Information powered cooling in a single-electron circuit

Jukka Pekola, Low Temperature Laboratory Aalto University, Helsinki, Finland

Jonne Olli-Pentti Ville Koski Saira Maisi Dmitri Averin, SUNY

Takahiro Sagawa, U. Tokyo

Tapio Ala-Nissila, Aki Kutvonen

Low temperature laboratory

Outline

- 1. Maxwell's demon
- 2. Experiment on a single-electron Szilard's engine
- 3. Experiment on an autonomous Maxwell's demon
- 4. Calorimetry for quantum measurements (if time permits)

Maxwell's demon: information in thermodynamics

Second law of thermodynamics: $\Delta S \ge 0$

Maxwell's demon observes the system, and lowers its entropy by feedback

Original though experiment (19th century) separates 'hot' and 'cold' particles

Szilard's engine

Isothermal expansion of the "single-molecule gas" does work against the load

$$W = Q = \int_{V/2}^{V} p dV = \int_{V/2}^{V} \frac{k_B T}{V} dV = k_B T \ln 2$$

Experiments on Maxwell's demon

-25 L

20

40

Time (s)

60

80

100

S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, M. Sano, Nature Phys. **6**, 988 (2010)

É. Roldán, I. A. Martínez, J. M. R. Parrondo, D. Petrov, Nature Phys. **10**, 457 (2014)

Dissipation and work in singleelectron transitions

Heat generated in a tunneling event *i*:

$$Q_i = \pm 2E_C(n_{g,i} - 1/2)$$

Total heat generated in a process:

$$Q = \sum_{i} Q_{i}$$

ne

 C_L

 \boldsymbol{q}

 C_R

Work in a process: $W = Q + \Delta U$ \uparrow Change in internal (charging) energy

D. Averin and JP, EPL 96, 67004 (2011)

Szilard's engine for single electrons

J. V. Koski et al., PNAS 111, 13786 (2014); PRL 113, 030601 (2014).

Erasure of information

Landauer principle: erasure of a single bit costs energy of at least $k_B T \ln(2)$

Experiment on a colloidal particle:

A. Berut et al., Nature 2012

Corresponds to our experiment:

Realization of the MD with an electron

Measured distributions in the MD experiment

Fluctuation relations

Work and dissipation in a driven process?

١

$$W_d = W - \Delta F$$
 "dissipated work"
C. Jarzynski 1997 $\langle e^{-\beta W_d} \rangle = 1 \Rightarrow \langle W \rangle \ge \Delta F$

2nd law of thermodynamics

This relation is valid for a system with one bath at inverse temperature β , also far from equilibrium

Experiment on a single-electron box

O.-P. Saira et al., PRL 109, 180601 (2012); J.V. Koski et al., Nature Physics 9, 644 (2013).

Sagawa-Ueda relation

$$\langle e^{-(W-\Delta F)/k_BT-I} \rangle =$$

$$I(m,n) = \ln\left(\frac{P(n|n)}{P(n)}\right)$$

T. Sagawa and M. Ueda, PRL 104, 090602 (2010)

For a symmetric two-state system:

$$I(n = m) = \ln(2(1 - \epsilon))$$
$$I(n \neq m) = \ln(2\epsilon)$$

Measurements of *n* at different detector bandwidths

J. V. Koski et al., PRL 113, 030601 (2014)

Autonomous Maxwell's demon

System and Demon: all in one

Realization in a circuit:

- J. Koski et al., submitted (2015).
- S. Deffner and C. Jarzynski, Phys. Rev. X 3, 041003 (2013).

Autonomous Maxwell's demon – information-powered refrigerator

Image of the actual device

Current and temperatures at different gate positions

$$V = 20 \ \mu V, \ T = 50 \ mK$$

*N*_g = 1: No feedback control ("SET-cooler")

JP, J. V. Koski, and D. V. Averin, PRB **89**, 081309 (2014)A. V. Feshchenko, J. V. Koski, and JP,

PRB 90, 201407(R) (2014)

N_g = 0.5: feedback control (Demon)

Summary of the autonomous demon characteristics

Calorimetry for quantum thermodynamics

Aims at measuring single quanta (energy E) of radiation by an absorber with finite heat capacity C.

Typical parameters for sc qubits: $\Delta T \sim 1 - 3$ mK, $\tau \sim 0.01 - 1$ ms

10 μ K/(Hz)^{1/2} is sufficient for single photon detection

Fast thermometry

S. Gasparinetti et al., Phys. Rev. Applied 3, 014007 (2015);

K. L. Viisanen et al., New J. Phys. 17, 055014 (2015).

See also D. R. Schmidt, C. S. Yung, and A. N. Cleland, Appl. Phys. Lett. 83, 1002 (2003).

Fast thermometry

Micro-wave calorimeter (5 GHz)

Measurements of

- temperature fluctuations
- work distribution of a driven qubit

Conclusions

Two different types of Maxwell's demons demonstrated experimentally

Nearly $k_B T \ln(2)$ heat extracted per cycle in the **Szilard's engine**

Autonomous Maxwell's demon – an "all-in-one" device: effect of internal information processing observed as heat dissipation in the detector and as cooling of the system

