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For both types of measurement, the results show excellent agreement
with theory for g 5 0.49.

We have so far demonstrated that the integrated measurement signal
provides a faithful record of the fluctuations of the environment and
the associated motions of the qubit state. Moreover, we observe that
the direction of motion of the qubit state depends on the amplification
quadrature. To examine quantum trajectories of the system, we divide
the measurement signal into successive segments. The integrated measure-
ment signal can then be written as a string {Vm(t0), Vm(t1), Vm(t2), …},
where ti11 2 ti 5 16 ns. At each time point, Vm(ti) can be used to infer
the qubit state. In Fig. 3, we present measurement traces along with the
quantum trajectory of the system associated with each noisy measure-
ment trace. The trajectories show how the quantum system evolves sto-
chastically from an initial state prepared along x̂ towards a final state.
Measurement inefficiency and additional dephasing limits the accuracy
with which the state can be tracked. This limitation is manifest as a gradual
shortening of the estimated transverse coherence of the qubit state.

To verify that we have accurately inferred the quantum trajectory of
the system corresponding to a given measurement signal, we perform
quantum state tomography on an ensemble of experimental iterations
with similar measurement values. A tomographic reconstruction of the
trajectory is obtained by making measurements of variable duration, ti,
and subsequently measuring the projection of the qubit state along one
of the Cartesian axes of the Bloch sphere. Only measurements with
values that are within +e of the target value, Vm(ti), contribute to
determining the ensemble properties X, Y and Z. As shown in the
upper panels of Fig. 3, many different measurement signals that con-
verge to Vm(ti)+e at ti are used in the tomographic reconstruction.
This illustrates how the inferred state at a particular time depends only
on the value of the integrated measurement voltage at that time.

Figure 3a, b displays quantum trajectories that are obtained for Z-
measurements. The reconstructed trajectories based on ensemble mea-
surements, shown as solid lines, are in reasonable agreement with the
quantum trajectories determined from a single measurement record,
and reproduce many of the minute motions of the qubit as it ultimately
evolves towards its eigenstates of measurement. Some trajectories high-
light the concept of quantum measurement reversal:26–29 in Fig. 3a, after
,400, 600 and 1,000 ns of measurement the qubit state has returned

nearly to its original state, effectively ‘reversing’ the preceding partial
collapse of the qubit wavefunction. In Fig. 3c, we display the measurement
record that we obtain from a w-measurement. The resulting quantum
trajectory is confined to motions along the equator of the Bloch sphere.

Full control over the environment of a quantum system allows for the
mitigation of decoherence through accurate monitoring of fluctuations
of the environment. Although measurement schemes based on projec-
tive measurements on ancilla qubits obtain measurement efficiencies30

greater than 0.9, the measurement efficiency presented here, g 5 0.49, is
among the highest reported values for a continuous variable6–8,13. This
efficiency is limited by an imperfect collection efficiency, gcol 5 0.72,
resulting from losses in microwave components, and imperfect amp-
lifier quantum efficiency, gamp 5 0.68. Further improvements in the
quantum measurement efficiency will be essential for realizing poten-
tial applications of quantum feedback6,7 in quantum metrology and
information science.

METHODS SUMMARY
The qubit consists of two aluminium paddles connected by a double-angle-evaporated
aluminium superconducting quantum interference device (SQUID) deposited on
double-side-polished silicon, and is characterized by charging and Josephson energies
Ec/h 5 200 MHz and EJ/h 5 11 GHz, respectively. The qubit is operated with neg-
ligible flux threading the SQUID loop with transition frequency vq/2p5 3.999 GHz.
The qubit is located off centre of a 6.8316-GHz copper waveguide cavity.

The LJPA consists of a two-junction SQUID, formed from 2-mA Josephson
junctions, shunted by 3 pF of capacitance, and is flux-biased to provide 10 dB of
gain at the cavity resonance frequency. The LJPA is pumped by two sidebands that
are equally spaced 300 MHz above and below the cavity resonance. A second LJPA
that follows the first provides additional gain. A detailed experimental schematic is
shown in Supplementary Fig. 1.

Experiment sequences start with an 800-ns readout with S 5 42 that is used to
herald the state j0æ at the beginning of the experiment. A sample herald histogram
is shown in Supplementary Fig. 2. Because xj j=k, several peaks are visible, cor-
responding to the many energy levels of the transmon qubit. After preparing the
state j0æ, we perform a 16-ns p/2-rotation about the {ŷ axis to initialize the qubit
along the x̂ axis. After a period of variable duration, we perform quantum state tomo-
graphy, which consists of either rotations about the x̂ and ŷ axes or no rotation and
a second 800-ns readout with S 5 42. In a fraction (,4%) of the final readouts, the
qubit is outside the {j0æ, j1æ} manifold. These sequences were disregarded in the
analysis. Tomography results are corrected for the readout fidelity of 95%.

Time (μs) Time (μs) Time (μs)
1.61.20.80.40.0

–1.0

–0.5

0.0

0.5

1.0

–1.0

–0.5

0.0

0.5

1.0

–1.0

–0.5

0.0

0.5

1.0

1.61.20.80.40.0 1.61.20.80.40.0

XZ YZ ZZ Xφ Yφ Zφ
V m

 (V
)

1.60 Time (μs) 1.60 Time (μs)

Vm(1.2 μs) Vm(0.592 μs) Vm(0.8 μs)

V 
(V

)

–0.5

0.5
0.0

V 
(V

)

–0.5

0.5
0.0

1.60 Time (μs)

V 
(V

)

–0.5

0.5
0.0

–0.2

–0.1

0.0

0.1

0.2

V m
 (V

)

–0.2

–0.1

0.0

0.1

0.2

V m
 (V

)

–0.2

–0.1

0.0

0.1

0.2

XZ YZ ZZ

Figure 3 | Quantum trajectories. a, b, Individual measurement traces
obtained for Z-measurements with !n~0:4. The top panels display Vm(t) as a
green line, with the upper insets displaying the instantaneous measurement
voltage. The grey region indicates the standard deviation of the distribution
of measurement values. Measurement traces that converge to an integrated
value within the blue matching window are used to reconstruct, using
tomography, the trajectory at that time point. A few different measurement
traces that contribute to the reconstruction at 1.2ms (a) and 0.592ms (b) are

indicated in lighter colours. The lower insets indicate the distribution of
measurement values with the blue matching window. The lower panels display
quantum trajectories obtained from analysis of the measurement signal, as
dotted lines. Solid lines indicate the tomographically reconstructed quantum
trajectory based on the ensemble of measurements that are within the matching
window of the original measurement signal. c, Individual measurement traces
and associated quantum trajectories obtained for a w-measurement with
!n~0:4.
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readout strength and qubit temperature, trials with
outcomes |Im/s| < 1.5 (corresponding to state pu-
rity < 99%) for the first and third measurements
are discarded, as well as outcomes for the first
measurement with the qubit in |e〉. To quantify
the measurement back-action for a given mea-
surement outcome (Im,Qm), the average final qubit

Bloch vector, conditioned by the measurement
outcome (Im, Qm), (〈X 〉c, 〈Y 〉c, 〈Z 〉c), is calcu-
lated versus outcome using the results of the
tomography phase. These conditional maps of
〈X 〉c, 〈Y 〉c, 〈Z 〉c were constructed using 201 by
201 bins in the plane of scaled measurement out-
comes (Im/s, Qm/s).

Results for four measurement strengths in-
creasing by decades from n ¼ 5" 10−3 to 5 are
shown in Fig. 3B (see movie S1 of histograms
and tomograms for all measurement strengths).
The left column shows a 2D histogram of all
scaled measurement outcomes recorded during
the variable-strength readout pulse. At weak
measurement strength, the ground- (left) and excited-
(right) state distributions overlap almost com-
pletely. Their separation grows with increasing
strength until they are well separated at n ¼ 5,
which corresponds to the strong projective mea-
surement shown in Fig. 1A. The rightmost col-
umns show 〈X〉c, 〈Y〉c, 〈Z〉c versus the associated
(Im/s, Qm/s) bin. At weak measurement strength
(n << 1), the qubit state is only slightly perturbed,
with all measurement outcomes corresponding
to Bloch vectors pointing nearly along the +y
(initial) axis. However, gradients in 〈X〉c along
theQm axis and 〈Z〉c along the Im axis are visible,
demonstrating the outcome-dependent back-
action of the measurement on the qubit state. As
the measurement strength increases, so does the
back-action, as seen in the increase of the gra-
dients in the 〈X〉c and 〈Z〉cmaps (see fig. S2).When
the measurement becomes strong, the qubit is
projected to +z for positive Im (–z for negative
Im), whereas 〈X〉 and 〈Y〉 go unconditionally to
zero, as expected.

One of the key predictions of finite-strength
measurement theory is that the statistics of the
measurement process, in particular the apparent
measurement strength in the I-quadrature (which
can be determined experimentally from the statis-
tics of the measurement outcomes), are sufficient
to infer zf for any apparent measurement strength
or outcome (see Eq. 1). For weak measurement,
where the back-action is symmetric along both x
and z, the apparent measurement strength deter-

Fig. 2. (A) Pulse sequence for strong measure-
ment. An initial qubit rotation Rx(q) of q radians
about the x axis is followed by an 8-ms readout
pulse with drive power such that n ¼ 5. (B) In-
dividual measurement records. The data are
smoothed with a binomial filter with a Tm = 240 ns
time constant and scaled by the experimentally
determined standard deviation (s). Black dotted
lines indicate 4s deviation events. The qubit is
initially measured to be in the excited state, and
quantum jumps between excited and ground states
are clearly resolved. The center of the ground- and
excited-state distributions are represented as hori-
zontal dotted lines. (C) Histograms of the initial
240-ns record of the readout pulse along Im axis,
for q = 0, p/2, p. Finite qubit temperature and T1
decay during readout are visible as population in
the undesired qubit state.
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Fig. 3. (A) Pulse sequence for quantifying measurement back-action. The measurement
strength was varied linearly in amplitude from

ffiffiffi
n
p

= 0 to
ffiffiffi
5
p

. Conditional maps of 〈X〉c, 〈Y〉c,
〈Z〉c versus measurement outcome (Im/s, Qm/s) were constructed using 201 by 201 bins. (B)
Results are shown increasing by decades from n = 5"10−3 to 5. The left column shows a 2D histogram of all scaledmeasurement outcomes recorded during the
variable-strength readout pulse. The three rightmost columns are tomograms showing 〈X〉c, 〈Y〉c, 〈Z〉c versus the associated (Im/s, Qm/s) bin.
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amplifier10,11 (paramp), which boosts the relevant quadrature to a level
compatible with classical circuitry. The paramp output is further amp-
lified and homodyne-detected (Fig. 1c) such that the amplified quad-
rature (Q) contains the final measurement signal.

We obtain Rabi oscillations with the cavity continuously excited at
vr/2p5 7.2749 GHz (vr < vc 2 x) with a mean cavity photon occu-
pation (!n) that controls the measurement strength (see Supplementary
Information, section II, for calibration of !n). The Rabi drive at the a.c.
Stark-shifted25 qubit frequency (v01{2x!n) is turned on for a fixed
duration, tm. The amplitude is adjusted to yield a Rabi frequency of
VR/2p5 3 MHz. First we average 104 measurement traces to obtain a
conventional ensemble-averaged Rabi oscillation trace (Fig. 2a). Even
though the qubit is continuously oscillating between its ground and
excited states, the oscillation phase diffuses, primarily owing to measure-
ment back-action. As a result, the averaged oscillation amplitude decays
over time, but the frequency domain response retains a signature of these
oscillations26. We Fourier-transform the individual measurement traces
and plot the averaged spectrum (Fig. 2b, blue trace). A peak, centred at
3 MHz and with a full-width at half-maximum of C/2p, is observed and
remains unchanged even when tm is much longer than the decay time of
the ensemble-averaged oscillations. A plot of C/2p for different mea-
surement strengths (in units of !n) is shown in Fig. 2c. As expected in the
dispersive regime, C and !n are linearly related25. The vertical offset is
dominated by pure environmental dephasing, Cenv/2p, but has contri-
butions from qubit relaxation (T1) and thermal excitation into higher
qubit levels; more details can be found in Supplementary Information,
sections II and IV(C).

The ratio of the height of the Rabi spectral peak to the height of the
noise floor has a theoretical maximum value of four27, corresponding
to an ideal measurement with overall efficiency g 5 1. For our set-up,
this efficiency can be separated into two contributions as g 5 gdetgenv.
The detector efficiency is given by gdet 5 (112nadd)21, with nadd being
the number of noise photons added by the amplification chain. The

added noise is referenced to the output of the cavity and includes the
effect of signal attenuation between the cavity and the paramp. The effect
of environmental dephasing, Cenv, is modelled using genv 5 (11Cenv/
CQ)21. The best measurement efficiency we obtain experimentally is
g 5 0.40, with gdet 5 0.46 and genv 5 0.87; more details can be found
in Supplementary Information, section III.

We now discuss the quantum feedback protocol, which is motivated
by the classical phase-locked loop used for stabilizing an oscillator. The
amplified quadrature is multiplied by a Rabi reference signal with fre-
quency V0/2p5 3 MHz using an analogue multiplier (Fig. 1d). The
output of this multiplier is low-pass-filtered and yields a signal propor-
tional to the sine of the phase difference, herr, between the 3-MHz
reference and the 3-MHz component of the amplified quadrature.
This ‘phase error’ signal is fed back to control the Rabi frequency VR

by modulating the Rabi drive strength with an upconverting IQ mixer
(Fig. 1a). The amplitude of the reference signal controls the dimension-
less feedback gain, F, through the expression Vfb/VR 5 2Fsin(herr),
where Vfb is the change in Rabi frequency due to feedback. Figure 2d
shows the ensemble-averaged, feedback-stabilized oscillation, which
persists for much longer than the original oscillation in Fig. 2a. In fact,
within the limits imposed by our maximum data acquisition time of
20 ms, these oscillations persist indefinitely. The red trace in Fig. 2b
shows the corresponding averaged spectra. The needle-like peak at
3 MHz is the signature of the stabilized Rabi oscillations.

To confirm the quantum nature of the feedback-stabilized oscillations,
we perform state tomography on the qubit28. We stabilize the dynamical
qubit state, stop the feedback and Rabi driving after a fixed time (80ms 1
ttomo after starting the Rabi drive), and then measure the projection of
the quantum state along one of three orthogonal axes. This is done using
strong measurements (by increasing !n) with high single-shot fidelity11.
This allows us to remove any data points where the qubit was found in
the second excited state (Supplementary Information, section IV(C)).
By repeating this many times, we can determine ÆsXæ, ÆsYæ and ÆsZæ,
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for clarity), which contains no qubit state information. c, C/2p plotted as a
function of cavity photon occupation, !n (measurement strength), showing the

expected linear dependence. The vertical offset is dominated by pure
environmental dephasing, Cenv/2p, but has contributions from qubit relaxation
(T1) and thermal excitation into higher qubit levels. d, Feedback-stabilized,
ensemble-averaged Rabi oscillations, which persist for much longer times than
those without feedback (a). The corresponding spectrum, shown in b, has a
needle-like peak at the Rabi reference frequency (red trace). The slowly
changing mean level in the Rabi oscillation traces in a and d is due to the
thermal transfer of population into the second excited state of the qubit. See
Supplementary Information, section IV(C), for more details.
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and Y axes (Supplementary Information). We benchmark X
and Y axis ⇡ and ⇡/2 rotations, the Hadamard gate (imple-
mented with Y/2 followed by X), and Z axis rotations using
pulses on the frequency control line. From the data in Fig. 2
we extract the individual gate fidelities listed in the legend.
We find an average fidelity of 99.92 % over all gates and qubits
(Supplementary Information). The best fidelities are achieved
by optimising the pulse amplitude and frequency, and min-
imising 2-state leakage20 [Kelly, J., et al., in preparation].

We have also measured the performance when simulta-

FIG. 1: Architecture. (a) Optical image of the integrated Joseph-
son quantum processor, consisting of Al (dark) on sapphire (light).
The five cross-shaped devices are the Xmon variant of the trans-
mon qubit13, labelled Q0 � Q4, placed in a linear array. To the
left of the qubits are five meandering coplanar waveguide resonators
used for individual state readout. Control wiring is brought in from
the contact pads at the edge of the chip, ending at the right of the
qubits. (b) Circuit diagram. Our architecture employs direct, nearest-
neighbour coupling of the qubits (red/orange), made possible by the
nodal connectivity of the Xmon qubit. Using a single readout line,
each qubit can be measured using frequency-domain multiplexing
(blue). Individual qubits are driven through capacitively-coupled
microwave control lines (XY), and frequency control is achieved
through inductively-coupled dc lines (Z) (purple). (c) Schematic rep-
resentation of an entangling operation using a controlled-Z gate with
unitary representation UCZ: (I) Qubits at rest, at distinct frequen-
cies with minimal interaction. (II) When brought near resonance, the
state-dependent frequency shift brings about a rotation conditional
on the qubit states. (III) Qubits are returned to their rest frequency.

neously operating nearest or next-nearest qubits21, operating
them at dissimilar idle frequencies to minimise coupling. The
fidelities are essentially unchanged, with small added errors
< 2 · 10�4 (Supplementary Information), showing a high de-
gree of addressability for this architecture.

The two-qubit CZ gate is implemented by tuning one qubit
in frequency along a “fast adiabatic” trajectory which takes
the two-qubit |11i state close to the avoided-level crossing
with the |02i state, yielding a state-dependent relative phase
shift. This implementation is the natural choice for weakly
anharmonic, frequency-tunable qubits, as the other computa-
tional states are left unchanged8,22,23. Having the CZ gate adi-
abatic as well as fast is advantageous. An adiabatic trajectory
is easily optimised and allows for exponentially suppressing
leakage into the non-computational |02i-state with gate dura-
tion. Having a fast CZ gate minimises the accumulation of er-
rors from decoherence and unwanted entanglement with other
circuit elements, favourable for fault-tolerance.

FIG. 2: Single qubit randomised benchmarking. (a) A reference
experiment is performed by generating a sequence of m random Clif-
fords, which are inverted by the recovery Clifford Cr . A specific gate
(H) is tested using a sequence that interleaves H with m random
Cliffords. The difference between interleaved and reference decay
gives the gate fidelity. (b) Representative pulse sequence for a set
of four Cliffords and their recovery, generated with ⇡ and ⇡/2 ro-
tations about X and Y , displaying both the real (I) and imaginary
(Q) microwave pulse envelopes before up-conversion by quadrature
mixing to the qubit frequency. (c) Randomised benchmarking mea-
surement for the set of single-qubit gates for qubit Q2, plotting ref-
erence and gate fidelities as a function of the sequence length m;
the fidelity for each value of m was measured for k = 40 different
sequences. The fit to the reference set yields an average error per
Clifford of rref = 0.0011, consistent with an average gate fidelity of
1� rref/1.875 = 0.9994 (Supplementary Information). The dashed
lines indicate the thresholds for exceeding gate fidelities of 0.998 and
0.999. The fidelities for each of the single-qubit gates are tabulated
in the legend, we find that all gates have fidelities greater than 0.999.
Standard deviations are typically 5 · 10�5.

Barends et al., Nature (2014)
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Figure 1: Dispersive measurements of a superconducting qubit. (A) A transmon qubit couples dispersively to a microwave frequency cavity.
Signals that reflect o↵ of the cavity are amplified by a nearly quantum-limited lumped-element Josephson parametric amplifier. (B) Schematic
representation of transmon potential and energy levels. The two lowest energy levels form the qubit subspace. (C) Reflected signal as a function of
probe frequency. The resonance frequency is shifted by 2� depending on whether the qubit is prepared in the |0i or |1i state. (D,E) The cavity is
probed with a coherent microwave tone at a frequency !m, initially aligned along the X1 quadrature. After leaving the cavity, the tone acquires a
quit-state-dependent phase shift. (F) Phase-sensitive amplification along the X2 (top) and the X1 (bottom) quadratures.

Because the Hint commutes with �z, the qubit-state-
dependent phase shift can be used to perform continu-
ous quantum non-demolition (QND) measurment of the
qubit state in its energy eigenbasis [39, 38]. Figure 1c
illustrates the phase of the reflected signal as a function
of frequency. If we choose to measure at a frequency
!m = (!|0i + !|1i)/2, where !|0i and !|1i are the cavity
frequencies when the qubit is in the ground and excited
states, respectively, then the phase di↵erence in the in-
ternal cavity field for the two qubit states is given by
�✓ = 4|�|/, where  is the cavity decay rate. In the
experiments presented here, we work in the small phase
shift limit, with |�|/ ⇠ 0.05.

We probe the cavity by applying a measurement tone
at frequency !m initially aligned along the X1 quadra-
ture (Fig. 1A). Due to the vacuum fluctuations of the
electromagnetic field, the quadrature amplitudes X1 and
X2 of this field will fluctuate in time. The circle in Fig-
ure 1D represents the Gaussian variance of the input sig-
nal time-averaged for a time �t. The area of the circle is
inversely proportional to �t. After reflecting o↵ of the
cavity, the measurement signal acquires a qubit-state-
dependent phase shift, as depicted in Figure 1E. In the
small |�|/ limit, the X2 quadrature of the reflected sig-
nal signal contains information about the cavity phase,
which is proportional to the qubit state. Likewise, the
X1 quadrature contains information about the amplitude

of the cavity field and thus the fluctuating intracavity
photon number.

In order to track the qubit state through an individ-
ual measurement, we need to accurately monitor the
quantum fluctuations of the measurement signal, which
are typically much smaller than the thermal fluctuations
of the room temperature electronics that are needed to
record the measurement result. Therefore, we must first
amplify the signal above this noise floor. State-of-the-
art commercial low-noise amplifiers, which are made
from high electron mobility transistors (HEMTs) and
can be operated at 4 K, add tens of photons of noise
to the measurement signal. Therefore, a more sensitive
pre-amplifier is needed in order to overcome the added
noise of the HEMT amplifier.

Over the past few years, Josephson junction based su-
perconducting parametric amplifiers have emerged as
an e↵ective tool for realizing nearly-quantum-limited
amplification. Phase-preserving amplifiers such as
the Josephson parametric converter [40] amplify both
quadrature amplitudes evenly by a factor of

p
G, where

G is the power gain of the phase-preserving amplifier,
and add at least a half photon of noise [41] to the signal.
Here, we focus instead on phase-sensitive amplification
from a lumped-element Josephson parametric amplifier
[42], where one quadrature is amplified by a factor of
2
p

G and the other quadrature is de-amplified by the
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Because the Hint commutes with �z, the qubit-state-
dependent phase shift can be used to perform continu-
ous quantum non-demolition (QND) measurment of the
qubit state in its energy eigenbasis [39, 38]. Figure 1c
illustrates the phase of the reflected signal as a function
of frequency. If we choose to measure at a frequency
!m = (!|0i + !|1i)/2, where !|0i and !|1i are the cavity
frequencies when the qubit is in the ground and excited
states, respectively, then the phase di↵erence in the in-
ternal cavity field for the two qubit states is given by
�✓ = 4|�|/, where  is the cavity decay rate. In the
experiments presented here, we work in the small phase
shift limit, with |�|/ ⇠ 0.05.

We probe the cavity by applying a measurement tone
at frequency !m initially aligned along the X1 quadra-
ture (Fig. 1A). Due to the vacuum fluctuations of the
electromagnetic field, the quadrature amplitudes X1 and
X2 of this field will fluctuate in time. The circle in Fig-
ure 1D represents the Gaussian variance of the input sig-
nal time-averaged for a time �t. The area of the circle is
inversely proportional to �t. After reflecting o↵ of the
cavity, the measurement signal acquires a qubit-state-
dependent phase shift, as depicted in Figure 1E. In the
small |�|/ limit, the X2 quadrature of the reflected sig-
nal signal contains information about the cavity phase,
which is proportional to the qubit state. Likewise, the
X1 quadrature contains information about the amplitude

of the cavity field and thus the fluctuating intracavity
photon number.

In order to track the qubit state through an individ-
ual measurement, we need to accurately monitor the
quantum fluctuations of the measurement signal, which
are typically much smaller than the thermal fluctuations
of the room temperature electronics that are needed to
record the measurement result. Therefore, we must first
amplify the signal above this noise floor. State-of-the-
art commercial low-noise amplifiers, which are made
from high electron mobility transistors (HEMTs) and
can be operated at 4 K, add tens of photons of noise
to the measurement signal. Therefore, a more sensitive
pre-amplifier is needed in order to overcome the added
noise of the HEMT amplifier.

Over the past few years, Josephson junction based su-
perconducting parametric amplifiers have emerged as
an e↵ective tool for realizing nearly-quantum-limited
amplification. Phase-preserving amplifiers such as
the Josephson parametric converter [40] amplify both
quadrature amplitudes evenly by a factor of

p
G, where

G is the power gain of the phase-preserving amplifier,
and add at least a half photon of noise [41] to the signal.
Here, we focus instead on phase-sensitive amplification
from a lumped-element Josephson parametric amplifier
[42], where one quadrature is amplified by a factor of
2
p

G and the other quadrature is de-amplified by the
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Two limits (single qubit case)

Vijay et al., Phys. Rev. Lett. (2011) Murch et al., Nature (2014)

Quantum Jumps Diffusive measurement

Quantum measurement: cQED
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FIG. 3. Quantum jumps (color online). (a) shows the pulse sequence used to generate (b) and (c). The qubit is excited with
a pulse of varying amplitude (red), and the readout (black) is immediately energized, causing the cavity population (purple)
to rise and e↵ect a measurement. Time t=0 corresponds to two cavity time constants after the readout is energized. (b)
shows 20 representative single-shot traces from each of three di↵erent qubit pulse amplitudes, corresponding to rotations of
0,⇡, and 2⇡. Abrupt quantum jumps from the excited state (white) to the ground state (blue) are clearly visible for the data
corresponding to the ⇡ pulse, while the traces corresponding to 0 and 2⇡ indicate that the qubit is mostly in the ground state.
Three individual single-shot time traces are shown in (c); the blue trace was taken following a 2⇡ pulse, while the red and green
traces were taken following a ⇡ pulse. (d) shows the pulse sequence used to generate (e) and (f). Here the readout is energized
with the qubit in the ground state, and then a continuous qubit drive is applied after a 3 µs delay. (e) and (f) show 60 traces
and one trace, respectively, of the qubit jumping between the ground and excited state under the influence of both the qubit
drive and measurement pinning.

0 and 2⇡ pulses show jumps to the excited state, and a
few traces after a ⇡ pulse are never measured to be in the
excited state. We attribute the first e↵ect to qubit state
mixing due to high photon numbers in the readout cav-
ity [19], and the second e↵ect to the qubit spontaneously
decaying before the cavity can ramp up [17]. Three repre-
sentative traces of the quantum jumps are shown in Fig.
3(c), one where the qubit was prepared in the ground
state (blue) and two where it was prepared in the ex-
cited state (red and green) and subsequently relaxed to
the ground state at di↵erent times.

We also investigated the e↵ect of simultaneous qubit
excitation and measurement. We energize the readout
and then turn on a long qubit excitation pulse after a
few µs, as shown in Fig. 3(d). This qubit drive tries
to coherently change the qubit state while the projec-
tive measurement forces the qubit to be in the ground
or excited state, resulting in the random telegraph sig-
nal seen in Figs. 3(e) and 3(f). Note that the discrim-
ination threshold here (-0.05V) is di↵erent than that in
Figs. 3(b) and (c) due to di↵erent bias conditions for the
paramp. Previous measurements [28] have only been able
to indirectly infer such quantum jumps from the averaged

spectrum of the measurement signal. This inhibition of
qubit state evolution due to measurement is the essence
of the quantum Zeno e↵ect [29, 30] and will be the sub-
ject of future work using samples with longer coherence
times and further improvements in measurement signal-
to-noise ratio, allowing us to examine the dependence of
the phenomenon on measurement strength and qubit ex-
citation power.

Finally, we look at the statistics of these quantum
jumps. Fig. 4(a) plots a histogram of 2 ⇥ 104 individ-
ual measurements with the qubit prepared in the excited
state, as a function of digitizer voltage and time [31].
Most of the population is measured in the excited state
(centered around 0.6 V) at t = 0 and then decays to the
ground state (centered around -0.3 V) with a time con-
stant ⌧ = 290 ns (Fig. 4(b), inset). Despite the large sep-
aration between the ground and excited state peaks, the
maximum qubit readout fidelity is about 70%. This can
be almost entirely attributed to the measured T1=320
ns being comparable to the cavity rise time 2/=65 ns,
which means that around 30% of the excited state popu-
lation decays to the ground state before the measurement
is made. Since we can resolve individual decay events,

For both types of measurement, the results show excellent agreement
with theory for g 5 0.49.

We have so far demonstrated that the integrated measurement signal
provides a faithful record of the fluctuations of the environment and
the associated motions of the qubit state. Moreover, we observe that
the direction of motion of the qubit state depends on the amplification
quadrature. To examine quantum trajectories of the system, we divide
the measurement signal into successive segments. The integrated measure-
ment signal can then be written as a string {Vm(t0), Vm(t1), Vm(t2), …},
where ti11 2 ti 5 16 ns. At each time point, Vm(ti) can be used to infer
the qubit state. In Fig. 3, we present measurement traces along with the
quantum trajectory of the system associated with each noisy measure-
ment trace. The trajectories show how the quantum system evolves sto-
chastically from an initial state prepared along x̂ towards a final state.
Measurement inefficiency and additional dephasing limits the accuracy
with which the state can be tracked. This limitation is manifest as a gradual
shortening of the estimated transverse coherence of the qubit state.

To verify that we have accurately inferred the quantum trajectory of
the system corresponding to a given measurement signal, we perform
quantum state tomography on an ensemble of experimental iterations
with similar measurement values. A tomographic reconstruction of the
trajectory is obtained by making measurements of variable duration, ti,
and subsequently measuring the projection of the qubit state along one
of the Cartesian axes of the Bloch sphere. Only measurements with
values that are within +e of the target value, Vm(ti), contribute to
determining the ensemble properties X, Y and Z. As shown in the
upper panels of Fig. 3, many different measurement signals that con-
verge to Vm(ti)+e at ti are used in the tomographic reconstruction.
This illustrates how the inferred state at a particular time depends only
on the value of the integrated measurement voltage at that time.

Figure 3a, b displays quantum trajectories that are obtained for Z-
measurements. The reconstructed trajectories based on ensemble mea-
surements, shown as solid lines, are in reasonable agreement with the
quantum trajectories determined from a single measurement record,
and reproduce many of the minute motions of the qubit as it ultimately
evolves towards its eigenstates of measurement. Some trajectories high-
light the concept of quantum measurement reversal:26–29 in Fig. 3a, after
,400, 600 and 1,000 ns of measurement the qubit state has returned

nearly to its original state, effectively ‘reversing’ the preceding partial
collapse of the qubit wavefunction. In Fig. 3c, we display the measurement
record that we obtain from a w-measurement. The resulting quantum
trajectory is confined to motions along the equator of the Bloch sphere.

Full control over the environment of a quantum system allows for the
mitigation of decoherence through accurate monitoring of fluctuations
of the environment. Although measurement schemes based on projec-
tive measurements on ancilla qubits obtain measurement efficiencies30

greater than 0.9, the measurement efficiency presented here, g 5 0.49, is
among the highest reported values for a continuous variable6–8,13. This
efficiency is limited by an imperfect collection efficiency, gcol 5 0.72,
resulting from losses in microwave components, and imperfect amp-
lifier quantum efficiency, gamp 5 0.68. Further improvements in the
quantum measurement efficiency will be essential for realizing poten-
tial applications of quantum feedback6,7 in quantum metrology and
information science.

METHODS SUMMARY
The qubit consists of two aluminium paddles connected by a double-angle-evaporated
aluminium superconducting quantum interference device (SQUID) deposited on
double-side-polished silicon, and is characterized by charging and Josephson energies
Ec/h 5 200 MHz and EJ/h 5 11 GHz, respectively. The qubit is operated with neg-
ligible flux threading the SQUID loop with transition frequency vq/2p5 3.999 GHz.
The qubit is located off centre of a 6.8316-GHz copper waveguide cavity.

The LJPA consists of a two-junction SQUID, formed from 2-mA Josephson
junctions, shunted by 3 pF of capacitance, and is flux-biased to provide 10 dB of
gain at the cavity resonance frequency. The LJPA is pumped by two sidebands that
are equally spaced 300 MHz above and below the cavity resonance. A second LJPA
that follows the first provides additional gain. A detailed experimental schematic is
shown in Supplementary Fig. 1.

Experiment sequences start with an 800-ns readout with S 5 42 that is used to
herald the state j0æ at the beginning of the experiment. A sample herald histogram
is shown in Supplementary Fig. 2. Because xj j=k, several peaks are visible, cor-
responding to the many energy levels of the transmon qubit. After preparing the
state j0æ, we perform a 16-ns p/2-rotation about the {ŷ axis to initialize the qubit
along the x̂ axis. After a period of variable duration, we perform quantum state tomo-
graphy, which consists of either rotations about the x̂ and ŷ axes or no rotation and
a second 800-ns readout with S 5 42. In a fraction (,4%) of the final readouts, the
qubit is outside the {j0æ, j1æ} manifold. These sequences were disregarded in the
analysis. Tomography results are corrected for the readout fidelity of 95%.
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Figure 3 | Quantum trajectories. a, b, Individual measurement traces
obtained for Z-measurements with !n~0:4. The top panels display Vm(t) as a
green line, with the upper insets displaying the instantaneous measurement
voltage. The grey region indicates the standard deviation of the distribution
of measurement values. Measurement traces that converge to an integrated
value within the blue matching window are used to reconstruct, using
tomography, the trajectory at that time point. A few different measurement
traces that contribute to the reconstruction at 1.2ms (a) and 0.592ms (b) are

indicated in lighter colours. The lower insets indicate the distribution of
measurement values with the blue matching window. The lower panels display
quantum trajectories obtained from analysis of the measurement signal, as
dotted lines. Solid lines indicate the tomographically reconstructed quantum
trajectory based on the ensemble of measurements that are within the matching
window of the original measurement signal. c, Individual measurement traces
and associated quantum trajectories obtained for a w-measurement with
!n~0:4.

LETTER RESEARCH

1 0 O C T O B E R 2 0 1 3 | V O L 5 0 2 | N A T U R E | 2 1 3

Macmillan Publishers Limited. All rights reserved©2013



Qubit 1

Qubit 2

Measurement Induced Entanglement
Outcomes



Qubit 1

Qubit 2

Measurement Induced Entanglement

If two outcomes are indistinguishable, measurement 
projects into an entangled subspace

Measurement induced entanglement in the single cavity limit: 
 Ristè, D., et al., Nature (2013)
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Conditional Tomography

Single qubit case:
Hatridge et al., Science (2013)

readout strength and qubit temperature, trials with
outcomes |Im/s| < 1.5 (corresponding to state pu-
rity < 99%) for the first and third measurements
are discarded, as well as outcomes for the first
measurement with the qubit in |e〉. To quantify
the measurement back-action for a given mea-
surement outcome (Im,Qm), the average final qubit

Bloch vector, conditioned by the measurement
outcome (Im, Qm), (〈X 〉c, 〈Y 〉c, 〈Z 〉c), is calcu-
lated versus outcome using the results of the
tomography phase. These conditional maps of
〈X 〉c, 〈Y 〉c, 〈Z 〉c were constructed using 201 by
201 bins in the plane of scaled measurement out-
comes (Im/s, Qm/s).

Results for four measurement strengths in-
creasing by decades from n ¼ 5" 10−3 to 5 are
shown in Fig. 3B (see movie S1 of histograms
and tomograms for all measurement strengths).
The left column shows a 2D histogram of all
scaled measurement outcomes recorded during
the variable-strength readout pulse. At weak
measurement strength, the ground- (left) and excited-
(right) state distributions overlap almost com-
pletely. Their separation grows with increasing
strength until they are well separated at n ¼ 5,
which corresponds to the strong projective mea-
surement shown in Fig. 1A. The rightmost col-
umns show 〈X〉c, 〈Y〉c, 〈Z〉c versus the associated
(Im/s, Qm/s) bin. At weak measurement strength
(n << 1), the qubit state is only slightly perturbed,
with all measurement outcomes corresponding
to Bloch vectors pointing nearly along the +y
(initial) axis. However, gradients in 〈X〉c along
theQm axis and 〈Z〉c along the Im axis are visible,
demonstrating the outcome-dependent back-
action of the measurement on the qubit state. As
the measurement strength increases, so does the
back-action, as seen in the increase of the gra-
dients in the 〈X〉c and 〈Z〉cmaps (see fig. S2).When
the measurement becomes strong, the qubit is
projected to +z for positive Im (–z for negative
Im), whereas 〈X〉 and 〈Y〉 go unconditionally to
zero, as expected.

One of the key predictions of finite-strength
measurement theory is that the statistics of the
measurement process, in particular the apparent
measurement strength in the I-quadrature (which
can be determined experimentally from the statis-
tics of the measurement outcomes), are sufficient
to infer zf for any apparent measurement strength
or outcome (see Eq. 1). For weak measurement,
where the back-action is symmetric along both x
and z, the apparent measurement strength deter-

Fig. 2. (A) Pulse sequence for strong measure-
ment. An initial qubit rotation Rx(q) of q radians
about the x axis is followed by an 8-ms readout
pulse with drive power such that n ¼ 5. (B) In-
dividual measurement records. The data are
smoothed with a binomial filter with a Tm = 240 ns
time constant and scaled by the experimentally
determined standard deviation (s). Black dotted
lines indicate 4s deviation events. The qubit is
initially measured to be in the excited state, and
quantum jumps between excited and ground states
are clearly resolved. The center of the ground- and
excited-state distributions are represented as hori-
zontal dotted lines. (C) Histograms of the initial
240-ns record of the readout pulse along Im axis,
for q = 0, p/2, p. Finite qubit temperature and T1
decay during readout are visible as population in
the undesired qubit state.
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Fig. 3. (A) Pulse sequence for quantifying measurement back-action. The measurement
strength was varied linearly in amplitude from

ffiffiffi
n
p

= 0 to
ffiffiffi
5
p

. Conditional maps of 〈X〉c, 〈Y〉c,
〈Z〉c versus measurement outcome (Im/s, Qm/s) were constructed using 201 by 201 bins. (B)
Results are shown increasing by decades from n = 5"10−3 to 5. The left column shows a 2D histogram of all scaledmeasurement outcomes recorded during the
variable-strength readout pulse. The three rightmost columns are tomograms showing 〈X〉c, 〈Y〉c, 〈Z〉c versus the associated (Im/s, Qm/s) bin.
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See also:  
Murch et al., Nature (2014)

−3 −2 −1 0 1 2 3
0

5000

10000
C

ou
nt

s

r



-2 0 2
0

0.2

0.4

0.6

0.8

1

D
en

si
ty

 m
at

rix
 e

le
m

en
ts

r

 

tm= 0.65 µs

−3 −2 −1 0 1 2 3
0

5000

10000
C

ou
nt

s

r

Conditional Tomography



Conditional Tomography

-2 0 2
0

0.2

0.4

0.6

0.8

1

D
en

si
ty

 m
at

rix
 e

le
m

en
ts

r
 

 

tm= 0.65 µs

−3 −2 −1 0 1 2 3
0

5000

10000
C

ou
nt

s

r



−2 0 2
0

0.2

0.4

0.6

0.8

1

D
en

si
ty

 m
at

rix
 e

le
m

en
ts

r

 

 

tm= 0.65 µs

Conditional Tomography

Mapping of r onto  ρ

Bayesian update

Bayes rule:



Conditional Tomography

Mapping of r onto  ρ

Bayes rule:

Reminder:

−3 −2 −1 0 1 2 3
0

500

1000

r

C
ou

nt
s



−2 0 2
0

0.2

0.4

0.6

0.8

1

D
en

si
ty

 m
at

rix
 e

le
m

en
ts

r

 

 

tm= 0.65 µs

Conditional Tomography

Mapping of r onto  ρ

Bayesian update

Bayes rule:



Quantum trajectories and entanglement
Ensemble measurements

Single experimental realisation

Quantum trajectory reconstruction allows us to directly observe quantum state 
evolution under measurement 

Murch K., et al., Nature (2013) 



Dynamics of entanglement creation

Single time trace
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Dynamics of entanglement creation

Integrated single time trace
Question: can we infer the evolution of the density matrix ?
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Dynamics of entanglement creation

for each point:
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Reconstructing a single quantum trajectory  
of one cascaded system

Single quantum trajectory
Bayesian update
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Single quantum trajectory
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Single quantum trajectory
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Perspectives

Probability 
density function 

of the 
concurrence

University of 
Rochester: 

A. Chantasri and A. 
N. Jordan
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Summary

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

time (µs)

D
en

si
ty

 m
at

rix
 e

le
m

en
ts

00
01

10
11

00

01

10

11

0

0.1

0.2

0.3

0.4

0.5

|ρ
|

tm= 0.65 μs

Entangling remote qubits using measurement

Reconstructing single quantum trajectories

Viewpoint in Physics: Remote Controlled Entanglement by K. Lalumière and A. Blais
Roch N., et al. Phys. Rev. Lett., (2014)

Statistics of remote entanglement creation
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Happy Birthday “Quantro”
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For the main off-diagonal matrix element ⇢fin01,10 needed to calculate concurrence, the quantum Bayesian approach [10]
cannot be applied rigorously; however, we can modify it phenomenologically by using the following approximation:

|⇢fin01,10| = |⇢in01,10|
q

⇢fin01,01⇢
fin

10,10q
⇢in01,01⇢

in

10,10

⇥ exp
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�
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�
, (12)

where the last three factors describe the dephasing due to potential distinguishability of states |01i and |10i in
the field B

out

and "lost” fractions of the fields A and B from the first and second resonators. The form of these
dephasing factors directly follows from the overlap between two coherent states |A1i and |A2i in a resonator [3]:
|hA1|A2i| = exp(�|A1 �A2|2/2).

Only the absolute value of ⇢fin01,10 is needed to calculate the concurrence (1). For completeness, the phase
change of ⇢01,10 due to measurement can be approximately calculated using the master equation result [4]

arg(⇢fin01,10)� arg(⇢in01,10) = 2�1

Z
Re[A(01)

(t)A(10)
(t)⇤] dt� 2�2

Z
Re[B(01)

(t)B(10)
(t)⇤] dt. (13)

(Here we used a frame that takes care of unequal bare frequencies of the qubits.)

Now let us discuss the density matrix element ⇢fin00,01, which was neglected in the calculation of concurrence

(1). Very crudely, it can be estimated as |⇢fin00,01| .
q

⇢fin00,00⇢
fin

01,01 exp[� 1
2 (1 � ⌘

meas

)

R |B(00)
out

� B
(01)
out

|2 dt], where the
exponential term is due to the "unmeasured” part of B

out

. In the interesting regime (when a significant entanglement
is achieved) we have ⇢fin00,00 ⌧ 1 and the exponential term is also small because distinguishability of the states
|00i and |01i is governed by a similar factor. This is why ⇢fin00,01 is strongly suppressed, and we believe it can be
neglected in approximate calculation of concurrence. Similar arguments can be used to show strong suppression
of the density matrix elements ⇢fin00,10, ⇢

fin

11,01, and ⇢fin11,10 in the regime interesting for producing significant entanglement.

So far we have assumed absence of intrinsic decoherence of the qubits. Pure dephasing of the qubits with
the corresponding dephasing time T

',1 and T
',2 can be easily included into the calculation of concurrence by

multiplying the main off-diagonal element ⇢fin01,10 by the factor exp(�t
m

/T
',1 � t

m

/T
',2), where t

m

is the total
duration of the measurement procedure. Including the energy relaxation is not so easy, but since its contribution is
quite small in the experiment, this can be done in a very crude way. For example, instead of the energy relaxation
occuring during the measurement, we can phenomenologically introduce the energy relaxation for time t

before

before
the measurement and then for time t

after

after the measurement. A better way can be realized by assuming energy
decay at a specific random time, and then adding two corresponding parts of the signal integration (8); however, this
complication does not seem necessary for our simplified theory.

THEORETICAL MODEL BASED ON QUANTUM TRAJECTORY THEORY

A sequential probe of two cavities as in Fig. 1a of the main text is often referred to as a cascaded systems setup,
and Carmichael [7] has developed the quantum trajectory equations describing such one-way sequential probes of
cascaded systems. Following this work we can write a stochastic master equation (SME) model for the experimental

Off-diagonal elements



Conditional Tomography
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