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Introduction: Granular materials
Three typical behaviours, depending on the 
stress/strain imposed to the material

Specific properties
Complex interactions : solid friction

Inelastic collision => dissipative dynamics

Rather large number of particles => statistical description

But : Weak scale separation and kT<< mgd



Overview

Dense flows : 
The need for a non-local rheology

Experimental evidence of clusters : a first 
step towards a non-local rheology

Dynamical Clusters in stationnary flow (rapidly)

Intermittent clusters during relaxation towards 
mechanical equilibrium  (in more details)



Studying dense flows rheology

Several configurations
given state of stress /strain
measure the kinematic
properties
extract the rheology

Questions are
Relevant timescales?

Dependance on microscopic properties?

Dimensionless parameters?

Influence of the geometry?



Relevant parameters (I)
Three scales of different natures:

The microscopic scale : the contact scale
The grain scale
The flow scale

At the microscopic scale:
The roughness and the interparticle friction: fully 
encoded into some effective friction
During a collision : a collision time (elastic properties) 
and a dissipation timescale (internal elastic vibrations 
damping rate)
=> For slow enough flows, the grains are equivalent to 
rigid inelastic spheres



Relevant parameters (II)
At the grain level :

Natural length scale : grain diameter d
In homogeneous shear flows :

Strain tensor reduces to shear rate
Stress tensor reduces to normal stress P and shear 
stress τ

Two independant dimensionless numbers

the rescaled shear rate

the effective friction coefficient µeff= τ /P

=> The rheological relation is given by the relation  
between τ /P and I

ρ
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Flow down an inclined plane
(O. Pouliquen)

Flow thresholds :the flow starts at θstart(h) and is sustained 
above θstop(h)< θstart(h) => hysteretic

The velocity profile is Bagnold like :

A scaling law is obtained : 
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Flow thresholds :the flow starts at θstart and is sustained 
above θstop => hysteretic
The velocity profile is linear :

A scaling law is obtained : 

in agreement with the direct observation on the profiles of a 
constant shear rate.

Flow down a heap (D. Bonamy)
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Rheology 

In both flows

Assuming a local rheology : τ/P=µ(I),
integrating 

leads to the Bagnold profile
with 

Integrating the profile on the flow thickness leads 
to the scaling 
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First Conclusion: 
At the first order, a local rheology is compatible
with the kinematic properties of a dense granular 
flow down an inclined plane
On the contrary, it is incompatible with the 
observations made in the case of the flow down a 
heap!
As a matter of fact, a closer inspection of the 
inclined plane case reveals that the boundary 
layers escape the Bagnold type profile and 
therefore also escape the local rheology 
assumption. 



Experimental evidence of clusters : a 
first step towards a non-local rheology

Rotating drum 
D = 450 mm
δ = 3 to 22 mm

Steel beads 
d = 3 mm
m = 0.11 g

Angular velocity
Ω



Dynamical clusters in steady flow
Ω

h

Voronoï cells around each grain
0,7 0,9

Local density field at the grain scale

(2D flow)

A priori, rather weak variation



Rigid clusters induced by the 
Reynolds dilatancy property

Reynolds dilatancy

ρ > ρc
no shear

(in 2D, 
ρc = π/4=0,78)

Very intermittent rigid clusters of all sizes
V0 V1 V2V0 < V1 > V2

0,7 0,9



Clusters during relaxation
The drum is rotated for a while, stopped and the 
pile slope is set to θi < θstop at t=0, (θstop = 19.2°)

The pile relaxes towards mechanical equilibrium:
Average images (25 im at 5 Hz) are recorded every 15 s. 
Image differences allows to observe where 
displacements occur.

θi = 0.3° after 15s after 75s after 165s



An intermittent relaxation dynamics

First a rapid relaxation of the bulk 
An intermittent relaxation of the surface layer

θi = 16.5°



Intermittent bursts relates to 
correlated displacements.

θi = 15°
θi = 16.5°

A dynamics composed of:
exponential decay
short intermittent bursts

Exponential decay :
Individual displacements
Intermittent bursts :
Correlated displacements



Further characterization :
characteristic times

Exponential decay rate : τ↓ increases with θi.
Bursts intervals distribution essentially invariant, 
with characteristic time : τb=100s.

Bursts become significant when τ↓ >τb .



Exponential decay : rapid saturation and average 
number of move smaller than one
In the presence of bursts : no saturation and 
average number of move larger than one. 

Further characterization: two-time 
relaxation function ∫
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An over-simplified model
Beads can be in active (1->n) or inactive (0) states

active state : the bead transits to another active state 
with rate α’ and to inactive state with rate α resulting in a 
global rate of transition from an active state γ=α +(n-1)α’. 
These transition are assimilated to actual individual 
move of the beads and thus contribute to N(tw, t). 
inactive state : the bead do not evolve spontaneously. 
the reactivation process : randomly chosen beads are 
instantaneously set in the active state with probability ν
– independently of their state. This process is assumed 
not to involve displacement of the bead but rather a 
rearrangement of its environment and thus do not 
contribute to N(tw, t).



Model : results
The fraction of active beads is given by :
where is the probability of being in active state i.

Accordingly, 

The dynamics is given by
where the key ingredient of the model is now introduced:

After some calculations, one finds:
with a reparametrization of time:
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Model discussion :
applying to experimental data

A scaling function is proposed for N(tw,t): It is valid

It provides experimental
values for the parameters.

4.71γ/α
1250 s75 s1/(α-µ)

294 s56 s1/α
(b)(a)



A correlation function can be defined as the 
probability not to have changed state between tw
and tw+t.
It reads :

Model discussion: interpretation
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Conclusion
The kinematic properties of dense granular flows 
are incompatible with a simple local reology
Experimental evidence of clusters support the 
need for a non-local rheology:

In steady flows : rigid clusters induced by the Reynold’s 
dilatancy property
In relaxation processes : intermittent bursts of 
correlated displacement

Investigating clusters has driven us towards the 
description of long term but finite aging 
behaviours
Granular rheology, in very dense or slow flow may 
have a lot to do with glassy dynamics.


