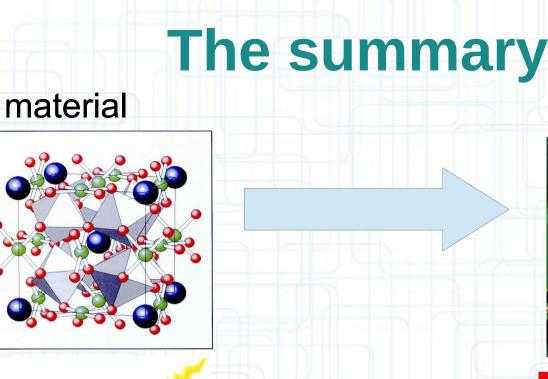
Multi-terminal Josephson junctions as topological materials

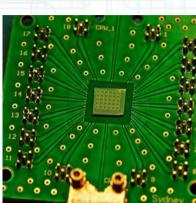
Jan Unuuuq; Jean Clanting;

<u>Yuli V. Nazarov,</u> <u>TU Delft</u> Roman Riwar, Manuel Houzet, Julia Meyer (Grenoble), Tomohiro Yokoyama(Delft)





material : say, 5 d



device

Nanodevice (multi-terminal sup.junction)

The back-to-the-future summary

- 1982 Quantum Hall Effect
- A challenge to super-electronics
- 1988 Likharev Zorin: Bloch+Josephson synchro
- 2013 Hriscu Nazarov: synchro!
- Now: 2015 simplest way to achieve QHE

Outline

- Topological materials
- Superconducting junctions
- The analogy
- Weyl singularities in 3D
- Tunable 2D from 3D
- Transconductance quantization => Quantum Hall effect
- Perspectives

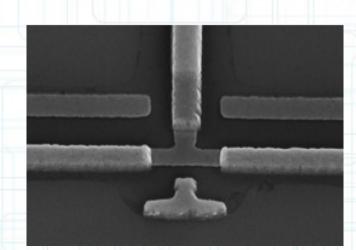
Topological materials

- Bandstructure: Eigenenergies $E(q_{,},q_{,},q_{,})$
- From eigenstates: Berry curvature field
- $B_z(\vec{q}) = i \left\langle \frac{\partial \Psi}{\partial q_x} | \frac{\partial \Psi}{\partial q_y} \right\rangle \left\langle \frac{\partial \Psi}{\partial q_y} | \frac{\partial \Psi}{\partial q_x} \right\rangle \right)$
- 2D topological invariant(Chern number)
- $C = \frac{1}{2\pi} \int dq_x dq_y B_z(\vec{q})$
- Manifestation: Quantum Hall effect
 → quantized transconductance
- +much-much more (Z₂, spin Hall, surface modes, surface structuring, 1d wires, Majorana)

• Josephson junction $E = -E_J \cos \varphi$

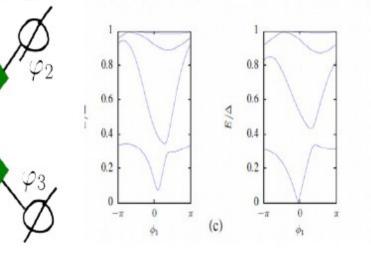
- More transparent Andreev bound states • $E = -\frac{1}{2} \sum_{p} E_{p}$
- $E_p = \Delta \sqrt{1 T_p \sin(\varphi/2)^2}$
- More terminals more superconducting phases $E_p(\phi_1, \cdots, \phi_{n-1})$
- same Andreev states

B



The analogy

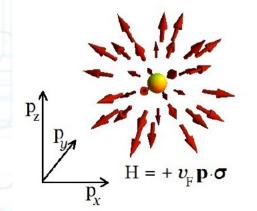
- Bandstructure <=> Andreev spectrum
 - $q_x, q_y, q_z \leftrightarrow \varphi_1, \varphi_2, \varphi_3$

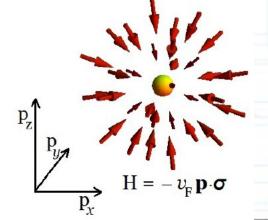


- Incomplete
 - Gap edge, continuous spectrum
 - Filling: all quasimomenta, phases one

Weyl singularity

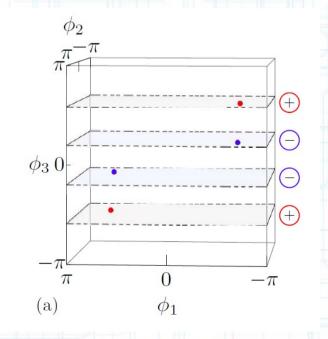
- Massless relativistic particle
- Conical spectrum
- In the vicinity of certain q • $\hat{H} = \vec{\sigma} \cdot (\delta \vec{q})$
- Occurrence in materials predicted :)
- A monopole of the Berrv curvature field





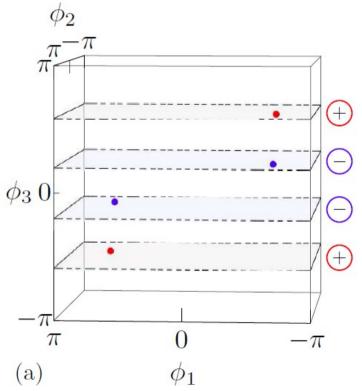
Weyl singularities in 4-terminal junctions

- At zero energy important
- Three fields three parameters three phases – one-goal game
- Beenakker formula from scatt.matrix
- Come in pairs of 4
- (+- and
- inversion symmetry)



From 3D to 2D

- Flexibiliby of dimensions
- 2D bandstructure a moving plane
- ϕ_3 control parameter
- Plane passes W.S =
- Change of Chern number
- Topologically non-trivial
 2D material
- Tunable by φ₃



Berry curvature and transport

- Currents functions of the phases
- Change the phases adiabatically

$$I_{\alpha}(t) = \frac{2e}{\hbar} \frac{\partial E}{\partial \phi_{\alpha}} - 2e\dot{\phi}_{\beta} B^{\alpha\beta}$$

Leading order

First correction

Sensitive to the local Berry curvature

Role of quasiparticles

Single – level contribution

 $I_{\alpha}(t) = \frac{2e}{\hbar} \frac{\partial E}{\partial \phi_{\alpha}} - 2e\dot{\phi}_{\beta}B^{\alpha\beta}$

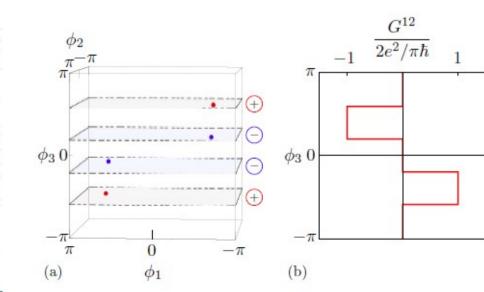
Leading order

- No qp: |
- 1 qp: 0
- 2qp: |
- Sensitive to the quasiparticle poisonning
- Let's be optimistic

First correction

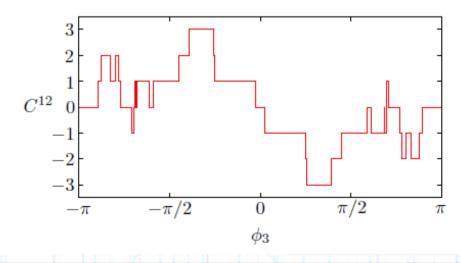
Transconductance quantization

- Apply (incommensurate) voltages
- Phases are swept over BZ
- Sup.current vanishes
- What remains?
- $I_1 = G_{12}V_2; \ I_2 = -G_{12}V_1; \ G_{12} \equiv (2e^2/\pi\hbar)C$



Experiment to do

- Instead of Quantum Hall bar
- Make 4 terminal sup. Junction
- Shake it till Weyl singularities
- Apply voltages to 2 leads
- Measure d.c. currents in the leads
- Tune it by the 3rd phase



Outlook

- Multi -dimensional materials!
- More complex topologies
- Edge? Edge!
 - Structuring in charge space