Continuous measurement of remote superconducting qubits: quantum trajectories and statistics

N. Roch Neel Institute, Grenoble, France

Happy Birthday "Quantro"

Audrey COTTET Quantronics Group

IMPLEMENTATION OF A QUANTUM BIT IN A SUPERCONDUCTING CIRCUIT

Thank you !

Quantum Nanoelectronics Laboratory, Department of Physics, UC – Berkeley M.E. Schwartz, C. Macklin, A. Eddins I. Siddiqi

Tata Institute of Fundamental Research, Mumbai, India R. Vijay

Theory Collaborators:

UC-Berkeley: F. Motzoi, K. B. Whaley UC-Riverside: A. Korotkov Sandia National Laboratories : M. Sarovar

Parametric Amplifier

Q Feedback

High-fidelity readout and Multiplexing

Vijay et al., Nature (2012)

Berkeley, Yale, Delft, ENS-Paris, ETHZ...

Weak measurements

Hatridge et al., Science (2013)

Yale, Santa Barbara, ENS-Paris, Delft...

Santa Barbara, Berkeley, Yale, Delft, ENS-Paris, ETHZ, Wisconsin, Princeton, IBM...

Quantum trajectories

Murch et al., Nature (2014)

Berkeley, Delft, Yale, ENS-Paris...

Remote entanglement and measurement

Remote entanglement and measurement

I. Useful definitions

II. Diffusive measurements to generate entanglement

III. Quantum trajectories and entanglement

$$V_m = \frac{1}{\Delta t} \int_0^{\Delta t} V_{out}(t) dt$$

Two useful quantities:

Dimensionless measurement: $r = 2V_m^Q/\Delta V$

Two useful quantities:

Dimensionless measurement: $r=2V_m^Q/\Delta V$

Characteristic measurement rate:

$$\Gamma_m = 64\eta_m \frac{\chi^2 \bar{n}}{\kappa}$$

Gambetta et al., Phys. Rev. A (2008)

$$\Gamma_m \times \Delta t = (2/\sigma)^2$$

Characteristic measurement rate:

$$\Gamma_m \times \Delta t = (2/\sigma)^2$$

Characteristic measurement rate:

$$\Gamma_m \times \Delta t = (2/\sigma)^2$$

Characteristic measurement rate:

$$\Gamma_m \times \Delta t = (2/\sigma)^2$$

Two limits (single qubit case)

Quantum Jumps

Diffusive measurement

Vijay et al., **Phys. Rev. Lett.** (2011)

Murch et al., Nature (2014)

Measurement Induced Entanglement Outcomes

Measurement Induced Entanglement Outcomes

If two outcomes are indistinguishable, measurement projects into an entangled subspace

Measurement induced entanglement in the single cavity limit: Ristè, D., et al., **Nature** (2013) Generating entanglement

Generating entanglement

Generating entanglement

Measurement induced entanglement

 $|\psi_i\rangle = (|00\rangle + |01\rangle + |10\rangle + |11\rangle)/2$

Measurement induced entanglement

Measurement induced entanglement

Quantifying the entanglement: Entanglement of formation or concurrence

$$\mathcal{C} = \max(0, 2(|\rho_{01,10}| - \sqrt{\rho_{00,00}\rho_{11,11}}))$$

 $\mathcal{C} = 0.35$

Wooters, Phys. Rev. Lett. (1998) Simplified formula: L. Jakóbczyk and A. Jamróz, Phys. Lett. A (2005)

Single qubit case:

Hatridge et al., Science (2013)

See also: Murch et al., **Nature** (2014)

Reminder:

Bayes rule:

$$p(|ij\rangle|r) = \frac{p(|ij\rangle)p(r||ij\rangle)}{p(r)}$$

Mapping of ronto p

Quantum trajectories and entanglement Ensemble measurements 0.4 <u>a</u> 0.2 0.4 <u>a</u> 0.2 0 0 00 01 00 11 10 10 01 01 11 11 10 00 10 00 01 11 Single experimental realisation $|\psi_i\rangle$ $\psi_f \rangle$

Quantum trajectory reconstruction allows us to directly observe quantum state evolution under measurement

Murch K., et al., Nature (2013)

Dynamics of entanglement creation

Single time trace

Dynamics of entanglement creation

$$V_m = \frac{1}{\Delta t} \int_0^{\Delta t} V_{out}(t) dt$$
 and $r = 2V_m^Q / \Delta V$

Integrated single time trace

Question: can we infer the evolution of the density matrix ?

Dynamics of entanglement creation

of one cascaded system

Single quantum trajectory

o $\rho_{00,00}$ + $\rho_{01,01}$ ◊ $\rho_{10,10}$ × $\rho_{11,11}$ □ $\rho_{01,10}$

Perspectives

Probability density function of the concurrence

University of Rochester: A. Chantasri and A. N. Jordan

Summary

Entangling remote qubits using measurement

Reconstructing single quantum trajectories

Statistics of remote entanglement creation

Roch N., et al. Phys. Rev. Lett., (2014)

Viewpoint in Physics: Remote Controlled Entanglement by K. Lalumière and A. Blais

Thanks !

Happy Birthday "Quantro"

Audrey COTTET Quantronics Group

IMPLEMENTATION OF A QUANTUM BIT IN A SUPERCONDUCTING CIRCUIT

Off-diagonal elements

$$\begin{aligned} |\rho_{01,10}^{fin}| &= |\rho_{01,10}^{in}| \frac{\sqrt{\rho_{01,01}^{fin}\rho_{10,10}^{fin}}}{\sqrt{\rho_{01,01}^{in}\rho_{10,10}^{in}}} \\ &\times \exp\left[-\frac{1}{2}\int |B_{out}^{(01)}(t) - B_{out}^{(10)}(t)|^2 dt\right] \\ &\times \exp\left[-\frac{1}{2}\int \left((1 - \eta_{loss})\kappa_{s,1} + \kappa_{w,1} + \kappa_{decay,1}\right)|A^{(01)}(t) - A^{(10)}(t)|^2 dt\right] \\ &\times \exp\left[-\frac{1}{2}\int \left(\kappa_{w,2} + \kappa_{decay,2}\right)|B^{(01)} - B^{(10)}|^2 dt\right], \end{aligned}$$

