishingly small.

νdc ≈ P (click|e)pth(1− e−Td/T1,q)) Td�T1,q−−−−−→ P (click|e)pth
Td
T1,q

(5.47)

As seen from the above formulas both efficiency and dark counts benefit from
longer T1,q. Conversely, T2,q does not influence the SMPD figures of merit. Note
that this is only true in the limit where the dephasing rate is much smaller than
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Figure 5.8: SMPD chip design. (a) Design of the mask employed to fabricate
the SMPD chip. Coplanar waveguide λ/2 resonators are used as buffer (orange)
and waste (light green), a Purcell filter (dark green) is employed to increase the
coupling between the waste and the output line without affecting the qubit life-
time. (b,c) Zoom on the SQUID embedded at the current antinode of the buffer
resonator, an on-chip fluxline (red) is used to generate magnetic flux through the
SQUID loop and tune the buffer frequency. (d,e) Zoom of the qubit Josephson
junction, bottle-opener design is used to increase reproducibility in fabrication
and decrease mask failure.

the strength of the parametric process ξ0
√
χaχb ∼

√
κbκw ∼ (100ns)−1. Indeed, in

case of strong dephasing, the photon capture process could be strongly inhibited
by the Zeno effect which freezes the qubit into one of its pointer states |g〉 and
|e〉. In practice, the dephasing is negligible in the SMPD dynamics.

5.4 SMPD chip

Here, we present the design and fabrication of the SMPD chip.

Design

We first discuss the design choices that were made, based on the SMPD working
principle presented in the previous section.

• Buffer resonator As explained in Chapter 4, the frequency of the photons
emitted by the spins is fixed by the spin resonator frequency design at a
value ω0. In order to detect them, it is therefore necessary to tune the buffer
resonator frequency ωb (which is the SMPD input) in resonance with ω0. As
explained in Chapter 2, this can be achieved by inserting a SQUID in a
resonator; here we use a CPW geometry and target a maximum frequency
of 7.35 GHz, close to the Bismuth donor spin frequency, and a tuning range
of ≈ 200 MHz. Finally, the buffer resonator coupling to the input line is
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critical as it plays a role in the SMPD bandwidth as seen in Eq.5.42. Here,
we target a bandwidth of 2 MHz with a target κb/2π ' 1 MHz and κw = 3κb.

• Waste resonator: Because of the waste resonator role in the SMPD process,
photons should be rapidly damped into the measurement line, implying a
large damping rate κw, targeted to be κw/2π ∼ 3 MHz. The waste resonator
frequency can be chosen freely; here we choose to have it slightly higher
than ωb, with ωw/2π ∼ 8 GHz.

• Transmon qubit: As can be seen from Section 5.1, the exact value of the
qubit frequency ωq has no strong impact on the SMPD operation. It is there-
fore interesting to design its frequency to be far detuned from the buffer and
waste resonator frequency; in that way we can minimize transmon qubit re-
laxation by spontaneous emission of a photon through these resonators.
We choose to target a frequency ωq ' 5 GHz. The pump frequency satisfying
the four-wave mixing condition should therefore be around 6 GHz. Based
on Eq.5.41, an optimal SMPD operating condition can be achieved for arbi-
trary qubit-resonator couplings by adjusting the pump tone amplitude. In
practice however, excessively high pump powers should be avoided as they
may cause heating; this implies that the qubit dispersive coupling to both
the buffer and the waste resonator should be sufficiently high. Another
aspect is that qubit readout requires χb, χw ≥ κb, κw. Overall, we target
χb ∼ χw ∼ 2π × 5 MHz.

Based on these considerations, the chip design is shown in Fig. 5.8. The
buffer resonator is shown on the left (orange), with an electrode (in red) used to
pass a dc current through an antenna to change the magnetic flux in the SQUID
Φ and therefore tune ωb(Φ). The transmon is in the middle of the chip (in blue).
One electrode (in purple) is capacitively coupled to the transmon, and connected
to a waveguide; it is used to drive the qubit both resonantly and at the pump
frequency for the SMPD operation. The buffer resonator (in light green) is on
the right side of the picture. It is coupled to the measurement line through a
stub (in dark green), whose goal is to present a 50 Ω impedance at frequency ωw,
and a much higher impedance at ωq. In this way, the waste resonator field can
be damped at a large rate κw, without affecting the qubit relaxation rate. This
arrangement is known as a ”Purcell filter” and is frequently used in circuit QED
chip design [68].

Simulation

We now explain how the chip design shown in Fig. 5.8 is simulated in order to
predict the values of the relevant physical parameters. A commercial software
such as the finite-element eigensolver ANSYS HFSS is well-suited to simulate
the linear resonator parameters (frequency and damping rate). Here, we also
need parameters governed by the Josephson junction non-linearity (the disper-
sive couplings); they are obtained through the Energy Participation Ratio (EPR)
method, described in [69].

Linear simulation

The chip simulation starts by determining the frequency and damping rates of
the lowest-frequency modes, using the HFSS frequency eigensolver. In doing so
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Figure 5.9: SMPD simulations. Finite element electromagnetic simulation us-
ing ANSYS HFSS. The frequencies and energy decay rates for the first five eigen-
modes of the circuit are reported in table (e). The electric field amplitude obtained
injecting 1J of energy is plotted for the first four modes: (a) qubit, (b) buffer, (c)
waste, (d) Purcell. The fifth resonance correspond to a mode of the SQUID flux-
line.

Figure 5.10: EPR method.

we replace the SQUID and transmon Josephson junction by the linear part of the
Josephson inductance. The results for the 5 lowest-frequency modes are shown
in Fig.5.9, together with a graphical representation of the electric-field distri-
bution associated with each mode. The first 4 modes can be straightforwardly
associated to the circuits involved in the SMPD design: respectively, the qubit,
the buffer resonator, the waste resonator, and the Purcell filter. Their frequency
and damping rates follow approximately the design considerations presented ear-
lier. Note that the waste resonator damping rate is 3 times larger than the buffer
resonator. The predicted qubit energy decay rate κq/2π = 6 kHz corresponds to
a relaxation time T1,q = κ−1

q = 25µs, long enough to ensure low dark count rates
according to Eq.5.47 for typical detection times Td ∼ 5 µs and qubit thermal oc-
cupation p(e|0) ∼ 0.01.
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Qubit

ωq/2π 6.136 GHz
χq/2π ∼ 200 MHz
χb/2π 3 MHz
χw/2π 8 MHz
T1,q 25 µs

Buffer mode

ωb/2π 7.19 GHz
κb/2π 0.96 MHz

Waste mode

ωw/2π 7.69 GHz
κw/2π 2.86 MHz

Table 5.1: Table of the simulated parameters.

Simulating non-linear terms with the EPR method

The dispersive couplings are then simulated using the Energy Participation Ra-
tio method, which we briefly describe now. This method applies when several
microwave modes are non-resonantly coupled to a Josephson junction, as is the
case in our design. The energy participation ratio of mode i into the junction pi is
defined as the ratio between the electromagnetic energy stored into the junction
when mode i is excited. This quantity is directly accessible from the linear sim-
ulations performed in HFSS. In Fig.5.10a, the electric field profile of the qubit
mode is shown (mode 1 in the Table of Fig.5.9); the fraction of the field located
at the junction yields the participation ratio p of the linear qubit mode into the
junction. This can then be used to estimate the qubit anharmonicity χq using
formulas derived in Ref. [69] and Annex. In Fig.5.10b, the electric field profile
when the buffer mode is excited is shown. Although it is dominantly located
around the buffer resonator electrode as expected, field lines are also visible at
the junction location; they yield the participation ratio of the buffer mode in the
junction, which in turn yields quantitative predictions for the dispersive coupling
χb.

The EPR method can be conveniently implemented by using the Python library
pyEPR provided and maintained by Z. Minev, Z. Leghtas and P.Reinhold.

The simulation results for the chip design depicted in Fig. 5.8 are shown in
Table 5.1. In addition to the frequencies and damping rates already discussed,
we now access the dispersive coupling terms. The qubit term χq is much larger
than the others, since the participation ratio of the qubit mode is evidently also
larger. This term describes the qubit anharmonicity. A value of 200 MHz is typical
for a transmon qubit. Dispersive couplings χb in the 3 − 5 MHz are obtained, as
requested in the design section.
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Figure 5.11: SMPD chip. (a) Optical microscope image of the SMPD chip, pat-
terned in aluminium (light green) on top of silicon chip (dark green). (b) Scanning-
electron-microscope (SEM) image of the SQUID loop embedded in the buffer res-
onator. (c) SEM image of the Josephson junction of the transmon qubit. (d,e)
Trenching of the silicon with SF6 is adopted in order to reduce microwave losses.
As a results the Josephson junction is suspended (d) as well as the outer sides
of CPW lines (e).

Fabrication

The SMPD circuit is fabricated using wet etching of a 60 nm aluminium layer evap-
orated on a high-resistivity intrinsic silicon substrate. Before metal deposition,
the substrate is pre-cleaned with a SC1 process. The wafer is first immersed for
10 min at 80 °C in a bath of 5 parts H2O to 1 part H2O2 (30 %) to 1 part NH4OH (29 %),
then is immersed for 2 min in HF (5 %) solution to remove the surface oxide. The
substrate is then loaded in an electron-beam evaporator within 10 minutes, after
which a 60 nm aluminium layer is deposited. Patterning of the circuit is achieved
by electron beam lithography of a UV3 resist mask, followed by wet etching of
the aluminium using a TMAH-based developer (Microposit CD26). The Joseph-
son junctions (see Fig.5.11(b-c)) are evaporated using the Dolan bridge technique
and recontacted to the main circuit through aluminium bandage patches [70].
Finally, circuit gaps are isotropically trenched (∼ 2µm, see Fig.5.11(d-e)) with a
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SF6-based reactive ion etch, which has shown to decrease the internal losses of
superconducting resonators [16, 71]. The resulting 10 mm by 3 mm chip, shown
in Fig. 5.11(a), is glued and wired to a Printed-Circuit-Board, placed in a cop-
per box, magnetically shielded, and attached to the cold stage of the dilution
refrigerator. The full detailed recipe can be found in Fig. B.1.

5.5 Setup

The measurement setup used to characterize the SMPD is shown in Fig. 5.12. It
consist of a room-temperature (top) and a low-temperature (bottom) part. Com-
ponents that are present but which do not enter into play during this characteri-
zation are shown in transparency, notably the spin resonator which lays 15 MHz
away from the characterization point, well outside the bandwidth of the SMPD
and of the characterization pulses. This very same setup will also be used for
the spin-detection experiment illustrated in the next chapter, with the difference
that all the elements will be tuned into resonance.

Room temperature setup

The room-temperature setup includes four microwave sources and two four-channel
arbitrary waveform generators (AWG 5014 from Tektronix). Microwave pulses
needed to operate the detector are generated by mixing the output of a source
with two AWG channels driving the I and Q ports of an I/Q mixer at intermediate
frequencies indicated in fig. 5.12. SMPD operation and characterization requires:

• a dc flux-bias of the SQUID in the buffer resonator, in order to tune ωb.
This bias is provided by a dc current source (Yokogawa 7651) connected to
an on-chip antenna close to the SQUID (input line 4 in fig. 5.12).

• Microwave pulses at the pump frequency ωp to satisfy the four-wave mix-
ing condition ωp = ωq + (ωw − χw)− ωb. Pump pulses are generated through
I/Q mixing of a source Keysight, shown in purple in Fig. 5.12). The signal
is amplified and then passed through a 70 MHz band-pass filter to prevent
spurious side-band resonances to generate unwanted mixing at other fre-
quencies, pump pulses reach the cryostat through line 6.

• Microwave pulses to readout the qubit state via the qubit-state-dependent
dispersive shift of the buffer resonator. Such pulses, at frequency ωb − χqb
(the buffer frequency when qubit in the excited state), are generated from
the mixing of the output of a Keysight microwave generator (yellow) and
conveyed to the fridge via line 3.

• Microwave pulses at the waste frequency ωw to reset the qubit, generated
via a Vaunix Labbrick, shown in green in Fig. 5.12 and routed to the fridge
via line 5.

• Microwave pulses at the qubit frequency ωq in order to calibrate qubit read-
out and characterize the qubit properties (T1,q, T2,q). A single sideband mixer
is used to generate qubit pulses by mixing of the signal from a Vaunix Lab-
brick, shown in blue in Fig. 5.12.

• JPA control: qubit readout pulses are amplified by a flux-pumped JPA in
degenerate mode, JPA frequency is adjusted via dc flux biasing of a SQUID
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Figure 5.12: Setup. The setup used for the characterization of the SMPD. At this
stage the spin resonator (transparent) is detuned and does not affect microwave
signals sent to the SMPD chip.
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array by means of an adjacent on-chip antenna. This antenna is fed by a
constant voltage source biasing a resistor at room-temperature (line 1 in
Fig. 5.12). The JPA also requires flux-pumping to achieve gain. This pump
tone is generated by frequency-doubling of the source used to generate the
readout pulses (line 2 in Fig. 5.12), followed by mixing with a double inter-
mediate frequency produced by a signal generator (’SG’ in Fig. 5.12). The
relative phase between signal and pump is adjusted with a phase shifter for
maximum gain on the signal-bearing quadrature.

The SMPD output (line 7) consists of the qubit readout pulses, whose phase
encodes the qubit state as explained in Section 5.2. The pulses are further am-
plified at room-temperature, mixed with the local oscillator (yellow source in
the schematics), and finally digitized, yielding the quadratures I(t) and Q(t).
They oscillate at the intermediate frequency ωIF = 10 MHz. Numerical demod-
ulation yields the average quadrature of the qubit readout pulse, I =

∫
I(t)dt and

Q =
∫
Q(t)dt.

Low temperature setup

As explained later (in section 5.6), qubit readout is performed via the SMPD buffer
resonator. Readout pulses are sent through line 3, which is heavily attenuated at
low-temperatures in order to minimize spurious qubit excitations and therefore
dark counts (see Fig. 5.12). At 20 mK, the pulse is reflected on the spin resonator,
routed by the same circulator towards the SMPD input (buffer resonator), and
the signal reflected on the SMPD is finally routed towards the input of the JPA
and the detection chain. Two double circulators isolate the SMPD from the JPA,
to minimize noise reaching the SMPD. The JPA output (reflected signal) is routed
to a High-Electron-Mobility-Transistor (HEMT) amplifier from Low-Noise Factory
anchored at the 4K stage of the cryostat, and then to output line 7. Infrared
(IR) filters are inserted on all the lines leading to the SMPD to minimize out-of-
equilibrium quasi-particle generation leading to dark counts.

Line 4 is used to pass current to tune the magnetic flux Φ through the SQUID
loop. It is filtered at 4 K by a low-pass filter with cutoff frequency 450 MHz, and at
20 mK by an IR filter.

Line 5 is used to send pulses to the waste resonator, to reset the SMPD state.
Similar to line 3, high attenuation levels at low temepratures are needed to min-
imize the thermal photon population at ωb and therefore the dark counts. At
20 mK, this attenuation reaches 40 dB, with 20 dB implemented by a physical at-
tenuator and 20 dB by a directional coupler.

Line 6 conveys to the SMPD the pump tone. In order to minimize heating of
the low-temperature stage by the strong pump , the necessary attenuation of the
line at 20 mK is achieved with a 20 dB directional coupler that routes most of the
pump power towards the 100 mK stage where it gets dissipated. A further 20 dB
attenuation is provided by a second directional coupler.

5.6 Characterization

In this section we characterize the various SMPD sub-circuits.
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Figure 5.13: Buffer characterization. (a) Buffer frequency ωb(Φ) as a function
of the magnetic flux threading the squid loop. A tunability range ∼ 200 MHz is
achieved. Boxes indicates the zero-bias point and the working point, at which
the detector is characterized. (b) Phase and (c) amplitude of the buffer reflection
coefficient S11 at the zero bias point. A small feature visible at 3 MHz from the
resonance frequency is due to the dispersive shift of ωb because of the dispersive
coupling with the qubit. Orange lines represent fits using resonator input-output
theory. The extracted frequency and energy decay rates are reported in table
5.2. (d) Phase and (e) amplitude of the buffer reflection coefficient S11 at the
characterization point ωb = 6.96 GHz, close to the working point ωb = 6.94 GHz.
Orange lines represent fits using resonator input-output theory and taking into
account frequency jittering due to noise on the flux bias. The extracted frequency
and energy decay rates are reported in table 5.2. (f) Energy decay rates of the
buffer resonator as a function of the magnetic flux bias Φ threading the SQUID.
The values are obtained from a fit of the S11 parameter, by taking into account
the jittering of the buffer frequency.

Buffer resonator

The buffer resonator is first characterized by a measurement of its reflection
coefficient S11(ω) with a VNA. The resonance at Φ = 0 is shown in Fig.5.13(b-c). A
fit using the formula of Ch.2 yields ωb(0)/2π = 7.096 GHz, κb,ext/2π = 0.95 MHz, and
κb,int/2π = 0.09 MHz. These values are in agreement with the design parameters.

In the |S11|(ω) data, we observe, in addition of the main Lorentzian dip indica-
tive of the buffer resonator response, another smaller dip at lower frequency. As
we will see later, this is due to the coupling to the qubit. The main peak is the
buffer resonator response when the qubit is in its ground state (with the highest
probability), whereas the other peak is the resonator response when the qubit
is in its excited state (which occurs with much lower probability, explaining the
lower amplitude of this second peak). From the frequency separation between
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Figure 5.14: Purcell and waste characterization. (a) Phase of the S11 reflection
coefficient measured in correspondence of the Purcell filter. The waste resonator
appears as a much narrower resonance aligned with the filter. (b) Phase and
(c) amplitude of the waste resonator reflection coefficient S11. The feature visible
8 MHz aside from the resonance frequency is due to the dispersive shift of ωw
due to the dispersive coupling with the qubit. Orange lines represent fits using
resonator input-output theory. The extracted frequency and energy decay rates
are reported in table 5.2.

these two peaks, we directly get χb/2π ' 3 MHz, again in agreement with the
design value.

The buffer resonator frequency is then measured as a function of the ap-
plied magnetic flux Φ. Figure 5.13(a) shows the resulting ωb(Φ), with Φ ex-
pressed in units of the flux quantum Φ0. As expected, the buffer resonator fre-
quency is tunable over a range ∼ 200 MHz. At finite values of Φ, we observe
that the resonance shape deviates from a Lorentzian, as expected in presence
of a Gaussian-distributed flux-noise. We therefore fit the curves with the model
presented in Ch.2, with the variance of the frequency jitter κb,jitter as an addi-
tional fitting parameter. The results are shown in Fig. 5.13(f). While the cou-
pling and internal resonator losses remain constant with Φ, κb,jitter increases
with Φ, roughly following the slope dωb/dΦ. This confirms the presence of flux-
noise in the SQUID loop. The typical noise variance extracted from this analysis
κb,jitter/(dω/dΦ) = 5.5× 10−5 Φ0 is much larger than the typical value of flux-noise
in superconducting circuits, which is on the order of 1− 5× 10−6Φ0. A posteriori,
we understand that this was due to the use of a noisy current source and to in-
sufficient filtering in this particular experiment. The buffer resonator response
close to the spin resonator frequency (20 MHz residual detuning) is shown in
Fig.5.13(d-e).

Waste resonator

The waste resonator reflection coefficient is shown in Fig.5.14. A large frequency
range (see Fig.5.14(a)) shows the 2π phase shift due to the Purcell filter, centred
on 7.6 GHz, and of width ∼ 200 MHz consistent with the design value (see Fig. 5.8).
Around 7.6 GHz, a much narrower resonance is the waste resonator response. It
is shown more closely in Figs.5.14(b-c). As in the buffer case, we see, in addition
to the main resonator peak, another smaller peak, at a distance χw/2π ∼ 8 MHz,
which we again attribute to the qubit excited state. Fitting the main peak with
the formula derived in 2 yields ωw/2π = 7.633 GHz, κw,ext/2π = 0.38 MHz, and
κw,int/2π = 0.09 MHz. Whereas the frequency is in agreement with the design
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Qubit

ωq/2π 6.135 GHz
α/2π ∼ 200 MHz
χb/2π 3.1 MHz
χw/2π 8.2 MHz
T1,q ∼ 9µs
T2,q ∼ 10µs
pthermal ∼ 0.012

Buffer mode unbiased biased

ωb/2π 7.09 GHz 6.96 GHz
κb,ext/2π 0.95 MHz 0.99 MHz
κb,int/2π 0.09 MHz 0.08 MHz
κb,jitter/2π 0.00 MHz 0.74 MHz

Waste mode

ωw/2π 7.62 GHz
κw,ext/2π 0.38 MHz
κw,int/2π 0.09 MHz

Table 5.2: Table of the experimental parameters.

value, the coupling rate is one order of magnitude lower. This is due to a mistake
in the design of the coupling capacitance between the waste resonator and the
Purcell filter. As explained in section 5.2, efficient photon detection is neverthe-
less still possible, by tuning properly the pump amplitude to reach the impedance
matching condition.

Transmon qubit

Detecting the qubit requires to use the qubit state readout technique presented in
Section 5.2. In principle, this can be achieved using its dispersive coupling either
to the buffer or to the waste resonator. The waste resonator would be a logical
choice for several reasons. First, the waste resonator frequency is fixed, which is
convenient for readout. Second, qubit readout pulses may heat the attenuators,
especially when the SMPD is operated in the cyclic mode. This heating is less
harmful if it happens on the waste line than on the buffer input line. However,
because of the low value of κw as explained earlier, qubit readout via the waste
resonator would be too slow, and in this thesis manuscript we have instead per-
formed qubit readout through the buffer resonator.

The first step of qubit characterization consists in measuring its spectrum.
This is achieved using the dispersive coupling to the buffer resonator. As seen
in Fig.5.15(a), a low-amplitude microwave signal at frequency ωb is continuously
sent to the device, and the reflection coefficient measured with a VNA. A second
microwave tone of varying frequency ω is sent at the same time on the qubit pump
line. When ω = ωq, the qubit gets excited, leading to a change in S11, as seen in
Fig.5.15(b). We obtain ωq/2π = 6.145 GHz, close to the design value. Two peaks
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Figure 5.15: Two-tone spectroscopy. (a) Principle of two-tone spectroscopy
of the transmon qubit through the buffer resonator. The reflection coefficient
S11(ωb) of the buffer resonator is probed while a microwave tone at frequency ω is
shone on the qubit. When ω = ωq the qubit is partially excited and S11 changes
due to the dispersive shift of the buffer frequency. (b) Absolute value of the buffer
reflection coefficient as a function of ω.

are visible in Fig. 5.15b, because the qubit frequency depends on the photon
number in the buffer resonator (see Section 5.2), which fluctuates between 0 and
1, due to the continuous probing by the tone at ωb. The qubit frequency slightly
changed upon thermal cycles of the cryostat; in the final measurements reported
in this thesis, ωq/2π = 6.135 GHz.

Once identified ωq, qubit single-shot readout is performed by sending a weak
(n̄ ≈ 0.3) 1.2µs-pulse at frequency ωb − χb on the buffer line. If the qubit is in |g〉,
the pulse is reflected without phase shift, since the buffer resonator frequency
is then ωb. If the qubit is in |e〉, the pulse is reflected with a π phase shift since
it is then at resonance with the buffer resonator. This is visible in Fig.5.16(a-
b), which shows the distribution of (I,Q) values obtained by repeating a qubit
readout pulse 5 × 103 times, in a situation where the qubit is with comparable
probability in |g〉 or in |e〉. We see that the distribution is centred on 2 values,
corresponding to the 2 qubit states. A histogram of I is also shown in Fig.5.16(c-
d). We define the qubit state threshold at Ith = 2.5 mV ; when I < Ith the qubit is
declared in |g〉; and in |e〉 if I > Ith. By repeating the readout pulse many times,
the qubit excited state probability pe is then obtained.

Even without applying a pulse, a finite excited state probability p(click|0) =
0.012 is measured (see fig. 5.16(c)), much larger than the value expected at
thermal equilibrium at 20 mK. This well-known phenomenon in circuit Quan-
tum Electrodynamics has been attributed to high-frequency radiation close to
the frequency of the aluminum gap (80 GHz), whose absorption in the thin-film
that constitutes the qubit leads to quasi-particle generation and recombination,
and finally to spurious qubit excitations. As explained in Ch.2, they are one of
the main limitations of the SMPD, as they will cause dark counts. The qubit
readout fidelity is p(click|1) = 0.62, limited by qubit relaxation during readout and
to the threshold, chosen to minimize the ratio p(click|0)/p(click|1).
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Figure 5.16: Qubit readout. (a) Histogram showing the occurrences for the
average (I,Q) of a pulse used to dispersively readout the qubit through the buffer
resonator. Here no pulse is applied to the qubit prior to the measurement. The
region of the I,Q plane where most of the measurements fall is identified with
the qubit being in its ground state. (b) Qubit readout histogram recorded after
applying a π-pulse on the qubit. The distribution is now centred on 2 values,
corresponding to the 2 qubit states. The presence of finite probability of finding
the qubit in the ground state even after a π-pulse is due to qubit relaxation during
the measurement. White dotted line indicates the threshold used to discriminate
between ground and excited states. (c,d) Projection on the I axis of the above
histograms, normalized and plotted in logaritmic scale.
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Figure 5.17: Qubit characterization. (a) Qubit Rabi sequence (top). A pulse
of duration T and frequency ωq is shone on the qubit then its state is readout.
(bottom) Rabi oscillations are measured in the excited state probability pe as a
function of T (blue dots). A fit (orange line) allows to extract the pulse duration
corresponding to a π-pulse. (b) Qubit T1 sequence (top). The qubit is excited with
a π-pulse and then readout after a time T . (bottom) Qubit excited state probability
pe(T ) (blue dots), exponential fit (orange line) leads to a qubit relaxation time
T1,q = 9 µs. (c) Qubit Ramsey sequence (top). Two π/2 pulses are applied to the
qubit, separated by a free evolution time T , then the state is readout. (bottom)
Measured (blue dots) and fitted (orange line) pe(T ). Decay of Ramsey fringes
allows to extract a qubit decoherence time T ∗2,q = 10 µs

Qubit coherence times

We now move to the characterization of the qubit. First, we calibrate the duration
and amplitude to realize a π-pulse on the qubit. This is done via a measurement
of Rabi oscillations: a resonant tone of amplitude A and varying duration T is
applied to the qubit, followed by a readout pulse. Repetition of the experiment
allows to extract pe for each pulse duration, shown in figure 5.17b, revealing Rabi
oscillations. The duration corresponding to a π-pulse is the shortest for which
maximum pe is achieved (∼ 120 ns).

A qubit property of primary importance for the SMPD operation is the relaxation
time T1,q. It is measured by applying a π-pulse and measuring pe after a waiting
time T . The resulting pe(T ) is shown in figure 5.17; an exponential fit yields
T1,q ' 9µs.

Another qubit property is its coherence time T ∗2,q, which is an interesting figure
of merit although it has no impact on the SMPD performance. It is measured
via a Ramsey sequence: a detuned (∼ 1 MHz) π/2-pulse is applied to the qubit,
which is then left evolving freely during a time T , after which a second π/2-pulse
is applied followed by qubit state readout. As shown in Fig. 5.17c, pe oscillates
at the detuning frequency for varying T . An exponential fit of the oscillations
envelope yields T ∗2,q ∼ 10 µs.
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Figure 5.18: Photon number calibration. (a) Pulse sequence used for pho-
ton number calibration (top). A Ramsey sequence composed of two π/2 pulses
separated by a time T is played while the buffer resonator is populated with a
weak coherent state of frequency ωb−χb− δ. (bottom) Varying T allows to extract
frequency and decay rate Γ∗2,q of Ramsey fringes. (b) Ramsey fringes decay rate
Γ∗2,q (blue dots) as a function of δ. Analytical fit (orange line) allows to extract the
average number of photons populating the buffer resonator at resonance.

Photon number calibration

For estimating the detection efficiency of the SMPD, it is essential to determine
quantitatively the photon flux impinging on the buffer resonator. This requires
in-situ calibration, since the line attenuation is not known precisely enough for
this purpose. This calibration is performed using the photon-number-induced
qubit decoherence, as explained in Section 5.2.

The calibration protocol is depicted in Fig. 5.18. Ramsey fringes are mea-
sured, while a constant-amplitude pulse at frequency ωb − χb + δ is sent to the
buffer resonator. For each value of δ, the dephasing rate T ∗−1

2,q is fitted as ex-
plained earlier. The resulting T ∗−1

2,q curve is shown in Fig. 5.18. We observe two
peaks, corresponding to the qubit-dependent buffer resonator frequencies ωb and
ωb − χb. A fit using Eq.5.21 yields the average photon number at resonance with
the buffer frequency for the pulse amplitude used, n̄, and therefore a quantitative
calibration of the photon flux.

Calibrating the number of photons in presence of flux noise

As mentioned earlier, the buffer resonator experiences significant flux noise that
needs to be taken into account carefully in the photon calibration. To do so, we
convolve response of the expected photon-induced dephasing and detuning with
a Gaussian distributed frequency noise.

〈∆s〉+ i〈Γs〉 = 1
σ
√

2π

∫ +∞

−∞
dδ′e−

δ′2
2σ2

−4χ|ε|2

(κb + 2i(δ − δ′))2 + χ2 , (5.48)

where ε is the drive rate, χ the dispersive shift and κb, the dissipation rate in
the absence of jittering. The magnitude of this noise σ and κb are independently
calibrated using the fit of the reflection coefficient of the resonator at various
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Figure 5.19: Four-Wave Mixing process (a,b) Pulse sequences used for the cal-
ibration of the pump frequency ωp and amplitude Ap to activate the four-wave
mixing process. A pump tone is shone on the qubit while a weak coherent tone is
shone (a) or not (b) on the SMPD. Finally the qubit state is read out. (c) Probability
of measuring the qubit in |e〉 as a function of ωp and Ap. When the four wave mix-
ing condition is matched ωp = ωq(Ap) +ωw−χw−ωb, then pe increases. Spurious
processes involving other mixing terms are also recorded. (d) Same measure-
ment repeated with no signal at the input of the SMPD. Spurious processes not
involving the buffer tone are not suppressed.

flux bias point as described in section 5.6. The fit of photon-induced dephasing
is shown in Fig.5.18. Once the drive rate is determined, the absolute input power
is then given by:

Pin = |ε|2

κb − κloss
b

~ωb (5.49)

with κloss
b the internal loss rate of the resonator in the absence of jitering infered

from the reflection coefficient fit.

4-wave mixing

After the individual characterization of each element composing the SMPD chip,
we move to the calibration of the four-wave mixing process enabling photon de-
tection.

In order to adjust the pump frequency to satisfy the 4-wave mixing condition,
we use the pulse sequence described in Fig. 5.19a. A weak signal is sent to the
buffer resonator at frequency ωb, while the pump frequency ωp and amplitude Ap
are varied. The qubit excited state probability pe is measured as an indicator of
the occurrence of the wave-mixing process. The result is shown in Fig. 5.19c.
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For each pump amplitude Ap we observe a peak in pe appearing at a frequency
ωp = ω0

p(Ap) depending on Ap. This frequency is close to the expected four-wave
mixing condition ωp = ωq + ωw − χw − ωb, and depends on Ap in a quadratic way.
This dependence is expected based on the photon-pump-induced qubit Stark
shift (cf. Eq. B.114). At higher powers, two additional peaks are seen to appear,
also dependent on Ap.

To confirm that the main peak is due to the four-wave mixing process, we
repeat the same measurement in the absence of the weak tone on the buffer res-
onator (see Fig. 5.19b). The main peak as well as the low frequency one are no
longer visible, indicating that their origin is a parametric mixing process involv-
ing buffer photons. We attribute the main peak, associated to higher transition
amplitude, to the desired four-waves mixing process. We attribute the secondary
peak to another unidentified mixing process. The high-frequency satellite peak
is always present, indicating that it does not depend on the buffer photon popu-
lation. In the following, we disregard these extra spurious non-linear processes,
by tuning the pump parameters in such a way that the four-wave mixing peak
is well-separated from them. For our experiment the chosen working point is
ωp/2π = 6.81 GHz and Ap = 0.8.

Reset calibration

The remaining part of the SMPD detection cycle is the reset, whose calibration we
discuss now. The pulse sequence used is shown in Fig. 5.20a. A microwave pulse
of duration Tr is sent toto the waste resonator input at its resonance frequency ωw
(thus populating the resonator with photons), together with a pump tone at the
same frequency ωp used for the detection part, and calibrated pump amplitude
amplitude Ap = 0.8; these pulses are followed by qubit readout. Figure 5.20b
shows pe as a function of the reset tone amplitude Ar for a fixed reset length
Tr = 2µs. We observe that pe is minimised for Ar = 0.9. For this chosen amplitude,
figure 5.20d shows pe when applying a reset pulse of duration Tr after a π-pulse.
Reset of duration Tr ∼ 2.5µs enables to reduce the averaged qubit population by a
factor 10. There is a trade-off between the reset duration and the residual excited
state population. Longer reset pulses reduce the residual excited state population
leading in principle to lower dark counts but they also decrease the duty cycle
and thus the overall efficiency. With 2.5 µs pulses, the qubit is initialized with
an residual population around 1.5 × 10−3, starting from a thermal population
around 1.5×10−2. The qubit will then rethermalize at a rate pth/T1 ∼ 10−3 µs−1, the
residual population is therefore doubled after only 1 µs, longer reset pulses would
then be ineffective at improving the dark-count rate. In practice, we measure a
residual population around 3×10−3 however this population is overestimated due
to the finite duration of the readout and the unloading time of the pulses.

Note that after a photon detection, the qubit is in its excited state. A sin-
gle reset pulse is unable to reset the qubit perfectly, however after only a few
sequences the remaining qubit population vanishes exponentially quickly. As a
consequence, we observe weak correlation between successive detection events.

Figures of merit

We now move to the measurement of the SMPD figures of merit: efficiency, band-
width and dark counts.
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Figure 5.20: SMPD reset calibration. (a) Pulse sequence used to calibrate the
reset tone amplitude Ar. The qubit is excited by a π-pulse, then the pump is
turned on and a tone at frequency ωw and amplitude Ar is shone on the waste
resonator. Then qubit is readout. (b) Qubit excited state probability pe(Ar) as a
function of the reset amplitude. Maximum reset efficiency is reached for Ar = 0.9.
(c) Pulse sequence used to calibrate the reset duration Tr. (d) Qubit excited state
probability pe(Tr) as a function of the reset duration, at the calibrated amplitude.

Efficiency

We now measure the detection efficiency ηd. The protocol is described in Fig. 5.21.
A microwave pulse is sent at the buffer resonator frequency, populating it with a
coherent state of amplitude ε, calibrated via the procedure described in Section
5.6, together with a pump pulse of duration Td = 5 µs. The qubit excited state
probability is then given by

pe = ηdε
2, (5.50)

From the measured pe(ε2) (see Figure 5.21b), we extract ηd = 0.53 ± 0.1. As ex-
plained in Section 5.3, the detection efficiency for a single photon state is ex-
pected to depend on Td via Eq.5.45. The measurement of ηd(Td) is shown in
Fig. 5.21c (blue dots). Fit using Eq.5.45 (orange line) is in good agreement with
the data, and allows to extract a four-wave mixing efficiency η4wm ' 1, the limiting
factor in the efficiency being T1,q qubit relaxation. This confirms that other spu-
rious processes, identified at calibration (see Fig.5.19), do not affect the working
of the SMPD.

Note that the maximum efficiency ηmax
d = 0.68 ± 0.1 is reached for Td ∼ 1µs.

However, we choose to operate at Td = 5µs to increase the duty cycle of the
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Figure 5.21: Photodetection efficiency measurement. (a) Pulse sequence
used for the measurement of the detection efficiency ηd. With the pump on a
weak coherent state of amplitude ε is shone on the SMPD for a time Td. Then the
qubit state is readout. (b) Qubit excited state probability Pe(ε2) as a function of
the coherent state power for fixed Td = 5 µs. A linear fit allows to extract the slope
ηd. (c) Measured (blue dots) and fitted (orange line) efficiency ηd as a function of
the detection duration Td.

detector. At this working point one obtains ηd = 0.53±0.1, limited by qubit lifetime
and the excited state readout fidelity.

Detection bandwidth

To characterize the detection bandwidth ∆det, we measure the detection efficiency
ηd as a function of the frequency ω of a weak coherent tone with average photon
number |ε|2 < 1. The data are shown in figure 5.22c, yielding a FWHM detection
bandwidth ∆det/2π = 2.1 MHz. This value deviates from ∆det/2π = 0.85 MHz,
predicted by the coupled-cavities model presented in section 5.2. However, by
considering the jittering of the buffer resonator frequency caused by flux-noise,
via gaussian convolution, we reach good agreement as shown in Fig.5.22c.

We note that, since ∆det > κ, the SMPD bandwidth is larger than the spin res-
onator bandwidth. Therefore, there should be no filtering of the photons emitted
by the spins by fluorescence.
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Figure 5.22: SMPD FOM. (a) Pulse sequence used to measure ηd(ω). After the
reset the pump is activated for Td = 5 µs while a weak tone at frequency ω is shone
on the SMPD. (b) Measured (blue dots) and computed (orange curve) ηd(ω). (c)
Pulse sequence used to measure the dark count rate νdc(Td). After the reset the
pump is activated for a duration Td before qubit readout. (d) Measured (blue
dots) and fitted (orange line) pe(Td). The measured dark count rate is obtained as
νdc = pe/Tc.

Dark counts

The measured rate is related to the probability of qubit excitation during a de-
tection cycle:

νdc = pe
Tc
. (5.51)

We measure νdc by measuring pe in absence of signal as function of the detection
window duration Td, after a reset step (see Fig.5.22b). The reset step initializes the
qubit at pe ≈ 0.35×10−2, below its thermal excitation probability of 1.2×10−2. After
the reset, pe increases with increasing detection time Td, attaining a maximum
value peq

e = 1.77 × 10−2 in a characteristic time T1,q = 9 µs (see Fig.5.22d). In our
experiments we will use Td = 5 µs on a total cycle time Tc = 11.7 µs, which gives
νdc = 0.85 counts/ms.

Note that the attained qubit equilibrium population peq
e = 1.77×10−2 measured

in the detection process is higher than the qubit thermal population ∼ 1.2×10−2,
measured in absence of the pump tone. The excess δpe ∼ 0.6× 10−2 is due to the
presence of the pump activating the four-wave mixing that can affect pe in two
ways. A first contribution can come from the pump heating the qubit. This effect
can be isolated by shining a pump tone detuned from the four-wave mixing match-
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ing condition, in doing so we measure a negligible rise of the excited population,
smaller than 10−3, compared to the population in absence of pumping. The sec-
ond effect contributing to δpe is attributed to the finite temperature of the buffer
line, populated with thermal photons that triggers the detector over its full band-
width ∆det and leads to dark counts that are integrated over the qubit lifetime T1.
The expected rise of qubit population is thus given by δpe = ηd∆detT1pth,buffer/(2π).
Substitution of the measured δpe gives a thermal occupancy of the buffer line of
pth,buffer ∼ 1× 10−3 that corresponds to a residual temperature for the microwave
line of ∼ 45 mK.

Operating the photon counter

To operate the photon counter we repeat cyclically the detection sequence shown
in figure 5.23(a). The sequence is composed by a reset part of duration Tr = 2.5µs,
a detection part of of duration Td = 5µs and a qubit measurement plus dead time
part, Tm ≈ 4.2µs, for a total cycle length of Tc = 11.7µs. The detection duty cycle
is ηduty = 0.43. One measurement trace, of few seconds duration, consists of ∼ 106

detection cycles.

When no signal is sent to the detector we measure clicks corresponding to dark
counts, as shown in the top part of Fig.5.23(b). By acquiring several measure-
ment traces, we observe that the dark count rate νdc increases over time, reach-
ing a steady state value νdc = 1.53 ms−1 (see Fig.5.23(c), note that on the plot the
starting point is at 1.25, higher than expected due to temperature rise caused
by previous sequences). This increase is attributed to the heating of the cold
stage of the refrigerator, due to the continuous power delivered by detection se-
quences. Moreover, relevant measurements in the next chapter will be performed
after reaching thermal equilibrium νdc = 1.53 ms−1.

When we apply a weak coherent state to the input of the detector we observe
an increased number of counts (see Fig.5.23(b), bottom). The SMPD can detect
one photon per detection cycle, and a significant probability of having more than
one photon in the detection window leads to saturation. This can be assessed in
the calibration procedure, the number of detected photons starts becoming non
linear as the power of the coherent tone is increased, as shown in Fig. 6.4d. The
non-linearity starts becoming relevant for a photon flux of about 0.2 photons/µs,
corresponding to one photon per detection window Td = 5 µs. Note that the rela-
tion between the photon flux and the observed count rate is in agreement with
the efficiency ηdηduty = 0.23.
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Figure 5.23: SMPD cyclic operation. (a) Detection cycle employed in the con-
tinuous operation of the SMPD. (b) Photo-detection trace. Each vertical bar cor-
responds to a click of the detector when shining no tone (red bars) or a weak
coherent tone (blue bars). In this plot, each trace consists of ∼ 2 × 103 SMPD
cycles. (c) Dark count rate νdc measured over one trace of ∼ 2 s for subsequent
measurement traces. νdc increases due to the heating induced by the fast repe-
tition of detection cycles, and saturates at 1.53 counts/s. (d) Detection count rate
measured as a function of the impinging photon flux. The SMPD starts saturating
when the flux is greater than one photon per SMPD detection window ∼ 0.2 µs−1.



Chapter 6

Detecting spins with a
microwave photon counter

We now turn to the central results of this manuscript : the detection of the small
ensemble of bismuth donor spins in silicon characterized in Chapter 4, by the
SMPD device described in Chapter 5.

We start with a brief state-of-the-art of the detection of spontaneous emis-
sion by a spin ensemble, which was demonstrated in pioneering experiments on
nuclear spins in the 1980s, using quadrature detection.

We then move to our experiments. We detect the stream of incoherent photons
emitted spontaneously by the bismuth donor spins after excitation by a π pulse,
using the SMPD. We also use the SMPD for spin-echo detection. We characterize
the sensitivity achieved in both methods, and find that fluorescence detection
yields a larger signal-to-noise ratio than spin-echo detection. We finally show
that SMPD detection enables all the standard ESR spectroscopy characterization
(spectroscopy, coherent nutation, coherence time measurements).

6.1 State-of-the-art

Inductive detection of spin fluorescence

The first detection of spontaneous emission by an ensemble of spins was achieved
by E. Hahn and J. Clarke at Berkeley [5]. Another major result is the demonstra-
tion by R. Ernst that such ”spin noise” can also be detected at room-temperature
using liquid-state NMR [6]. Here, we briefly describe these two pioneering exper-
iments.

The experiment by Hahn and Clarke [5] is sketched in Fig. 6.1a. A sample
of NaClO3 is inductively coupled to a LC resonator, cooled at 4 K. The output
voltage is amplified by a SQUID amplifier and its power spectrum detected by a
Spectrum Analyzer. The resonator frequency is chosen to be resonant with the
Nuclear Quadrupolar Resonance of the 35Cl nuclei, at 30 MHz. The key result is
visible in Fig. 6.1b, which shows the power spectrum obtained after saturating
the nuclear spins by a strong pulse. On top of the LC resonator power spectrum
(broad Lorentzian), a narrower bump appears at the nuclear spin frequency. This
additional noise is the spontaneous emission, at radiofrequency, of the nuclear
spin ensemble, upon return to thermal equilibrium.

Compared to our experimental conditions, we can make several comments.
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a) b)

c) d)

Figure 6.1: Inductive detection of spin fluorescence. (a) Illustration of the
setup used by Hahn and Clarke [5] A sample of NaClO3 is coupled inductively to
an LC resonator and cooled to 4K. A SQUID is used to amplify the output signal.
A spectrum analyzer is used to measure the power spectrum, showed in (b). The
spontaneous emission of the spin ensemble appears as a slight increase in the
Loretzian power sectrum of the resonator. (c) Setup used by McCoy and Ernst for
the detection of the fluorescence of a benzene sample at room temperature. (d)
The resulting time-resolved output noise power spectrum, after spin saturation,
leading to a relaxation time T1 = 20 s.

The nuclear spin relaxation time is estimated to be of the order of days, but
the radiative relaxation rate is estimated to be ΓP ∼ 10−16s−1. Therefore, nuclear
spin relaxation is dominantly non-radiative, and a large quantity of nuclear spins
(∼ 1021) is needed to detect the spontaneously emitted photons. Still, the emit-
ted noise represents ∼ 5% of the total Johnson-Nyquist noise in the detection
bandwidth πT2.

The detection of nuclear spin spontaneous emission at cryogenic tempera-
tures using a SQUID amplifier triggered another pioneering experiment, by Mc-
Coy et al [6]. Its purpose is to demonstrate that spontaneous emission can even
be detected at room-temperature, using liquid-state NMR spectroscopy and a
commercial spectrometer. The experiment is sketched in Fig. 6.1c. A sample of
benzene was used, and the proton resonance was detected at 300 MHz at room-
temperature. The spin relaxation time is T1 = 20 s, here also dominantly non-
radiative. Figure 6.1d shows the time-resolved measurement of the output noise
power spectrum, after saturating the spins at t = 0. At short times, a peak is
observed at the proton resonance frequency, indicating emission of spin noise,
as expected. Upon return to thermal equilibrium, the bump progressively disap-
pears and is replaced by a dip at thermal equilibrium.

This detection of spontaneous emission at room-temperature is made possible
by the narrow linewidth enabled by liquid-state NMR, and the high resonance fre-
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quency. It makes it possible to overcome the Johnson-Nyquist and amplifier noise
at 300K. Interestingly, we note that the damping in Fig. 6.1d is non-exponential,
due to collective effects (called radiation damping in magnetic resonance) because
of the large number of spins present in the experiment.

While spin fluorescence is detected in these two experiments, it is considered
mostly as a phenomenon of fundamental nature. For instance, McCoy and Ernst
explicitly say that ”It is unlikely that nuclear spin noise will be of practical impor-
tance for analytical NMR. It can only be detected for extremely strong resonance
lines and in these cases conveys no structural information that could not be ob-
tained in easier ways.” [6]. And indeed, both experiments are performed with
quadrature detection, where no gain in sensitivity can be expected compared to
pulse detection as explained in Ch.2. In this thesis, our purpose is to revisit spin
noise detection, using a SMPD instead of quadrature detection. In the regime
where spins are fully polarized and relax radiatively, we will show that fluores-
cence detection can be more sensitive than pulsed magnetic resonance detection
thanks to the SMPD.

Qubit-detected magnetic resonance

Also relevant to this work are experiments where spins are detected using super-
conducting qubits.

In [72], the ESR spectrum of an ensemble of NV centers in diamond was de-
tected using a transmon qubit. The two systems were interfaced by a frequency
tunable resonator. The diamond was directly glued on the superconducting de-
vice. The NV spins were first excited by a microwave pulse, and their FID was
collected by the resonator. The resonator was then tuned in a few nanoseconds at
resonance with a transmon qubit (also on the chip). The two systems then were
left in interaction for a time chosen such that the resonator field was entirely
transferred into the transmon qubit, whose state was then read-out. Therefore,
this experiment demonstrated the detection of the FID emitted by a spin ensem-
ble at the single photon level by the transmon qubit. However, spin fluorescence
was not detected.

Another set of experiments uses direct magnetic coupling between a spin
ensemble and a magnetically-sensitive superconducting circuit, either a flux-
qubit [73, 74], a SQUID embedded in a non-linear resonator, or a supercon-
ducting resonator. Here, the spins are not resonant with the superconducting
circuit, but their magnetization gives rise to a measurable signal when they are
excited, which enables cw spectroscopy. The method was applied to NV centers in
diamond and to rare-earth-ions-doped crystals. High spin detection sensitivity
were predicted, but not experimentally demonstrated so far. Long spin relaxation
times may be a problem at low temperatures, in absence of the Purcell effect.

6.2 Detecting spin fluorescence with a microwave
photon counter

We now come to the detection of microwave spin fluorescence using a single pho-
ton counter. A complete schematic of the experiment is showed in figure 6.2.
The experiment combines the spin resonator device presented in Ch.4, and the
SMPD characterized in Ch.5. The two devices are connected via microwave lines
and a circulator. The latter makes it possible to drive the spins, and re-directs
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Figure 6.2: Principle of spin detection with an SMPD. (a) Schematics of the
experiment. The spin device is connected to the SMPD through a microwave
line. A circulator allows to drive the spins with microwave pulses and to route
the photons emitted by the spins while relaxing radiatively towards the detector.
(b) Spin device schematics. A magnetic field B0 ∼ 17 mT is applied parallel to the
substrate to tune the lowest bismuth donor frequency in resonance with the res-
onator frequency ω0/2π ' 6.946 GHz. (c) SMPD device and operation schematics.
The buffer resonator frequency is tuned in resonance with the spin resonator
ωb(Φ) = ω0 applying magnetic flux Φ to the buffer SQUID loop. Incoming photons
at the buffer are converted into excitation of the transmon qubit and into a pho-
ton in the waste resonator. The SMPD is operated continuously by repeating a
Reset-Detection-Measurement cycle of duration 11.7 µs. The SMPD efficiency ηd
and dark count rate νdc at the working point are indicated in the inset.

the reflected pulses as well as spin signal (echo, fluorescence, ...) towards the
SMPD input.

Setup

Room-temperature and low-temperature setups are identical to those discussed
in Ch4 and Ch5, and showed in figure 6.3. The SMPD is now tuned into res-
onance with the spin cavity ωb = ω0. Moreover, experimental sequences now
include both pulses driving the spins and pulses needed for the SMPD cyclic
operation.

Pulses needed to drive the spins are generated with the same source and
I/Q channels as for the qubit readout pulses (Keysight MWG, shown in yellow
in Fig. 6.3). Note that, since qubit readout is performed at ωb − χqb while spins
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Figure 6.4: Qubit dead time. (a) Readout histogram of the state of the qubit
after a π-pulse on the spin ensemble. In the first 100 µs (top) a consistent fraction
of readout outcomes lay in a region of the I,Q plane that is markedly neither
ground (g) or excited (e) state, and that we name scrambled state (s). For com-
parison, after200 µs (bottom) we retrieve the standard qubit readout histogram.
(b) Probability of a qubit readout laying in the g, e or s region of the I,Q plane, as
a function of the time T after a spin π-pulse. Normal readout is retrieved after
∼ 150 µs.

are driven at ω0 = ωb, different mixing frequencies are applied for the two pulses.
Both types of pulses are sent via the same line (line 3 in Fig. 6.3), but because spin
driving pulses require much larger powers than qubit readout pulses, the line is
split, the spin pulse is amplified, and then recombined. Two microwave switches
are used to isolate the amplification branch outside the spin pulse window, in
order to limit the injection of amplifier noise in the line.

The low-temperature setup is identical to the one introduced in section 5.5.

SMPD dead-time

When a control pulse is applied to the spins (for instance, a π pulse), it is reflected
on the spin resonator input, and reaches the SMPD buffer input. Moreover, the
pulse frequency is resonant with the buffer resonator, since ωb = ω0. A large
field build-up in the buffer resonator is therefore unavoidable, which is likely to
impact negatively the transmon qubit operation and thus also the SMPD.

In order to characterize the impact of a spin driving pulse on the qubit, we
perform the following experiment, described in Fig. 6.4. We compare the outcome
of qubit readout in normal conditions as described in Ch.5 (Fig. 6.4a bottom
panel) to the outcome of qubit readout following a π pulse applied to the spins
(Fig. 6.4a top panel). Whereas in usual conditions, qubit readout yields two well-
separated clusters of points in the (I,Q) plane, after a π pulse this is no longer
the case. Qubit readout yields a continuum of points, very different from normal
transmon readout. Although we do not have a quantitative understanding of
the signal visible in this case, we interpret it qualitatively as being caused by
excitation of the transmon qubit into states of higher energy than e.

In order to characterize further this behavior, we define two thresholds in I.
For the lowest values, the state is assigned to g, for the highest values, the state
is assigned to e, and in the middle, it is called s (for scrambled). We follow the
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time evolution of the qubit state following a π pulse, as a function of the delay
T between the π pulse and qubit readout. The result is visible in Fig. 6.4b. We
see that for T > 100µs, only state g is populated, indicating that the qubit is back
to its equilibrium population, and that the SMPD can be used. In the following,
we discard all the detection events within the first 200µs after any spin pulse, so
that the SMPD has an effective dead-time of 200µs.

Note that besides the impact that spin pulses have on the SMPD, one may also
wonder if the repeated SMPD qubit readout pulses may cause spurious excitation
of the spins, since they are sent on the same input line. This is prevented by
the fact that, as seen in Ch5, qubit readout is performed at ωb − χb with χb/2π '
3 MHz, which is detuned from ω0 by several times the buffer resonator bandwidth
κ/2π = 0.68 MHz.

SMPD detection cycle

The SMPD cycle parameters are close to those described in Ch.5. They are visible
in Fig.6.2(c). The total cycle duration is Tc = 11.7µs, with a reset step Tr = 2.5µs
(green + violet pulses), a detection step Td = 5µs (violet pulse) and a qubit readout
step Tm ' 1.2µs (orange pulse). In addition, a 3µs waiting time between detection
and measurement and between two subsequent cycles, in order to ensure that
the buffer resonator is empty from readout photons.

We recall that, as reported in section 5.6, the intrinsic detection efficiency
measured at ωb ∼ ω0 for a detection window Td ' 5µs, is ηd = 0.53 ± 0.1, and
the the dark count rate is νdc = 0.85 clicks/ms at calibration, but it increases to
νdc = 1.53 clicks/ms during measurements since heating effects play an important
role as described below. The detection duty cycle is ηduty = Td/Tc = 0.43.

Fluorescence detection

We now come to the implementation of spin fluorescence detection by the SMPD.
The experimental sequence is described in Fig.6.5(a). A 1µs π pulse is applied to
the spins, after which 2× 105 SMPD detection cycles are repeated. Each cycle i,
centred at time ti, yields a binary outcome c(ti) ∈ {0, 1} corresponding to a ”no-
click” or ”click” event. Figure 6.5(b) shows a typical measurement trace. It is
visible that there are more clicks at short times than at long times, indicative of
the spin emission.

Repeating the measurement 500 times and histogramming the number of
counts, we extract the average count rate 〈ċ(td)〉 as a function of the delay td after
the inversion π pulse. Figure 6.5(c) shows this rate with and without π-pulse
applied. Without pulse, a constant 〈ċ(td)〉 = 1.53 counts/ms is recorded, which
corresponds to the dark count rate νdc of the SMPD. When applying a spin π-
pulse, 〈ċ(td)〉 shows an excess of 0.85 counts/ms exponentially decaying towards
the baseline, with a fitted characteristic time 309 ms. This time is close to the
spin relaxation time T1 = 300 ms measured in chapter 4 by the inversion recovery
sequence. We therefore attribute the excess of counts to photons spontaneously
emitted by the spins upon relaxation, in agreement with Eq. 3.38. Note that at
short td, we observe an extra excess rate of 0.3 counts/ms decaying with a 20 ms
time constant (inset of figure 6.5(c)); we will come back to this phenomenon in
subsection 6.2, and disregard it for the time being.

To analyze the photo-counting statistics of the fluorescence signal, we integrate
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Figure 6.5: Spin fluorescence detection. (a) Schematic of the pulse sequence
applied in the experiment of fluorescence detection. A π-pulse is applied to the
spin ensemble, followed by the continuous repetition of the SMPD detection cycle.
(b) A full SMPD detection trace after excitation of the spins with a π-pulse. Ver-
tical blue lines indicate clicks of the detector, more clicks are observed at short
times with respect to long ones. (c) Average count rate 〈ċ〉(td) measured in 19
ms time bins in the case where a π pulse is (magenta) or is not (blue) applied to
the spins. An exponential fit for td > 46.8 ms (solid line) leads to the character-
istic time T1 = 309 ms. The observed excess rate at short times td < 50 ms (inset)
has been investigated and attributed to fast-relaxing two-levels-systems. (d) Mea-
sured probability distribution of the number of counts C integrated from 46.8 ms
to 585 ms, obtained for 500 repetitions of the experiment when a π pulse is either
applied (magenta) or not (blue) to the spins. Solid lines represent Poissonian fits.
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the number of counts C =
∑
i c(ti) over a window of duration tw = 540 ms. We

choose this window as indicated in Fig. 6.5c from 45 ms to 585 ms in such a way as
to avoid the extra counts at short times, and nevertheless integrate the dominant
contribution from the spins. The resulting probability histogram p(C) is shown in
Fig. 6.5(d). With and without π pulse, an average of 〈C(π)〉 = 1050 and 〈C(0)〉 = 900
counts are detected, the difference defining the spin signal Cspin = 150 photons.
The typical deviation from this average value is given by the standard deviation
of p(C). The latter is measured to be δC = 30, as expected for a Poissonian
distribution of the dark counts, since we do find δC '

√
νdctw.

One aspect of the trace shown in Fig. 6.5(b) is worth noting. While in our ex-
periment only one click out of 4 (in the beginning of the trace) can be attributed
to a photon emitted by a spin, it is likely that future experiments will reach the
opposite regime, where most clicks originate from the spins. Then, in this regime,
each click of the detector will reveal the quantum jump of an individual electron
spin from its excited to its ground state. This phenomenon has never been ob-
served in inductive detection so far, and this is an indication that fluorescence
detection by a SMPD may have practical interest for magnetic resonance spec-
troscopy.

To stress the crucial role of the SMPD in this measurement, we compare the
SNR using the SMPD to the one that may be expected from an ideal quadrature
detection, which is given by Cspin

2
√
M/8

according to Eq. 2.104 (measuring only one
quadrature effectively divides the photon number by a factor 2). For a detection
bandwidth ∼ 1 MHz and a detection time 500 ms, the number of measured modes
is M = 5 · 105. Therefore, an ideal quadrature detection may only reach a SNR
of 0.25 at best, whereas even with an imperfect SMPD device we already reach a
SNR Cspin/δC = 4.6.

Estimation of the overall efficiency

In order to estimate the overall detection efficiency, we estimate how many spins
are excited by the π pulse. We rely on the spin density measurement described
in Ch.4 (note that a second method shall be presented later in this chapter, for
consistency), and we run simulations for the π pulse parameters used in the
experiment. We find that N = 1.4 · 104 spins are excited. Therefore, the overall
detection efficiency is Cspin/N = 10−2.

This overall efficiency is the product of several factors, η = ηdηcηdutyηint, all
of which have been determined independently as explained earlier apart from
the collection efficiency ηc. From the measured value of η, we thus deduce ηc =
0.07 ± 0.015. This value is lower than the expected collection efficiency caused
by the spin resonator internal losses, κext/κ = 0.22, revealing the presence of
additional losses, at the level of ηcκ/κext = 0.3. Part (if not all) of these losses
are attributed to microwave losses in-between the spin resonator and the SMPD
(cables, circulator).

The fact that we can account in a nearly quantitative way for the magnitude of
the detected fluorescence signal is a direct proof that the relaxation of bismuth
donor spins occurs dominantly by spontaneous emission. Indeed, in previous
demonstrations of the Purcell effect [2], the evidence was only indirect, through
the dependence of the spin relaxation time on the spin-resonator detuning or
coupling constant, but without actually measuring the photons emitted.



130 CHAPTER 6. DETECTING SPINS WITH A MICROWAVE PHOTON COUNTER

TLS fluorescence

We now focus on the excess counts observed at short td (see Fig.6.5(c)) and de-
caying within a characteristic time of order 20 ms. In order to investigate their
origin, we repeat the experiment of the previous section (measurement of the
SMPD count rate following a π pulse), and scan the magnetic field B0 around the
spin resonance. Figure 6.6a shows the count rate 〈ċ(td)〉 as a function of B0. On
the color plot, it is visible that the bismuth donor spin signal vanishes when B0
is far from the spin resonance. In contrast, the rapid decay in the first ∼ 10 ms
remains constant for all B0. Therefore, the excess count rate at short time does
not originate from the bismuth donor spins.

Further insight is obtained by performing the following complementary mea-
surement (see 6.6(b) and (c)). The count rate 〈ċ(td)〉 following a π pulse is first
measured at B0 = 0 G (Fig.6.6(b)). It is then re-measured in the exact same con-
ditions, but with the buffer resonator frequency tuned away from ω0 (Fig.6.6c)
by 5 MHz. The excess count rate at short time is visible in Fig.6.6(b), but not
in Fig.6.6(c). We thus conclude that this excess count originates from the spin
resonator at ω0.

Based on the previous results, we attribute the rapidly-decaying excess count
to the fluorescence of TLS coupled to the spin resonator, and excited by the π
pulse. Indeed, TLS are obviously coupled to the microwave field in the resonator,
since they contribute to the resonator internal losses (see Section 4.3), and are
therefore unavoidably excited by the π pulse. Exactly as for bismuth donor spins,
their relaxation towards thermal equilibrium occurs for one part non-radiatively,
and for another part radiatively, even though the ratio of the rates between the
two relaxation channels is unknown. This represents the first observation of
TLS fluorescence, which again confirms the sensitivity and the interest of SMPD
detection even beyond magnetic resonance spectroscopy.

6.3 Hahn echo detection by photon counting

We now demonstrate that the SMPD can also be used for spin-echo detection,
analogous to the detection of photon echoes with an optical photon counter [75].

The experiment is described in Fig. 6.7. Because the echo duration TE ' 2 µs
is shorter than Tc the detection cycle, at most one photon can be detected at
the echo time 2τ . We thus center the detection step D of the SMPD at 2τ . We
also chose τ = 350 µs, larger than the detector dead time. Also, to avoid detector
saturation, we purposely chose pulse parameters for the echo to contain much
less than 1 photon: while the first pulse duration is 2µs, corresponding to a π/2
pulse at the chosen power, the refocusing pulse duration is 3µs, corresponding
to a 3π/4 rotation.

Several photon-counting traces are shown in Fig. 6.7(b). Note the much shorter
time scale (1 ms) than in Fig. 6.5. The impact of the two control pulses is clearly
visible, up to 100µs after their application at times t = 0 and t = τ . At 2τ , one click
is observed more frequently than at other times, revealing the echo emission. Av-
eraging several echo sequences yields 〈c(ti)〉 (see Fig. 6.7(c)), with the echo visible
at 2τ .

Figure 6.7(d) shows the click probability histogram at the echo time and out
of the echo time. The average number of detected photons during the spin-echo
cecho = 〈c(2τ)〉−〈c(ti > 2τ)〉 = 0.3 is, as expected from Section 3.3, much lower than
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Figure 6.6: Two-level-system photon emission. (a) SMPD count rate above
dark count level as a function of B0 after a π-pulse applied to the spin resonator.
When B0 is such that the spins are in tune with the resonator the fluorescence
signal appears, decaying within a characteristic time TP ≈ 300 ms. When spins are
detuned their fluorescence disappears but a fast-relaxing photon signal persists
at short times. (b) Photon counting trace with the spin ensemble frequency ωs
detuned from the resonator ω0. After a π-pulse at ωπ = ω0 = ωb, a fluorescence
signal relaxing on a ∼ 20 ms timescale is recorded. (c) Photon counting trace with
both the spins and the resonator detuned from the SMPD. A pulse is applied at
the detector frequency ωpi = ωb and no signal is recorded. This rules out the
SMPD as the origin of the short-time fluorescence.
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traces recorded during 80 repetitions of the echo sequence, blue squares repre-
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dance of the pulses and at echo time 2τ . (c) Average number of counts 〈c〉 in 23 µs
bins, as a function of the time t from the beginning of the echo sequence, av-
eraged over 83 sequences. Blue-shadowed areas represent the 200 µs blind time
of the detector after each strong spin pulse. The increased count probability at
ti = 2τ is the spin-echo. (d) Average probability p(c) of having one or no count
in the time bin centred at echo time ti = 2τ (orange) or in one of the subsequent
bins 2τ < ti < 1 ms (blue). The difference between click probabilities (dashed
lines) lead to a signal ce of 0.3 photons re-emitted coherently.
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the number of photons Cspin detected by fluorescence in Fig. 6.5. The standard
deviation δcecho = 0.46 during the echo (Fig. 6.7) yields a signal-to-noise ratio
cecho/δcecho = 0.65.

6.4 Spin detection sensitivity comparison

We now have all the elements to compare the sensitivities reached in various
detection modalities.

We first note that our experiment reaches a SNR of 4.6 in SMPD fluorescence
detection, and 0.65 in SMPD echo detection (both measurements being performed
with the same repetition time ∼ 2T1 and thus with the same initial spin polariza-
tion). Even though we did not explicitly measure the SNR of quadrature echo de-
tection, we can estimate it to be at most 1.7 using Eqs. 3.53 and 3.54, which state
that quadrature-detected echo should have a SNR larger than SMPD-detected
echo by a factor 2√ηd. Therefore, we conclude that our experiment reaches the
regime in which fluorescence detection is more sensitive than echo detection.

It is also relevant to discuss the absolute spin detection sensitivity achieved.
As already discussed, we detect 1.4 · 104 spins in fluorescence with a single-shot
SNR of 4.6. Therefore, the single-shot spin detection sensitivity is 2600 spins,
or equivalently 2600 spins/

√
Hz since the repetition time is 1 s. This number is

comparable to the spin detection sensitivity achieved in the first quantum-limited
ESR spectroscopy experiments [3, 31]; however, a higher sensitivity was reached
in more recent experiments [76, 77]. This is due to the different spin resonator
geometry adopted, with a much smaller mode volume than the one chosen in
our experiment, resulting in larger values of ΓP and therefore a higher SNR (see
Eqs.3.53, 3.54).

6.5 Spin ensemble characterization by photon
detection

We finally demonstrate that SMPD detection can be used for usual spin charac-
terization measurements.

Spin spectroscopy is performed by varying the magnetic field B0 around the res-
onance value and using the two presented detection methods, namely SMPD
detection of fluorescence and Hahn echo. These measurements are reported in
figure 6.8, together with the result of quadrature echo-detection, showing that
all three methods give consistent spectra.

Second, we measure Rabi oscillations through the fluorescence signal. In fig-
ure 6.9a, the spin signal Cspin is plotted as a function of the driving pulse du-
ration τ , for three different pulse amplitudes A. Oscillations are observed, with
a Rabi frequency ΩRabi linearly dependent on A (Fig. 6.9c ), reflecting the Rabi
oscillations of 〈Sz〉 since Cspin = η[N + 2〈Sz〉]/2.

Rabi nutations can also be measured through photon detection of the Hahn
echo, by varying the duration τ of the refocusing pulse. The SMPD signal 〈c(2τ)〉
shows the expected oscillations (fig. 6.9b).

The oscillation contrast in figs. 6.9a and b diminishes with pulse duration τ
due to the spread of Rabi frequencies in the ensemble. Moreover, the Rabi con-
trast in the fluorescence signal is seen to decay faster than in the echo. Using
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Figure 6.8: Spectroscopy. Spectrum of the bismuth donor spins obtained
by sweeping B0 around the resonance and detecting the spin signal with the
following three methods: quadrature echo detection (red curve), echo detection
by photon counting (orange curve) and fluorescence by photon counting (blue
curve).

the coupling constant spread σg0/2π = 30 Hz deduced from the quadrature-echo-
detected Rabi oscillations in Chapter 4, the simulations reproduce quantitatively
the measurements, as seen in Fig. 6.9, both for the fluorescence and the echo.
Therefore, we conclude that the spread in g0 has a stronger impact on fluores-
cence than on the echo [77].

This can be qualitatively understood by the different relative contribution of
spin packets to the overall signal. In fluorescence, the contribution of a packet
is directly given by the value of 〈Sz〉 at the end of the pulse. In spin echoes, the
transfer function is more non-linear, and effectively filters out contributions from
spins that do not undergo a π/2 pulse [4].

Finally, spin coherence time is measured by microwave photon echo detection. In
fig. 6.10, 〈c(2τ)〉 is plotted as a function of τ . An exponential fit to the data yields
T2 = 2.7 ms, in agreement with the value measured using homodyne detection
and reported in section 4.3.

6.6 Quantitative comparison between the echo
emission and direct fluorescence signals

In the simplified, analytical model of Section 3.3, quantitative predictions are
made for the fluorescence and echo signals detected by a SMPD. Their ratio is
entirely determined by the device parameters, and in particular the number of
spins excited by the pulses, which was determined by spin-echo quadrature mea-
surements in Chapter 4. It is therefore possible to perform a ”consistency check”,
and verify that our data are compatible with the measured signal ratio. An in-
teresting aspect is that by taking the ratio of SMPD signals Cspin/cecho, the overall
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Figure 6.9: Spin ensemble Rabi oscillations. (a) Measured (magenta dots)
and simulated (solid line) average spin fluorescence signal 〈Cspin〉 as a function
of the duration T of a microwave pulse exciting the spins, for three different
pulse amplitudes A. (b) Measured (orange dots) and simulated (solid line) average
number of clicks 〈c(2τ)〉 detected at echo time, as a function of the duration T of
the second pulse of the Hahn echo sequence, for three different pulse amplitudes
A. (inset) Extracted Rabi frequency ΩRabi as a function of the pulse amplitude A
for fluorescence (magenta stars) and echo (orange triangles) measurement with
the SMPD.
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Figure 6.10: Spin ensemble coherence time. Measured (orange dots) average
number of photons detected at echo time 〈c(2τ)〉 as a function of the time delay
τ between the pulses of the Hahn echo sequence. An exponential fit (solid line)
yields a coherence time T2 = 2.7 ms.
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efficiency cancels out. In the following, we compute the spin density that yields
the measured Cspin/cecho.

In order to make this reasoning quantitative, we again resort to simulations
of both the echo sequence and the π pulse. From each simulation, we extract
the number of spins involved by computing the change in the total magnetization
〈Sz〉. The ratio 〈Sspin

z 〉/〈Secho
z 〉 should be equal to the experimentally determined

Cspin/(ηdutycecho), where the ηduty correction is due to the fact that echo detection
is gated and therefore is insensitive to the detector duty cycle. We use the spin
spectral density ρspin as the only adjustable parameter to reach the agreement
between simulation and experiment. For the experimental value of Cspin we use
the data shown in Fig. 6.5. For ce we use different pulse parameters than that
of Fig. 6.7 (same parameters for the π/2 pulse, but lower amplitude and 5.5 µs
duration for the π pulse), to get a lower value of ce and minimize the risk of SMPD
saturation. The experimental ratio is then Cspin/(ηdutycecho) = 3× 103, reproduced
by simulations for ρspin = 12 spins kHz−1. This yields N = 1.2× 104, which confirms
that both estimates of N are consistent.



Chapter 7

Conclusion and perspectives

7.1 Measuring spin fluorescence with a single
microwave photon detector

The main result of this thesis is a proof-of-principle demonstration of spin flu-
orescence measurement using a single microwave photon detector (SMPD). This
result represents the first use of an SMPD for quantum sensing, and introduces
a novel methodology for ESR spectroscopy.

For the demonstration we made use of the spins of bismuth donors in silicon
coupled to a superconducting resonator in the Purcell regime, cooled at 10mK.
We implemented an operational SMPD and connected it to the output port of
the spin resonator. Upon excitation, spins relax to the ground state emitting a
fluorescence signal which is detected by the SMPD. The main advantage of this
technique with respect to echo detection resides in the fact that the SNR can reach
much higher values. This is due to the fact that the noise is entirely governed by
detector imperfections (non-zero dark counts, and finite detection efficiency). In
contrast, quadrature detection is fundamentally limited by vacuum noise.

7.2 Future direction: single-spin detection with an
improved detector

As discussed in this thesis, detection of spin fluorescence reveals its potential
with respect to echo detection at low number of spins. Spectroscopy of small
(∼ 1 − 10) spin ensembles is interesting in the case of volume-limited samples
or even single molecules. Here, access to non-ensemble-averaged spectroscopic
information is out of the sensitivity of standard ESR techniques.

The ability to reach single spin detection would also enable hybrid quantum
information protocols based on heralded entanglement between a spin and a su-
perconducting circuit. This requires high-fidelity single-shot readout of a single
spin, achievable in principle for sufficiently high detection efficiency and low dark
counts.

Improving the detection efficiency Future experiments will easily improve
the detection efficiency compared to the results in this thesis. Simply fabricating
the resonator out of niobium instead of aluminum would suppress the vortex-
induced internal losses, and increase ηc by a factor 4. A qubit with longer T1,q
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would also increase the efficiency. An overall efficiency η = 0.2 should be reach-
able in the near future.

Decreasing the Purcell time. A decrease in Tp leads to a faster spin radiative
relaxation. This allows to reduce the total measurement time, thus diminishing
the number of dark counts occurring. The Purcell time TP is inversely propor-
tional to the spin-resonator coupling g0 and proportional to the resonator κ. In-
creased g0 is obtained with optimized resonator designs as for example bow-tie
resonators used in ref. [4]. Purcell spin relaxation times of ∼ 1 ms have already
been demonstrated.

Decreasing the dark count rate. Diminishing the dark count rate reduces the
number of false positives detected within the window over which the spin relaxes
radiatively. Lower dark counts can be achieved in two ways. First, improving
the thermalization of microwave lines. Second, increasing the qubit T1,q through
improved fabrication processes. State-of-the-art transmon qubits show that it
should be possible to reach T1,q ∼ 0.1− 0.3 ms [78]. This would lead to an order of
magnitude reduction of the dark count rate.

Using the SNR estimates derived in this thesis shows that with these improved
figures of merit, single-spin detection should be achievable. An interesting aspect
is that the method applies equally well to spins with short coherence times such
as that encountered in real-world spin systems, making practical single-spin ESR
spectroscopy a possible future perspective.
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Appendix A

Beam splitter model for
collection efficiency

Beam splitter with ancillary vacuum state

We model the limited collection efficiency ηc with a beam splitter. For simplicity
we consider a pure input state |ϕ〉a, which we write in the basis of Fock states as:

|ϕ〉a =
∞∑
n=0

ϕn |n〉a =
∞∑
n=0

ϕn

(
â†
)n

√
n!
|0〉a . (A.1)

We now apply the beam-splitter transformation to the state |ϕ〉a. We first consider
the case in which on the complementary beam-splitter arm we inject the vacuum
|0〉b:

|ϕout〉〉 = B† |ϕ〉a |0〉b =
∞∑
n=0

ϕn√
n!
B†
(
â†
)n
B |0〉a |0〉b (A.2)

where we used B |0〉a |0〉b = |0〉a |0〉b, i.e. the beam splitter transforms vacuum into
vacuum. By recalling the beam-splitter evolution:

B†âB = â
√
ηc + b̂

√
1− ηc (A.3)

B†b̂B = â
√

1− ηc − b̂
√
ηc (A.4)

at the output one has:

|ϕout〉〉 =
∞∑
n=0

ϕn

n∑
k=0

√√√√(n
k

)
η
k
2c (1− ηc)

n−k
2 |k〉a |n− k〉b . (A.5)

Now a measurement of the projector |0〉 〈0|a ⊗ 1b operated by the photon counter
leads to the probability of having no counts:

p0 = Tr [ |0〉 〈0|a ⊗ 1b |ϕout〉〉〈〈ϕout| ] (A.6)

leading:

p0 =
∞∑
n=0
|ϕn|2 (1− ηc)n (A.7)

Beam splitter with non-vacuum mixed ancillary state

With the purpose of modeling dark counts, we consider the case in which the
ancillary state is a thermal mixed state with low occupation number, namely:

ρ̂b = (1− pth) |0〉 b 〈0|+ pth |1〉 b 〈1| (A.8)
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where pth is some small probability denoting the probability of thermal occupa-
tion. The density matrix of the input state on a is:

ρ̂a =
∞∑

m,n=0
ϕnϕ

∗
m |n〉 a 〈m| (A.9)

The total input density matrix reads:

ρ̂in = ρ̂a ⊗ ρ̂b = (1− pth) |ϕ0
in〉〉〈〈ϕ0

in|+ pth |ϕ1
in〉〉〈〈ϕ1

in| (A.10)

with:
|ϕjin〉〉 =

∞∑
n=0

ϕn√
n!

(
â†
)n (

b̂
)j
|0〉a |0〉b . (A.11)

We now apply the beam splitter evolution to ρ̂in:

ρ̂out = B†ρ̂inB = (1− pth) |ϕ0
out〉〉〈〈ϕ0

out|+ pth |ϕ1
out〉〉〈〈ϕ1

out| (A.12)

where |ϕjout〉〉 = B† |ϕjin〉〉. Note that |ϕ0
out〉〉 is that of equation A.5, while for |ϕ1

out〉〉
one has:

|ϕ1
out〉〉 =

∞∑
n=0

ϕn√
n!

n∑
k=0

(
n

k

)
η
k
2c (1− ηc)

n−k
2
(
a†
)k (

b†
)n−k (

â†
√

1− ηc − b̂†
√
ηc
)
|0〉a |0〉b =

(A.13)

=
∞∑
n=0

ϕn

n∑
k=0

√√√√(n
k

)
η
k
2c (1− ηc)

n−k
2

[
k
√
ηc
|n− k〉b −

√
ηc
√
n− k + 1 |n− k + 1〉b

]
|k〉a

(A.14)

Finally, we measure the projector |0〉 a 〈0| ⊗ 1b onto ρ̂out:

p0 = Tr [ρ̂out |0〉 a 〈0| ⊗ 1b] = Trb

[
(1− pth)

∣∣∣〈〈ϕ0
out| |0〉a

∣∣∣2 + pth
∣∣∣〈〈ϕ1

out| |0〉a
∣∣∣2] (A.15)

leading to:

p0 = (1− pth)
∞∑
n=0
|ϕn|2 (1− ηc)n + pthηc

∞∑
n=0
|ϕn|2 (1− ηc)n(n+ 1) (A.16)



Appendix B

Elements of superconducting
circuits modeling

B.1 Field quantization in few words

In order to proceed to the field quantization one has to identify decoupled pairs
of conjugate canonical variables that satisfy Hamilton’s equations of motion.
Since in classical electrodynamics the dynamics of the electromagnetic field is
described by Maxwell’s equations, which constitute a system of coupled differen-
tial equations, one has to reformulate them, identifying such pairs of decoupled
conjugate variables. This derivation consists of five steps:

• write the Maxwell equations for the field in vacuum, in the Coulomb gauge,
for which one can take the scalar potential to be zero.

• Express the fields and the vector potential in the Fourier space.

• Introduce a set of normal variables α that decouples the Maxwell equations
in the Fourier space. This corresponds to a decomposition on the basis
of traveling polarized monochromatic plane waves, each with defined wave-
vector and polarization.

• Write the Hamiltonian in the canonical form, with conjugate variables Q
and P corresponding to the real and imaginary part of the normal variables
α.

• Proceed to quantization using Dirac’s method.

As a result, the quantized version of the Hamiltonian for a monochromatic mode
reads:

Ĥ = ~ω
(
â†â+ 1

2

)
(B.1)

where the annihilation operator â is the quantized counterpart of the normal
mode variable α, and satisfies the commutation relation [â, â†] = 1. The conjugate
canonical position and momentum variables Q̂ and P̂ are:

Q̂ =

√
~

2ω
(
â+ â†

)
(B.2)

P̂ = i

√
~ω
2
(
â− â†

)
(B.3)
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Their variance is bounded by the Heisemberg uncertainty relation:

〈∆Q̂2〉〈∆P̂ 2〉 ≥ ~2/4 (B.4)

In the following, we will not make use of operators Q̂ and P̂ but rather of their di-
mensionless counterparts X̂ and Ŷ , usually known as quadratures in the theory
of microwave signals, defined as

X̂ =
√
ω

2~Q̂ (B.5)

Ŷ =
√

1
2~ω P̂ (B.6)

satisfying [X̂, Ŷ ] = i/2 and 〈∆X̂2〉〈∆Ŷ 2〉 ≥ 1/16.
The electric and magnetic field associated to the monochromatic mode are ex-
pressed as:

Ê = Ezpf
(
â− â†

)
(B.7)

B̂ = Bzpf
(
â+ â†

)
(B.8)

where the field zero-point fluctuations are Ezpf =
√
~/2ωεV and Bzpf =

√
~ω/2cεV ,

with V the mode volume, ε the permittivity of the medium and c the speed of
light.

B.2 LC oscillator quantization

Here we derive and quantize the Hamiltonian of a simple LC resonator, which
comes into play both in the chip containing the spin ensemble and as a com-
ponent of the single microwave photon detector. This treatment will allow us to
calculate the voltage and current zero-point fluctuations, which determine the
coupling of spins to the resonator, we will also introduce the quantities and the
notation that will facilitate further derivations in the following sections.

Consider an LC resonator, in order to proceed to the quantization we derive
its Hamiltonian in terms of canonical position and momentum, and proceed then
with Dirac quantization rules. We begin deriving the Lagrangian of the circuit,
using the magnetic flux Φ threaded by the inductance L as generalized position
coordinate:

Φ(t) =
∫ t

−∞
L
dI(t′)
dt′

dt′ = LI(t) (B.9)

where I is the current flowing through the inductance. The potential energy of
the circuit, stored in the inductor, is calculated as:

UL(t) =
∫ t

−∞
V I dt′ =

∫ t

−∞
L
dI

dt′
I dt′ = 1

2LI
2(t) = 1

2LΦ2(t) (B.10)

where we used the fact that the voltage drop V across the inductor corresponds
to the rate of change of threaded flux V = LdI/dt. Analogously the kinetic energy
of the circuit, stored in the capacitor, is:

TC(t) =
∫ t

−∞
V I dt′ =

∫ t

−∞
V C

dV

dt′
dt′ = 1

2CV (t)2 = 1
2CΦ̇2(t) (B.11)
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where we made use of the relation I = CdV/dt, holding for a capacitance C. The
Lagrangian of the system reads:

L = TC(t)− UL(t) = 1
2CΦ̇2(t)− 1

2LΦ2(t). (B.12)

The momentum conjugate to the canonical coordinate Φ is naturally defined as:

Q = ∂L
∂Φ̇

= CΦ̇ = CV (B.13)

so that the Hamiltonian is obtained straightly through the Legendre transforma-
tion

H = QΦ̇− L = Q2

2C + Φ2

2L. (B.14)

At this point one can proceed with the standard Dirac’s quantization rules and
promote the canonical position Φ and momentum Q to quantum operators sat-
isfying the canonical commutation relation [Φ̂, Q̂] = i~:

Ĥ = Q̂2

2C + Φ̂2

2L. (B.15)

At this point it is natural to introduce the annihilation and creation operators â
and â†:

â = 1√
2~Z0

(
Φ̂ + iZ0Q̂

)
(B.16)

â† = 1√
2~Z0

(
Φ̂− iZ0Q̂

)
(B.17)

where ω0 = 1/
√
LC is the resonator frequency and Z0 =

√
L/C its impedance. In

terms of annihilation and creation operators the Hamiltonian rewrites

Ĥ = ~ω0

(
â†â+ 1

2

)
. (B.18)

One can now express the current Î in the inductor and the voltage V̂ across
capacitor plates as:

Î = Φ̂
L

=

√
~ω2

0
2Z0

(
â† + â

)
= IZPF

(
â† + â

)
(B.19)

V̂ = Φ̂
L

= i

√
~Z0ω2

0
2

(
â† − â

)
= iVZPF

(
â† − â

)
. (B.20)

where the current and voltage zero-point fluctuations IZPF and VZPF inherit their
name from being the fluctuations of these two quantities in the vacuum state |0〉:

IZPF =
√
δÎ2 =

√
〈0| Î2 |0〉 − 〈0| Î |0〉2 =

√
~ω2

0
2Z0

(B.21)

VZPF =
√
δV̂ 2 =

√
〈0| V̂ 2 |0〉 − 〈0| V̂ |0〉2 =

√
~Z0ω2

0
2 . (B.22)

These fluctuations are responsible for fluctuations of electric and magnetic field
in the space surrounding the LC resonator and thus come into play in determin-
ing the coupling of the resonator to nearby electric and magnetic dipoles.
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B.3 SQUID

Symmetric SQUID Inductance

Let’s consider a superconducting loop containing two identical Josephson junc-
tions in parallel, the current flowing from left to right can be written as the sum
of the currents in the two branches:

I = I1 + I2 = Ic sinϕ1 + Ic sinϕ2 = 2Ic cos
(
ϕ1 − ϕ2

2

)
sin
(
ϕ1 + ϕ2

2

)
. (B.23)

The superconducting phase difference ϕ1 − ϕ2 is constrained by the total phase
difference around the loop:∮

C
∇θ · dl = 2πn = (θb − θa) + (θc − θb) + (θd − θc) + (θa − θd) (B.24)

we now use the two following equations, the first one relates the vector potential
A, the gauge invariant phase gradient ∇θ and the supercurrent density J, the
second one is the expression of the gauge invariant phase across the junction
barrier:

∇θ = 2π
Φ0

(ΛJ + A) (B.25)

ϕ1 = θb − θa −
2π
Φ0

∫ b

a
A · dl (B.26)

where Φ0 is the already introduced flux quantum and Λ is known as London
coefficient and depends on the electron mass and charge and the density of the
condensate. We obtain:

2πn = ϕ1 + 2π
Φ0

∫ b

a
A ·dl+ 2π

Φ0

∫ c

b
(ΛJ + A)−ϕ2 + 2π

Φ0

∫ d

c
A ·dl+ 2π

Φ0

∫ a

d
(ΛJ + A) (B.27)

which leads to

ϕ1 − ϕ2 = −2π
Φ0

[∮
C

A · dl +
∫ c

b
ΛJ +

∫ a

d
ΛJ
]

+ 2πn. (B.28)

The integration of A on the closed loop gives the total enclosed flux Φext. The
integration of the supercurrent density can be taken deep inside the supercon-
ducting material where, past the London penetration depth, J vanishes. Thus

ϕ1 − ϕ2 = −2πΦext
Φ0

+ 2πn (B.29)

which back in eq. B.23 gives:

I = 2Ic cos
(
π

Φext
Φ0

)
sin
(
ϕ1 + ϕ2

2

)
(B.30)

which is analogous to the first Josephson relation 2.45 with ϕ = ϕ1 + ϕ2 and
a tunable critical current Ic(Φext) = 2Ic cos(πΦext/Φ0). This reflects also on the
Josephson inductance eq. 2.47 which becomes tunable with the external flux. By
embedding a SQUID into an LC resonator one can now make it tunable. Chang-
ing the magnetic flux Φext threading the SQUID loop causes a change in the
inductance of the resonator which leads to a frequency shift.

Note that for sake of simplicity in the above treatment we considered identical
junctions, asymmetrical SQUIDs with Ic1 6= Ic2 have smoother tunability curves.
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Asymmetric SQUID Inductance

Let’s consider a SQUID device, we use as generalized coordinate the fluxes as-
sociated to each of the two branches Φi = φ0ϕi, each junction contributes to the
total Hamiltonian with:

Ĥ = T (Q1, Q2)− EJ1 cosϕ1 − EJ2 cosϕ2 (B.31)

Since ϕ̂1 and ϕ̂2 are not independent variables but are linked by eq. B.29 one can
rephrase the problem by using the new variables δ̂ = ϕ̂1− ϕ̂2 and ϕ̂ = (ϕ̂1 + ϕ̂2) /2:

Ĥ == T (Q1, Q2)− EJ1 cos
(
ϕ+ δ

2

)
− EJ2 cos

(
ϕ− δ

2

)
. (B.32)

Since we consider a SQUID without current bias, we can set to zero the current
flowing through the device, Î = 0, which fixes ϕ̂ in terms of δ̂:

0 = Î = ∂Q̂

∂t
= ∂Ĥ

∂ϕ̂
(B.33)

giving:

tan ϕ̂ = EJ1 − EJ2
EJ1 + EJ2

tan δ̂2 = ∆ tan δ̂2 . (B.34)

The SQUID inductance is now obtained as

L =
(
∂2Ĥ

∂ϕ̂2

)−1

= 1
(EJ1 + EJ2) cosπΦext

Φ0

√√√√ 1 + ∆2 tan2 πΦext
Φ0

(1−∆2 tan2 πΦext
Φ0

)2 (B.35)

which satisfies:
1

EJ1 + EJ2
≤ L ≤ 1

|EJ1 − EJ2|
(B.36)

or defininig the junction inductance Li = E−1
Ji :

L1L2
L1 + L2

≤ L ≤ L1L2
|L2 − L1|

(B.37)

which defines the boundaries for the tunability of the SQUID inductance Lmin ≤
L ≤ Lmax.

B.4 Resonator coupled to a transmon qubit: EPR
method

In this section we analyze the dynamic of a coupled cavity-qubit system using
the EPR method.

Lagrangian

Let’s consider a system composed by an LC oscillator – of inductance LR, capac-
itance CR and magnetic flux ΦR – coupled via a capacitance Cc to a Transmon
qubit of Josephson energy EJ , capacitance CJ and magnetic flux ΦJ . We pro-
ceed by writing the Lagrangian using the magnetic flux Φ as generalized position
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coordinate :

L = T − U (B.38)

T = 1
2CRΦ̇2

R + 1
2CJ Φ̇2

J + 1
2Cc(Φ̇J − Φ̇R)2 (B.39)

U =
[ 1

2LΦ2
R + 1

2
EJ
φ2

0
Φ2
J

]
lin

+
[
−EJ cos Φ

φ0
− 1

2
EJ
φ2

0
Φ2
J

]
nl

(B.40)

where we separated the linear and non-linear contributions to the potential en-
ergy.

In the following we proceed by diagonalizing the linear part of the Lagrangian,
co-diagonalizing the inductance and capacitance matrices, and finally we will
expand the non-linear part in term of the obtained eigenvectors. We introduce
the following matrix notation:

Φ =
(

ΦJ

ΦR

)
(B.41)

C =
(
CJ + Cc −Cc
−Cc CR + Cc

)
(B.42)

L−1 =
(
EJφ

−2
0 0

0 L−1

)
=
(
L−1
J 0
0 L−1

R

)
(B.43)

so that:
Llin = 1

2Φ̇T
CΦ̇− 1

2ΦTL−1Φ (B.44)

We now follow Ref.[12] for the simultaneous diagonalization of the capacitance
and inverse-inductance matrices.

Diagonalizing the inverse-inductance matrix

We look for the real orthogonal matrix OTLOL = 1 that diagonalizes the inverse
inductance matrix:

OTLL
−1OL = Λ−1

L 1
−1
L (B.45)

since in our case the matrix is already diagonal we have:

OL = 1 and Λ−1
L =

(
L−1
J 0
0 L−1

R

)
(B.46)

one can define the rescaled flux as:

Φ̆ = Λ−
1
2

L OTLΦ =

L− 1
2

J ΦJ

L
− 1

2
R ΦR

 (B.47)

and the rescaled capacitance matrix as:

C̆ = Λ
1
2
LCΛ

1
2
L =

(
(CJ + Cc)LJ −Cc

√
LRLJ

−Cc
√
LRLJ (CR + Cc)LR

)
(B.48)

so that the Lagrangian reads:

Llin = 1
2Φ̇T (OLΛ−

1
2

L Λ
1
2
LO

T
L) C (OLΛ−

1
2

L Λ
1
2
LO

T
L)Φ̇− 1

2ΦT (OLOTL) L−1 (OLOTL)Φ

= 1
2

˙̆Φ
T
C̆

˙̆Φ− 1
2Φ̆T

1
−1
L Φ̆

(B.49)
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Diagonalizing the capacitance matrix

We now look for the real orthogonal matrix OT
C̆
OC̆ = 1 that diagonalizes the ca-

pacitance matrix:
OT
C̆
C̆OC̆ = ΛC̆1C (B.50)

which turns out to be:

OT
C̆

=


∆+
√

∆2+C2√
(∆+

√
∆2+C2)2+C2

−C√
(∆+

√
∆2+C2)2+C2

−∆+
√

∆2+C2√
(∆−

√
∆2+C2)2+C2

C√
(∆−

√
∆2+C2)2+C2

 (B.51)

with:

∆ = CJLJ − CRLR + Cc(LJ − LR) = CJLJ

(
1 + Cc

CJ

)
− CRLR

(
1 + Cc

CR

)
(B.52)

C = 2Cc
√
LJLR (B.53)

It’s easy to show that OC̆ and OT
C̆

can be expressed as rotations by introducing
the rotation angle θ = arctan x with x = C/∆, and noting that

√
1 + x2 = cos−1 θ

and x = tan θ. Making use of the following trigonometric identities:

sin θ = 2 sin θ2 cos θ2

cos θ = 1− 2 sin2 θ

2 = 2 cos2 θ

2 − 1

one finds that:

OT
C̆

=


√

1+x2+1√
(1+
√

1+x2)2+x2

−x√
(1+
√

1+x2)2+x2
√

1+x2−1√
(1−
√

1+x2)2+x2

x√
(1−
√

1+x2)2+x2

 =
(

cos θ2 − sin θ
2

sin θ
2 cos θ2

)
. (B.54)

The eigenvalue matrix ΛC̆ is:

ΛC̆ = 1
2

(
σ +
√

∆2 + C2 0
0 σ −

√
∆2 + C2

)
(B.55)

with:

σ = CJLJ

(
1 + Cc

CJ

)
+ CRLR

(
1 + Cc

CR

)
. (B.56)

One can now define the eigenmode flux variable as:

Φm := OT
C̆

Φ̆ (B.57)

which has the explicit form:

Φm =
(

Φ1
Φ2

)
:=
(

cos θ2 − sin θ
2

sin θ
2 cos θ2

)(
Φ̆J

Φ̆R

)
=
(

cos θ2 − sin θ
2

sin θ
2 cos θ2

)L− 1
2

J 0
0 L

− 1
2

R

(ΦJ

ΦR

)
.

(B.58)
In terms of Φm the Lagrangian is now diagonal:

Llin = 1
2Φ̇T

mΛC̆1CΦ̇m −
1
2ΦT

m1
−1
L Φm. (B.59)
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The inverse relation that expresses Φ in terms of Φm gives the so-called eigenvec-
tor matrix E: (

ΦJ

ΦR

)
=
( √

LJ cos θ2
√
LJ sin θ

2
−
√
LR sin θ

2
√
LR cos θ2

)
Φm = E Φm. (B.60)

Finally the eigenfrequencies matrix of the linearized system is defined from the
Euler-Lagrange equation of motion and given by:

Ω = Λ−
1
2

C̆
=

√ 2
σ+
√

∆2+C2 0
0

√
2

σ−
√

∆2+C2

 =
(
ω1 0
0 ω2

)
(B.61)

Diagonalized Hamiltonian

We now move to the Hamiltonian formalism by introducing the canonical mo-
mentum associated to Φm:

Qm := ∂L
∂Φ̇m

= ΛC̆1CΦ̇m, (B.62)

the Hamiltonian is obtained from a Legendre transformation on Lfull:

Hfull = Φ̇T
mQm − Lfull (B.63)

which can again be separated into linear and non-linear part as:

Hfull(Φm,Qm) = Hlin(Φm,Qm) +Hnl(Φm,Qm) (B.64)

which explicitly read:

Hlin(Φm,Qm) = 1
2Q

T
m Ω2

1L Qm + 1
2ΦT

m 1
−1
L Φm (B.65)

Hnl(Φm,Qm) := −Lnl(Φm). (B.66)

As for the Lagrangian, the linear part of the Hamiltonian is diagonal on the basis
of the eigenmode fluxes Φm, while the non-linear part can be expanded on this
basis up to any order to obtain the desired approximation.

Quantizing the Josephson circuit

We now quantize Hfull using Dirac’s canonical approach. Before proceeding we
introduce the complex action-angles variables αm which are the classical analog
of the bosonic amplitude operators. The vector of action-angle variables is defined
by the following non-canonical transformation:

α(t) := 1√
2~Ω

(
Φm(t)1−

1
2

H + iΩQm(t)1
1
2
H

)
(B.67)

1H being unity with dimensions of inductance, and the normalization being cho-
sen so that the Poisson bracket of the action-angles is {αm, α∗m′}P = 1/i~δmm′. The
Hamiltonian remains diagonal in terms of the action-angle variables:

Hlin = ~
2
(
αTΩα∗ +α∗TΩα

)
. (B.68)
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The procedure consists now in quantizing the action-angle variables to obtain the
annihilation and creation operators, and expressing the normal-mode magnetic
flux and charge in terms of these operators:

Φ̂m = Φzpf
m

(
â+ â†

)
(B.69)

Q̂m = iQzpf
m

(
â† − â

)
(B.70)

where:

Φzpf
m :=

√
~
2Ω1/2IH1/2 (B.71)

Qzpf
m :=

√
~
2Ω−1/2IH−1/2 (B.72)

are the zero-point fluctuations of flux and charge operators. More explicitly in
our case we can write:

Φzpf
m :=

√
~
2

( 2
σ+
√

∆2+C2
2

σ−
√

∆2+C2

) 1
4

(B.73)

Qzpf
m :=

√
~
2

(
σ+
√

∆2+C2

2
σ−
√

∆2+C2

2

) 1
4

(B.74)

One can also extract the physically relevant zero-point fluctuations of the flux
variables Φ̂J and Φ̂R using the eigenvector matrix E:(

Φzpf
J

Φzpf
R

)
= E

(
Φzpf

1
Φzpf

2

)
= E Φzpf

m (B.75)

To express the non-linear part of the Hamiltonian we use the fact that the flux
associated to the Josephson junction can be expressed as:

Φ̂J = E11Φ̂1 + E12Φ̂2 = E11Φzpf
1 (â1 + â†1) + E12Φzpf

2 (â2 + â†2) (B.76)

ϕ̂J = Φ̂J

φ2
0

= E11ϕ
zpf
1 (â1 + â†1) + E12ϕ

zpf
2 (â2 + â†2) (B.77)

and one can rewrite:

(E11ϕ
zpf
1 )2 = ~

2φ2
0

( 2
σ +
√

∆2 + C2

) 1
2
LJ cos2 θ

2 := p1J
~ω1
2EJ

(E12ϕ
zpf
2 )2 = ~

2φ2
0

( 2
σ −
√

∆2 + C2

) 1
2
LJ sin2 θ

2 := p2J
~ω2
2EJ

(B.78)

with p1J and p2J are called energy-participation ratios of eigenmodes 1 and 2 to
the Josephson dipole and determine how much the Josephson non-linearity par-
ticipates in each mode. By using the explicit expressions ω1 =

√
2

σ+
√

∆2+C2 and

ω2 =
√

2
σ−
√

∆2+C2 , using LJ = φ2
0/EJ

p1J = cos2 θ

2 , p2J = sin2 θ

2 , (B.79)
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where we recall that:

θ = arctan
(
C

∆

)
(B.80)

C = 2Cc
√
LJLR (B.81)

∆ = CJLJ

(
1 + Cc

CJ

)
− CRLR

(
1 + Cc

CR

)
(B.82)

Full Hamiltonian

We can now express the full Hamiltonian using the amplitude operators:

Ĥfull = ~ω1â
†
1â1 + ~ω2â

†
2â2 − EJ

∞∑
n=2

(−1)n

(2n)! ϕ̂
2n
J (B.83)

with:

ϕ̂J =
√

~
2EJ

[√
p1ω1(â1 + â†1) +√p2ω2(â2 + â†2)

]
(B.84)

p1 = cos2 θ

2 (B.85)

p2 = sin2 θ

2 (B.86)

ω1 =
√

2
σ +
√

∆2 + C2
(B.87)

ω2 =
√

2
σ −
√

∆2 + C2
(B.88)

C = 2Cc
√
LJLR (B.89)

∆ = CJLJ

(
1 + Cc

CJ

)
− CRLR

(
1 + Cc

CR

)
(B.90)

σ = CJLJ

(
1 + Cc

CJ

)
+ CRLR

(
1 + Cc

CR

)
(B.91)

Note that in the case of uncoupled resonator and qubit (Cc = 0) we retrieve the
expected behavior:

C → 0 (x→ 0, θ = arctan x→ 0) (B.92)
∆→ CJLJ − CRLR (B.93)
σ → CJLJ + CRLR (B.94)

OT
C̆
→
(

1 0
0 1

)
(B.95)

Ω→
(
ωJ 0
0 ωR

)
(B.96)

p1 → 1 (B.97)
p2 → 0 (B.98)



B.4. RESONATOR COUPLED TO A TRANSMON QUBIT: EPR METHOD 153

4th order approximation and dispersive qubit readout

The resonator coupled to the transmon qubit can be used for reading out the
state of the qubit with minimum perturbation. This technique is called dispersive
readout and is based on the shift of the coupled resonator frequency based on
the qubit state. One can simply derive this dispersive shift by chopping the non-
linear term at the 4-th order:

Ĥfull = ~ω1â
†
1â1 + ~ω2â

†
2â2 −

EJ
24

( ~
2EJ

)2 [√
p1ω1(â1 + â†1) +√p2ω2(â2 + â†2)

]4
(B.99)

applying the rotating wave approximation with |ω1 − ω2| � 0, neglecting constant
energy terms, the last term reads:

â†1â1
(
12p1ω1p2ω2 + 6(p1ω1)2

)
+ 6(p1ω1)2(â†1â1)2+

+â†2â2
(
12p1ω1p2ω2 + 6(p2ω2)2

)
+ 6(p2ω2)2(â†2â2)2+

+24p1ω1p2ω2â
†
1â1â

†
2â2

(B.100)

which, plugged back into the Hamiltonian, leads to:

Ĥfull =~ω1

[
1− p1

(
p2

~ω2
8EJ

+ p1
~ω1

16EJ
+ p1

~ω1
8EJ

â†1â1

)]
â†1â1

+~ω2

[
1− p2

(
p1

~ω1
8EJ

+ p2
~ω2

16EJ
+ p2

~ω2
8EJ

â†2â2

)]
â†2â2

−~ω1~ω2
4EJ

p1p2 (â†1â1) (â†2â2). (B.101)

In the weak coupling regime (Cc � 1), â1 and â2 almost coincide with the anni-
hilation operators respectively of the resonator mode and qubit mode. Thus, the
last term represents a shift of the frequency of each of these modes, based on
the population of the other one, in other words the frequency of the resonator
depends on the state of the qubit and the frequency of the qubit depends on the
number of photons in the resonator. This dispersive shift effect is obtained when
|ω1 − ω2| � 0 and is exploited to readout the state of the qubit by measuring the
frequency of the coupled resonator.

SMPD Hamiltonian

As already anticipated in section 5.2, the SMPD system consists of three elec-
tromagnetic modes, the buffer, qubit and waste, coupled through a Josephson
junction. A strong radio-frequency drive, the pump, is applied to the qubit mode
to activate the four-waves mixing process. Following Ref. [57], and grounded on
the EPR method, we can write the Hamiltonian of the system as:

Ĥ =
∑

m=b,w,q
~ωmm̂†m̂− EJ

[
cos (ϕ̂) + ϕ̂2

2

]
+ 2εp cos (ωpt)

(
q̂ + q̂†

)
(B.102)

where EJ is the Josephson energy and εp and ωp are the angular frequency and
amplitude of the pump. The index m refers to the buffer, waste and qubit modes
of respective angular frequency ωm and annihilator operator m̂, and where:

ϕ̂ =
∑

m=b,w,q
ϕm

(
m̂+ m̂†

)
, (B.103)
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so that the phase across the junction can be decomposed as the sum of the
phases of each mode, as derived in the EPR analysis (cfr. Eq. B.84).

We now proceed as in section 3.2 and move to the frame displaced by the
mean field pump amplitude ξpe

−iωpt, with ξp ≈ −εp/(ωq − ωp), provided that the
pump is adiabatically switched on and off with respect to the detuning ωq − ωp
(∼ −500 MHz in our experiment). Moreover, we place ourselves in the interaction
picture with respect to the Hamiltonian

∑
m(ωm− δm)m̂†m̂ where δm are arbitrary

detunings used to cancel the ac-Stark shifts due to the Kerr effect. The trans-
formed Hamiltonian is:

Ĥ =
∑

m=b,w,q
~δmm̂†m̂− EJ

[
cos

(
ϕ̂′
)

+ ϕ̂′2

2

]
(B.104)

where:

ϕ̂′ =
∑

m=b,w,q
ϕm

(
m̂e−i(ωm−δm)t + m̂†ei(ωm−δm)t

)
+ ϕq

(
ξpe
−iωpt + ξ∗pe

iωpt
)
. (B.105)

At this point we take the energy conservation condition of the four-waves mixing
process:

ωp = (ωq − δq) + (ωw − δw)− (ωb − δb) , (B.106)

we then expand the cosine terms up to fourth order (similarly to Eq. B.99) and
keep the non-rotating terms:

Ĥ ≈ ĤStark + ĤKerr + Ĥ4WM (B.107)

where:

ĤStark =
∑

m=b,w
~
(
δm − χqm |ξp|2

)
m̂†m̂+ ~

(
δq − 2χqq |ξp|2

)
q̂†q̂, (B.108)

ĤKerr =
∑

m=b,w,q
−~χmm

2 m̂†2m̂2 − ~χqbb̂†b̂q̂†q̂ − ~χqwŵ†ŵq̂†q̂ − ~χqbq̂†q̂b̂†b̂, (B.109)

Ĥ4WM = ~g3b̂ŵ
†q̂† + ~g∗3 b̂†ŵq̂ (B.110)

with:

~χmm = EJ
2 φ4

m (B.111)

~χmn = EJφ
2
mφ

2
n (B.112)

~g3 = −EJξpφ2
qφbφw = −ξp

√
χqbχqw. (B.113)

We neglected the terms m̂†m̂ arising from the normal ordering of the fourth-
order term since their effect is just to shift the bare frequencies ωm by a constant
amount.

We can now apply the two-level system approximation to the transmon quibit:
since its anharmonicity χqq (∼ 200 MHz) is much larger than all the dissipation
and excitation rates (∼ 1 MHz), in the following, we project the qubit mode onto its
two lowest energy levels |g〉 and |e〉. We thus replace the bosonic operator q̂ by the
two-level lowering operator σ̂ = |g〉 〈e|. Moreover, we choose the mode reference
frames such that δq = 2χqq |ξp|2, δb = χqb |ξp|2, and δw = χqw |ξp|2 +∆, where we have
introduced an arbitrary detuning ∆ which can be chosen to cancel the cross-Kerr
effect between the qubit and the waste χqw. This leads to ĤStark = ~∆ŵ†ŵ. The



B.4. RESONATOR COUPLED TO A TRANSMON QUBIT: EPR METHOD 155

pump frequency thus needs to be adapted for each value of ξp in order to always
verify Eq. B.106:

ωp = ωq + ωw − ωb −∆− |ξp|2 (2χqq + χqw − χqb) . (B.114)

The final Hamiltonian reads:

Ĥ = ~∆ŵ†ŵ+g3b̂ŵ
†σ̂†+g∗3 b̂†ŵσ̂−

∑
m=b,w

χmm
2 m̂†2m̂2−χqbb̂†b̂σ̂†σ̂−χqwŵ†ŵσ̂†σ̂−χbw b̂†b̂ŵ†ŵ

(B.115)

Engineering irreversible interaction: adiabatic elimination of the waste
mode

The just-derived Hamiltonian generates a reversible four-waves mixing unitary
evolution: once an incoming photon in the buffer mode is converted to an excita-
tion of the qubit plus a photon in the waste mode, the reverse process can happen
with equal probability, causing the loss of the information about the absorbed
photon stored in the qubit.

In order to suppress the reversibility one can engineer the dissipation of the
waste mode such that the converted photon is quickly and irremediably lost in
the environment. For this to happen, the energy decay rate of the waste mode κw
has to be larger than the coupling g3 of the waste mode to the buffer through the
four-wave mixing process. If this is verified one can proceed in an analogous way
as done in section 3.2 and use the adiabatic approximation to trace out the state
of the system on the waste degrees of freedom, obtaining an effective evolution for
the remaining subsystem. Since the system is now embedded in an environment
we move to the Lindblad formalism for the evolution of the density matrix, and
account for the dephasing of the qubit (at rate κφ) and dissipation of the qubit,
buffer and waste (κq, κb and κw) through Lindblad operators, the master equation
reads:

˙̂ρ = 1
i~

[Ĥ, ρ̂] +DΓ̂w(ρ̂) +DΓ̂b(ρ̂) +DΓ̂σ(ρ̂) +Dγ̂z(ρ̂) (B.116)

with:

Γ̂m =
√
κmm̂ (B.117)

γ̂z =
√
κφ
2 σ̂+σ̂. (B.118)

To perform the adiabatic approximation, we place ourselves in the regime where
|g3| , χqb, χbw, χbb, κb, κq, κφ ∼ δκw, and δ is a small parameter δ � 1. In our exper-
iment, χqw = κw ∼ 1, and we assume ∆/κw ∼ 1. In this regime, the waste mode
can be adiabatically eliminated, leading to an effective dynamics for the buffer
and qubit modes alone. We search for a solution of the full buffer-qubit-waste
dynamics of the form:

ρ̂ =ρ̂00 ⊗ |0〉 〈0|+ δ (ρ̂10 ⊗ |1〉 〈0|+ ρ̂01 ⊗ |0〉 〈1|) +

+ δ2 (ρ̂11 ⊗ |1〉 〈1|+ ρ̂02 ⊗ |0〉 〈2|+ ρ̂20 ⊗ |2〉 〈0|) +O(δ3) (B.119)

where ρ̂mn = 〈m| ρ̂ |n〉 is the reduced density matrix acting on the buffer Hilbert
space with |m〉, |n〉 being the Fock states basis of the waste mode. Whereas
|n〉 〈m| acts on the waste Hilbert space. The goal here is to derive the dynamics
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of ρ̂qb = Trw(ρ̂) = ρ̂00 + δ2ρ̂11 up to second order in δ, where Trw denotes the partial
trace over the waste degrees of freedom. The low occupancy of the waste mode
justifies this expansion. We are interested in the dynamics of the reduced density
operator for the qubit-buffer modes ρ̂qb, which is obtained by taking the partial
trace over the waste mode. We rewrite the Hamiltonian of Eq. B.115 in the
following form:

Ĥ = ~g3b̂σ̂
†ŵ† + ~g∗3 b̂†σ̂ŵ +

(
∆− ~χqwσ̂†σ̂ − ~χbw b̂†b̂

)
ŵ†ŵ + Ĥqb (B.120)

with:
Ĥqb = −~χbb

2 b̂†2b̂2 − ~χqbb̂†b̂σ̂†σ̂. (B.121)

We define the Lindbladian acting on the qubit-buffer subspace as:

Lqb (ρ̂qb) = 1
i~

[
Ĥqb, ρ̂qb

]
+DΓ̂b(ρ̂) +DΓ̂σ(ρ̂) +Dγ̂z(ρ̂). (B.122)

By projecting Eq. B.116 on 〈0| · |0〉, 〈0| · |1〉 and 〈1| · |0〉, respectively, we get:

˙̂ρ00
κw

= δ2
(
iρ01Â− iÂ†ρ10 + ρ11

)
+ 1
κw
Lqb(ρ00) +O(δ3) (B.123)

˙̂ρ01
κw

= iρ00Â
† − ρ01

(1
2 − i∆̂

)
+O(δ) (B.124)

˙̂ρ11
κw

= iρ10Â
† − iÂρ01 − i[∆̂, ρ11]− ρ11 +O(δ) (B.125)

where

Â = g3
κwδ

b̂σ̂† (B.126)

∆̂ = ∆− χqwσ̂†σ̂
κw

(B.127)

Note that ||Â|| and ||∆̂|| are of order δ0. Considering Eq. (B.124), we see that the
derivative of ρ01 is composed of a term proportional to ρ00 that can be viewed
as an external drive, and a term proportional to ρ01, that includes a damping
term. Since the variation of ρ00 is slow (dρ00/κwdt of order δ2, see Eq. (B.123))
in comparison to the damping term (of order 1), we can make the adiabatic ap-
proximation: we consider that ρ01 is continuously in its steady state. The same
reasoning applies to ρ11, we thus set to 0 the left hand sides of Eqs. B.124 and
B.125. Moreover, by noting that ∆̂Â = (∆−χqw)Â/κw, we can solve for ρ01, ρ10, ρ11
as a function of ρ00. We find

ρ01 = 1
1 + 4|∆−χqwκw

|2

(
2i− 4(∆− χqw)

κw

)
ρ00Â

† (B.128)

ρ11 = 1
1 + 4|∆−χqwκw

|2
4Âρ00Â

† . (B.129)

We denote

κnl = 4|g3|2/κw
1 + 4|∆−χqwκw

|2
, (B.130)

∆nl = 4|g3|2/κw
1 + 4|∆−χqwκw

|2
χqw −∆
κw

. (B.131)
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Inserting the solutions (B.128), (B.129) into Eq. (B.123) we find

d

dt
ρ00 = −i∆nl[b̂†b̂σ̂σ†, ρ00] +DΓ̂nl

ρ00 + Lqb(ρ00) +O(δ3) . (B.132)

with:
Γ̂nl = √κnlb̂σ̂

† (B.133)

The term proportional to κnl is the non-linear damping term at the heart of the
Single Microwave Photon Detector. It is maximized for ∆ = χqw. In this config-
uration, the pump angular frequency ωp = ωq + ωw − ωb − χqw is such that ~ωp
exactly matches the energy difference between the initial state b̂† |0〉 and final
state σ̂†ŵ† |0〉, and κnl = 4|g3|2/κw. The term proportional to ∆nl is a “generalized
frequency pull” that corresponds to a tunable cross-Kerr effect between the qubit
and buffer modes. Note that the ρqb follows the same dynamics as Eq. (B.132).

Coupled cavities model

The systematic approach leading to the adiabatic approximation result catches
the full dynamics of the buffer-qubit-waste interaction, but it requires the adia-
batic elimination condition to be satisfied for all dynamical degrees of freedom.
Since as revealed later on, due to fabrication issues, we have κb > κw, the as-
sumption made for adiabatic approximation does not hold anymore. In that case,
instead of deriving the full master equation in the adiabatic approximation, one
can use a different approach to evaluate the scattering parameter S21 of the de-
tector, which is linked to bandwidth and efficiency.

Starting from the Hamiltonian Eq. B.120 one can calculate the evolution of the
buffer and waste annihilation operators b̂ and ŵ using the Lindblad master equa-
tion (5.32):

˙̂
b = −iδbb̂+ ig∗3ŵσ̂ −

κb
2 b̂+

√
κinb̂in (B.134)

˙̂w = −iδwŵ + ig3b̂σ̂
† − κw

2 ŵ, (B.135)

where we reintroduced the δi as the frequency detunings when moving to interac-
tion picture (see Eq. B.104), we neglected the terms χmn which are smaller than
g3, and we introduced a source term on the buffer side, describing the input field
impinging on the detector. We now make the realistic assumption that the initial
state is separable in the field-qubit subspaces ρ̂ = ρ̂(bw) ⊗ ρ̂(q), and evaluate the
mean values of the operators tracing explicitly on the qubit subspace:

〈 ˙̂b〉 = −iδb〈b̂〉 − iG〈ŵ〉 −
κb
2 〈b̂〉+

√
κin〈b̂in〉 (B.136)

〈 ˙̂w〉 = −iδw〈ŵ〉 − iG∗〈b̂〉 −
κw
2 〈ŵ〉 (B.137)

where
G = −ρ(q)

eg g3 = ρ(q)
eg ξp
√
χqbχqw. (B.138)

Note that G depends on time, as ρ(q)
eg is itself time-dependent. This term describes

a coupling between the buffer and waste modes, which is mediated by the four-
wave mixing process, and whose ’direction’ depends on the state of the qubit.
One can verify that:

ρ̇(q)
eg = −ρ̇(q)

ge ∝ i(ρgg − ρee), (B.139)
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such that if the coupling increases in one direction, it decreases in the other
direction. We can now solve the system of coupled equations for the average
value of the buffer and waste intra-cavity fields β = 〈b̂〉 and υ = 〈ŵ〉:

β̇ = −iδbβ − iGυ −
κb
2 β +√κbβin (B.140)

υ̇ = −iδwυ − iG∗β −
κw
2 υ (B.141)

The equations for the Fourier components of β and υ are:

− iδβ̃ = −iδbβ̃ − iGυ̃ −
κb
2 β̃ +√κbβ̃in (B.142)

− iδυ̃ = −iδwυ̃ − iG∗β̃ −
κw
2 υ̃ (B.143)

where δ is the frequency of the Fourier component in the rotating frame. Us-
ing the relation between the intra-resonator fields and the input and output flux√
κbβ̃ = β̃in + β̃out, we can extract the frequency-dependent transmission coeffi-

cient |S21( δ)|2 = |υout/βin|2:

|S21(δ)|2 =
∣∣∣∣∣ 2ξp

√
κbκwχbχw

−4(δb − δ)(δw − δ) + 2i(δb − δ)κw + 2i(δw − δ)κb + κbκw + χbχwξ2
p

∣∣∣∣∣
2

.

(B.144)
Note that the buffer and waste modes interact resonantly through the four-wave
mixing process activated by the pump, this can be expressed by writing δw =
δb + δp, with δp denoting the pump shift with respect to the frequency matching
condition (δp = 0).

Figure 5.6 reports plots of |S21(δ)|2 with realistic experimental parameters for
three pump detunings, showing that maximum transmission through the detec-
tor (i.e. optimal four-wave mixing coupling between buffer and waste) is reached
at the resonant condition, as expected. The expression for |S21(δ)|2 is essential to
determine the efficiency and bandwidth of the detector as a function of the in-
coming photon frequency δ and the pump detuning δp, once the other parameters
are known and will be used as a comparison with experimental measurements.

B.5 SMPD efficiency vs detection window

Impact of qubit relaxation on the efficiency

Here we derive a formula for the detection efficiency ηd as a function of the du-
ration of the detection window Td, taking into account the qubit relaxation time
T1. Let’s consider a detection window of duration Td starting at t = 0, a state con-
taining a single photon with probability p1 enters the SMPD at time t and excites
the qubit with probability η0p1. The probability of finding the qubit excited at the
end of the detection window, when the readout is performed is:

Pe(t) = ηdp1 = η0p1e
−(Td−t)/T1 . (B.145)

such that one can define the new efficiency ηd = η0e
−(Td−t)/T1 taking into account

qubit relaxation. Now consider a coherent state of low amplitude α = √p1 < 1,
continuously impinging on the SMPD. The probability of finding the qubit excited
at the end of a detection window gives the efficiency:

ηd = 1
Td

∫ Td

0
η0e
−(Td−t)/T1dt = η0

T1
Td

(
1− e−Td/T1

)
(B.146)
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which takes into account both the relaxation of the qubit and the contribution
of the continuously impinging photons.
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B.6 SMPD recipe

Cleaning

Acetone / Isopropanol / Ultrasounds

Spincoating

Dehydratation bake 5’ @ 150°C   (for adhesion)
Cooldown N2  30‘’ 
UV3 spincoating  60’’ @ 6000 @ 4000
Postbake  1’ @ 130°C
Black box storage

E-beam lithography

Meander mode ON
Zoom   1.005
Dose   7 µC/cm2 
Dose scaling  1.2   
Poligon overlap  0.5 µm
Voltage   10 kV
Aperture   30 µm
Writefield  400 µm

Development & etching

Bake   1’ @ 145°C
Cooldown  1’
CD26    3‘ to 6’ @ room T 

Cleaning

Acetone   10‘
Isopropanol  10’

Circuit

Spincoating

E-beam lithography

Development 

MIBK develop  60’’ @ room T 
Stopper   IPA 30’’

Junctions

Dehydratation bake 1’ @ 110°C
Cooldown N2  30‘’   
MAA EL10   3’’   @  500   @   500  
   60’’ @  2000 @  1000
   5’’   @  7500 @  1000
Postbake  5’    @ 172°C
Cooldown  1’
PMMA A3950K  3’’   @  500   @   500  
   60’’ @  3200 @  1000
   5’’   @  7000 @  1000
Postbake  15’  @ 175°C  

x2

Meander mode ON
Zoom   1.000 
Dose   250 µC/cm2 
Dose scaling  1.1 + 0.2 (junctions)  
            0.2 (undercut)
Poligon overlap  0.5 µm
Voltage   25 kV
Aperture   10 µm
Writefield  100 µm

Plasma ashing

Pressure  0.2 mb 
Power   75 W
Time   10’’

Junction evaporation

Milling   3’‘ + 3’‘ (5mA)
Al   35 nm (1nm/s) @ +29.6°
Ox   5’ @ 10 mbar 
Al   65 nm (1nm/s) @ -29.6°
Lift off   10’ Aceton @ 80°C
(Junction stabilization 1’ @ 100°C)

Spincoating

E-beam lithography

Development 

MIBK develop  60’’ @ room T 
Stopper   IPA 30’’

Bandage

Dehydratation bake 1’ @ 110°C
Cooldown N2  30‘’  
PMMA A6   5’’   @  500   @  1000  
   60’’ @  3000 @  3000
Postbake  15’  @ 170°C  

Meander mode ON
Zoom   1.000 
Dose   250 µC/cm2 
Dose scaling  1.3 
Poligon overlap  0.5 µm
Voltage   25 kV
Aperture   10 µm
Writefield  200 µm

Plasma ashing

Pressure  0.2 mb 
Power   75 W
Time   10’’

Bandage patch evaporation

Milling   1’ standard recipe (65mA)
Al   100 nm (0.2 nm/s) 
Lift off   2’ Aceton @ 80°C

Reactive ion etching

Trenching

SF6
Flow   20 sccm
Pressure  0.1 mbar
Voltage   43 V (35W)
Time   120’’

SC1

Wafer preparation

5 H2O + H2O2(30%) + NH4OH(29%)      10’@80°C
HF (5%)             2’

Aluminum evaporation

Al             60 nm 
            (1nm/s)

Figure B.1: SMPD recipe.



Appendix C

Spin coupled to a cavity:
Hamiltonian transformations
and adiabatic elimination

C.1 Transforming the Hamiltonian

Displaced field description

In order to cancel the additional pump term appearing in Eq. 3.11 and simplify
the description, we apply an unitary transformation to the Hamiltonian, shifting
to the frame in which the cavity mode is displaced by some mean field amplitude
α(t) = αe−iωdt:

Dα = eα(t)â†−α∗(t)â. (C.1)

In order to preserve equations of motion 3.17, the Hamiltonian has to transform
as Ĥ → DαĤD

†
α + i~ḊαD

†
α, and the Lindblad operators as L̂i → DαL̂iD

†
α. One can

thus choose α appropriately such that the term i~ḊαD
†
α cancels out the pump

term and the additional terms generated by the displacement operator. Under
the displacement the transformed Hamiltonian is:

DαĤD
†
α =~ω0â

†â+ ~
2ωsσ̂z + ~g0

(
âσ̂+ + â†σ̂−

)
− ~g0 (α(t)σ̂+ + α∗(t)σ̂−) +

(C.2)

+ i~
√
κext

(
βâ†e−iωdt + β∗âeiωdt

)
+ ~ω0

(
−α(t)â† − α∗(t)â

)
,

where we omit all the constant terms which doesn’t affect the dynamics. The last
two terms are the ones we try to eliminate exploiting the additional i~ḊαD

†
α term.

The other term we want to eliminate from the dynamics is the one generated by
Dα when acting on Lindblad operators L̂phot±, namely κ(α(t)â† + α∗(t)â)/2.
An explicit expression of i~ḊαD

†
α is given by:

i~ḊαD
†
α = i~

(
α̇(t)â† − α̇∗(t)â

)
(C.3)

so that we are looking for an α(t) = αe−iωdt satisfying:(
α̇(t)â† − α̇∗(t)â

)
−
√
κext

(
βâ†e−iωdt + β∗âeiωdt

)
(C.4)

+ iω0
(
α(t)â† + α∗(t)â

)
+ κ

2 (α(t)â† + α∗(t)â) = 0.

161
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Separating the terms in â and â†, and performing the derivatives leads to the
equation:

− iωdα+ iω0α−
√
κextβ + κ

2α = 0

(C.5)

α =
√
κextβ

κ
2 + i(ω0 − ωd)

which is exactly the mean intracavity field expected from input-output relations
of a cavity under the drive β. The displaced Hamiltonian reads:

Ĥ = ~ω0â
†â+ ~

2ωsσ̂z + ~g0
(
âσ̂+ + â†σ̂−

)
− ~g0 (α(t)σ̂+ + α∗(t)σ̂−) (C.6)

and the displaced density matrix to be used is Dαρ̂D
†
α.

Hamiltonian in the spin rotating frame

We now perform a transformation and put us in the frame rotating at the spin
frequency. This turns out to be useful for the subsequent adiabatic elimination
of the fast evolving degrees of freedom. The transformation is described by the
unitary:

Rωs = eiωst(â
†â+σ̂z/2) (C.7)

and leads to the transformed Hamiltonian Ĥ → RωsĤR
†
ωs + i~ṘωsR†ωs:

Ĥ = ~∆â†â+ ~g0
(
âσ̂+ + â†σ̂−

)
− ~g0 (α̃(t)σ̂+ + α̃∗(t)σ̂−) (C.8)

where ∆ = ω0 − ωs, α̃(t) = αe−i(ωd−ωs)t.

C.2 Adiabatic elimination and the Purcell effect

Here we detail the adiabatic elimination adopted in section 3.2.
Adiabatic elimination is a method to describe the effective evolution of a sub-

system evolving on a slow timescale with respect to other parts of the system. In
our case, the evolution of the cavity degrees of freedom happens on a timescale
∼ 1/κ which is faster that the timescales of evolution of the spin system, and
the timescale of interaction between the spin and the cavity: κ � g0 � Γphon, γ.
We follow the derivation of Ref. [79], and define the small parameter δ ∼ g0/κ ∼√

Γphon/κ.

Consider the density matrix ρ̂cs in the displaced rotating frame, describing the
state of the composite spin-cavity system. Its evolution is determined by the
master equation:

˙̂ρcs = 1
i~

[Ĥ, ρ̂cs] +
∑
i

DL̂i(ρ̂cs) (C.9)

where the Hamiltonian is that of Eq. C.8 and the Lindblad super-operators DL̂i
describe the effect of the channels coupled to the system, and have explicit action
on the density matrix given by:

DL̂i(ρ̂) = L̂iρ̂L̂
†
i −

1
2
{
L̂†i L̂i, ρ̂

}
(C.10)
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Within our assumptions the L̂i operators are:

L̂phot- =
√
κ(1 + nth)â (C.11)

L̂phot+ = √κnthâ
† (C.12)

L̂phon- =
√

Γphon(1 + nph)σ̂− (C.13)

L̂phon+ =
√

Γphonnphσ̂+ (C.14)

L̂2 =
√

Γ2/2σ̂z. (C.15)

Since we are in the regime in which δ � 1 we assume that the number of
photons in the cavity is always smaller than one on the timescales g−1

0 , Γ−1
phon, the

density matrix can thus be expanded as:

ρ̂cs =ρ̂00 |0〉 〈0|+ δ (ρ̂01 |0〉 〈1|+ ρ̂10 |1〉 〈0|) +
(C.16)

+ δ2 (ρ̂11 |1〉 〈1|+ ρ̂02 |0〉 〈2|+ ρ̂20 |2〉 〈0|) +O(δ3)

where ρ̂mn = 〈m| ρ̂cs |n〉 acts on the spin’s Hilbert space. The goal is to derive the
dynamics of the reduced density matrix ˙̂ρs = Trc[ ˙̂ρcs] = ˙̂ρ00 + δ2 ˙̂ρ11 + O(δ3) up to
second order in δ. Since ˙̂ρ00 is of order zero in δ, we keep the terms up to second
order, while for ˙̂ρ11 we will keep the terms to the order zero. We consider the
realistic regime in which the thermal photon population of the cavity is negligible,
nth = 0.

• We obtain ˙̂ρ00 by projecting Eq. C.9 on 〈0| and |0〉, using Eq. C.16:

˙̂ρ00
κ

= 1
i~κ
〈0| [Ĥ, ρ̂cs] |0〉+ δ2ρ̂11 + 1

κ

∑
i

DL̂i(ρ̂00) +O(δ3) =

=
[
−iδg0

κ
(σ̂+ρ̂10 − ρ̂01σ̂−) + i

g0
κ

[α̃(t)σ̂+ + α̃∗(t)σ̂−, ρ̂00]
]

+ δ2ρ̂11 + 1
κ

∑
i

DL̂i(ρ̂00) +O(δ3) (C.17)

where the last sum runs only on Lindbladians associated to the spin deco-
herence and decay channels.

• Similarly we obtain ˙̂ρ11 through:

˙̂ρ11
κ

= −i g0
κδ

(σ̂−ρ̂10 − ρ̂01σ̂+)− ρ̂11 +O(δ) (C.18)

˙̂ρ10
κ

= −i g0
κδ
σ̂−ρ̂00 − ρ̂10

(1
2 + i

∆
κ

)
+O(δ) (C.19)

The first term in the derivative of ρ̂10 represents a slow-varying drive (order
δ) while the second one is a damping term of order 1. The adiabatic ap-
proximation consists in assuming that, because the damping is faster than
the other terms, ρ̂10 is always in its steady-state. The same consideration



164
APPENDIX C. SPIN COUPLED TO A CAVITY: HAMILTONIAN TRANSFORMATIONS

AND ADIABATIC ELIMINATION

applies to ρ̂11 after substituting the steady state of ρ̂10 in the equation. We
thus have:

ρ̂10 = −ig0
κ
2 + i∆

1
δ
σ̂−ρ̂00 +O(δ)

ρ̂11 = 1
κδ2

κg2
0(

κ
2
)2 + ∆2

σ̂−ρ̂00σ̂+ +O(δ) (C.20)

Inserting the results of Eq. C.20 back into Eq. C.17 we find:

˙̂ρs = ˙̂ρ00 + δ2 ˙̂ρ11 +O(δ3) = 1
i~

[Ĥs, ρ̂00] +DP̂ (ρ̂00) +
∑
i

DL̂i(ρ̂00) +O(δ3) (C.21)

˙̂ρs '
1
i~

[Ĥs, ρ̂s] +DP̂ (ρ̂s) +
∑
i

DL̂i(ρ̂s), (C.22)

where Ĥs ' 〈0| Ĥ |0〉 is the reduced Hamiltonian, and we used ˙̂ρ11 = 0, and:

Ĥs = −~g0 (α̃(t)σ̂+ + α̃∗(t)σ̂−) (C.23)

P̂ =
√

Γp(∆)σ̂− (C.24)

Γp(∆) = κg2
0(

κ
2
)2 + ∆2

(C.25)

The new Lindbladian term DP̂ , is the result of the adiabatic elimination process,
and describes the radiative relaxation of the spin system at rate Γp. This en-
hanced relaxation phenomenon, known as Purcell effect, is responsible for the
dominance of radiative relaxation over non-radiative phenomena, when Γp �
Γphon. The above derivation shows that the presence of a lossy cavity with en-
ergy damping rate κ, coupled to the spin with coupling rate g0 � κ, the so-called
weak-coupling regime, remarkably leads to an enhancement of the spin relax-
ation rate.

Average field values in the adiabatic approximation

One can use the adiabatic approximation, which consists fundamentally in tak-
ing the expansion of ρ̂ in terms of the intra-cavity field states {δm+n |m〉 〈n|}m+n≤2,
to calculate mean values of the instantaneous field observables. For the number
of intra-cavity photons one has:

〈â†â〉 = Tr[â†â(ρ̂00 |0〉 〈0|+ δ (ρ̂10 |1〉 〈0|+ ρ̂01 |0〉 〈1|) +

+δ2 (ρ̂11 |1〉 〈1|+ ρ̂20 |2〉 〈0|+ ρ̂02 |0〉 〈2|))] +O(δ3) = Trs[δ2ρ̂11] +O(δ3) (C.26)

where ρ̂11 is obtained from the adiabatic approximation (see Eq. C.20). At order
δ (i.e. neglecting terms of order (Γp/κ)2 in the observable mean value), one has:

〈â†â〉 = Γp
κ

〈1 + σ̂z〉
2 +O(δ2) (C.27)

This equation implies that the average number of photons generated by the spin
in the resonator is related to theMz = 〈σ̂z〉 component of the magnetization vector.



C.3. SPIN-INDUCED ELECTROMAGNETIC NOISE 165

One can proceed similarly for the field amplitude to obtain 〈â〉 = Tr[δρ̂10] +O(δ3),
from which:

〈â〉 = −ig0
κ
2 + i∆

〈σ̂x − iσ̂y〉
2 +O(δ2), (C.28)

where we used σ̂− = (σ̂x − iσ̂y)/2. This equation shows that the field amplitude
produced by the spin in the cavity is related to the magnetization vector compo-
nents Mx = 〈σ̂x〉 and My = 〈σ̂y〉.

C.3 Spin-induced electromagnetic noise

In adiabatic approximation one can compute the fluctuations of the electromag-
netic field quadrature X̂ = 1

2(â† + â) in an LC resonator coupled to an N-spin
ensemble as follows:

〈∆X̂2〉 = 1
2
(
〈∆â†2〉+ 〈∆â2〉+ 2〈â†â〉+ 1

)
= (C.29)

= 1
4 + Γp

4κ〈N + Ŝz〉 −
g2

0
4

(
〈∆Ŝ2

+〉(
κ
2 − i∆

)2 +
〈∆Ŝ2

−〉(
κ
2 + i∆

)2
)

= (C.30)

= 1
4 + Γp

4κ〈N + Ŝz〉 −
Γp
4κ〈∆Ŝ

2
+ + ∆Ŝ2

−〉 (C.31)

where the last equality holds at resonance (∆ = 0), and where we used:

〈∆â2〉 = Tr[2δ2ρ̂20]− Tr[δρ̂10]2 = −g2
0(

κ
2 − i∆

)2 (1
2〈Ŝ

2
+〉 − 〈Ŝ+〉2

)
(C.32)

δ2ρ̂20 = −g2
0(

κ
2 − i∆

)2 1
2 ρ̂00Ŝ

2
+. (C.33)

Since vacuum fluctuations on the quadrature equal 〈∆X̂2〉0 = 1/4, we see that
the presence of spin polarization and transverse magnetization modifies the fluc-
tuations of the electromagnetic field. One can now distinguish two limiting cases:
the first is when the fluctuations are dominated by the longitudinal term 〈N+Ŝz〉,
the second is when they are dominated by the transverse magnetization terms
〈∆Ŝ2

±〉.
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Titre: Mesure de la fluorescence de spin avec un compteur de photons à micro-ondes
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Résumé: La résonance magnétique est une
branche de la science qui vise à détecter les
spins via leur absorption et émission de rayon-
nement électromagnétique. On distingue deux
domaines: la résonance magnétique nucléaire
(RMN) qui vise à détecter les spins des noy-
aux, et la résonance de spin électronique (ESR)
qui concerne la détection du spin des électrons
non appariés. Dans cette thèse, nous intro-
duisons une nouvelle méthode pour la spectro-
scopie ESR, consistant en la détection du sig-
nal de fluorescence micro-onde incohérent émis
par un ensemble de spins relaxant vers leur
état fondamental après avoir eté excités. Afin
de démontrer cette méthode, nous utilisons les
spins électroniques appartenant aux donneurs
de bismuth dans le silicium. L’émission du sig-
nal de fluorescence est favorisée par l’effet Pur-

cell, dû au couplage de l’ensemble de spins à
un résonateur supraconducteur ayant un petit
volume de mode et de faibles pertes. Nous
connectons le port de sortie du système spin-
résonateur à l’entrée d’un détecteur de photons
micro-ondes accordable en fréquence (SMPD)
récemment développé, basé sur le mélange à
quatre ondes avec un qubit supraconducteur.
Après une impulsion d’excitation, les spins re-
laxent vers leur état fondamental en émettant
un flux de photons incohérents qui constitue le
signal de fluorescence et qui est détecté par le
SMPD. Nous montrons que le signal de fluores-
cence peut être utilisé pour effectuer la spectro-
scopie de l’ensemble et mesurer ses propriétés.
Nous comparons cette technique à la détection
par écho et discutons l’avantage en sensibilité
pour un petit nombre de spins.

Title: Measuring spin fluorescence with a microwave photon counter

Keywords: Spin fluorescence, ESR, Transmon qubit, microwave, photon counter

Abstract: Magnetic resonance is a branch of
science that aims to detect spins via their ab-
sorption and emission of electromagnetic radia-
tion. Two areas can be distinguished: nuclear
magnetic resonance (NMR) which aims at de-
tecting the spins of nuclei, and electron spin
resonance (ESR) that concerns the detection of
the spin of unpaired electrons. In this thesis, we
introduce a new method for ESR spectroscopy,
consisting of the detection of the incoherent mi-
crowave fluorescence signal emitted by an en-
semble spins relaxing to their ground state after
an excitation pulse. In order to demonstrate
this method, we use the electronic spins belong-
ing to bismuth donors in silicon. Emission of
the fluorescence signal is favored by the Purcell

effect, due to the coupling of the spin ensemble
to a superconducting resonator with small mode
volume and low losses. We connect the output
port of the spin-resonator system to the input
of a newly-developed frequency-tunable single
microwave photon detector (SMPD), based on
four-wave mixing with a superconducting qubit.
After an excitation pulse, the spins relax to their
ground state emitting a stream of incoherent
photons which constitutes the fluorescence sig-
nal and is detected with the SMPD. We show
that the fluorescence signal can be used to per-
form spectroscopy of the ensemble and measure
relevant properties. We compare this technique
to standard echo detection and discuss its in-
creased sensitivity for small numbers of spins.
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