Dynamics of quasiparticle trapping in Andreev bound states

Alfredo Levy Yeyati

D. G. Olivares, ALY, L. Bretheau, C. Girit, H. Pothier, C. Urbina Phys. Rev. B 89, 104504 (2014)

A. Zazunov, A. Brunetti, R. Egger & ALY Phys. Rev. B 90, 104508 (2014)

30 years of Quantronics

Paris, 22/6/15

Superconducting qubits

Hybrid nanostructures ("Majorana" wires)

Superconducting atomic contacts

(Almost) 20 years of collaboration with Quantronics

Andreev bound states in CNT

J.D. Pillet et al. NP (2010)

Coulomb blockade & Environmental effects

Goffman et al. PRL (2000) ALY et al. PRL (2001) Cron et al. PRL (2001) Chauvin et al. PRL (2007)

Andreev states in a point contact

Short junction limit: No contribution from continuum!

M. Zgirski et al. PRL 106, 257003 (2011)

Switching experiments

"Extended" tilted washboard potential theory

Relaxation time and stationary probability

Approximate "Universality"

Theory of qp trapping?

Theoretical model

$$\hat{H} = \hat{H}_{SC}(\hat{\delta}) + \hat{H}_{env}(\hat{\gamma})$$

 $\operatorname{Re}(Z_{\operatorname{env}}) \ll R_Q$

$$\hat{H} \simeq \hat{H}_{\rm env}(\hat{\gamma}) + \hat{H}_{SC}(\varphi) + \varphi_0 \hat{\gamma} \hat{I}(\varphi)$$

$$\hat{I} = \varphi_0^{-1} \partial \hat{H}_{SC} / \partial \delta \quad \varphi_0 = \hbar / 2e$$

Description of the EM environment

 $\nu_e = \frac{1}{2\pi} (L_e C_e)^{-1/2}$ $\nu_{p0} = \frac{1}{2\pi} (L_J C_J)^{-1/2}$ $\nu_P = \frac{1}{2\pi} \sqrt{\frac{L_J^{-1} + L_e^{-1}}{C_J}}$

 $Q\simeq 100$

Transition rates: from an initial odd state

$$\Gamma_{\text{out}}^{(a)} = \frac{2\pi}{\hbar} \sum_{k,\eta} \left| \left\langle \Psi_0 \left| \gamma_{k,\eta,\sigma} \varphi_0 \hat{I} \gamma_{A,\sigma}^{\dagger} \right| \Psi_0 \right\rangle \right|^2 D\left(E_k - E_A\left(\delta\right) \right) f_{\text{BE}}\left(E, T_{\text{env}} \right) \left(1 - f_{\text{FD}}(E_k, T_{\text{qp}}) \right) \right.$$

$$D\left(E \right) = \frac{\text{Re}\left\{ Z_{\text{env}}\left(E \right) \right\}}{ER_Q} \qquad \text{Ingold-Nazarov, Single Charge Tunneling} \\ P \left| enum 1992 \right|$$

$$\Gamma_{\rm out}^{(a)} = \frac{8\Delta}{h} \int_{\Delta}^{\infty} dED \left(E - E_A\right) g\left(E, E_A\right) f_{\rm BE} \left(E - E_A, T_{\rm env}\right) \left(1 - f_{\rm FD} \left(E, T_{\rm qp}\right)\right)$$

matrix elements for $g(E, E_A) = \frac{\sqrt{(E^2 - \Delta^2)(\Delta^2 - E_A^2)}}{\Delta (E - E_A)}$

Untrapping rates

Electron-phonon mechanism

$$\hat{H}_{\text{e-ph}} = \tilde{\gamma} \int d\mathbf{r} \sum_{\sigma} \Psi_{\sigma}^{\dagger}\left(\mathbf{r}\right) \Psi_{\sigma}\left(\mathbf{r}\right) \hat{\phi}\left(\mathbf{r}\right)$$

$$\hat{\phi}\left(\mathbf{r}\right) = \sum_{\mathbf{q}} \sqrt{\frac{h\nu_{\mathbf{q}}}{2V}} \left(b_{\mathbf{q}}e^{i\mathbf{q}\mathbf{r}} + b_{\mathbf{q}}^{\dagger}e^{-i\mathbf{q}\mathbf{r}}\right)$$

A. Zazunov et al. PRB (2005)

$$\Gamma_{\rm out}^{(a)} = \kappa_{\rm e-ph} \Delta^3 \left(\frac{\tilde{L}}{\xi_0}\right)^2 \int_{\Delta}^{\infty} \frac{dE}{\Delta} \left(\frac{E - E_A}{\Delta}\right)^3 g\left(E, -E_A\right) f_{\rm BE}\left(E - E_A, T_{\rm ph}\right) \left(1 - f_{\rm FD}\left(E, T_{\rm qp}\right)\right)$$

$$\kappa_{\text{e-ph}} \Delta^3 = \frac{16\tilde{\gamma}^2 \Delta^3}{\pi^2 \hbar^4 c_s^3} \sim 10 \text{ GHz}$$
$$\left(\frac{\tilde{L}}{\xi_0}\right)^2 \sim 10^{-2} \qquad \Gamma_{\text{out}}(E_A = 0) \sim 1 \text{ kHz}$$

Padurariu-Nazarov EPL **100**, 57006 (2012)

Untrapping rates

Rate equations and stationary probabilties

Trapping-untrapping rates: theory vs exp

Generalized rate equations

A. Zazunov, A. Brunetti, R. Egger & ALY Phys. Rev. B 90, 104508 (2014)

Continuum states

$$\partial_t n_p = -\sum_{\eta=\pm} \left[\Gamma_{p,\eta} (1 - n_\eta) n_p - \Gamma_{\eta,p} (1 - n_p) n_\eta \right]$$

$$\Gamma_{\nu\nu'} = \frac{2\pi}{\hbar} \left| \mathcal{I}_{\nu\nu'} \right|^2 \left[1 + n_B \left(E_{\nu} - E_{\nu'} \right) \right] J \left(E_{\nu} - E_{\nu'} \right)$$

$$J(\omega) = \frac{\lambda^2 \eta_d}{2\pi} \left(\frac{1}{(\omega - \Omega)^2 + \eta_d^2/4} - \frac{1}{(\omega + \Omega)^2 + \eta_d^2/4} \right)$$

Charge imbalance

Summary and outlook

Trapping dynamics: photons vs phonons

Only semi-quantitative agreement: gap between Γ_{out} and Γ_{in} is an open issue

Backaction on qps: charge-imbalance

Riwar et al. JPCM 27, 095701 (2015)

ABS: extremely sensitive qp detectors

Levenson-Falk et al. PRL 112, 047002 (2014)

Work in progress: qp poisoning in Topological junctions

Thank you for

30 years of Quantronics!

