Sub-diffusion, cage effects and collective re-arrangements in granular media

Olivier Dauchot, Guillaume Marty Frederic da Cruz

CEA-Saclay / SPEC

Group Instabilities and Turbulence

Introduction

Various experiments on vibrated granular media indicate a possible analogy between glass and granular media.

- Strength, the relation between the mal and a thermal systems
- Werkness only at the macroscopic level (slow compaction experiment, Chicago and Romes groups) or at the thermodynamical level (T_{cb} D Anna et al.)
- For glass forming systems sub-diffusion and slow relaxation have been associated with "cage effects" and "spatially
- heterogeneous dynamics"
- Molecular Dynamics Standarions of hard spheres and Lenard Iones Liquids provide a lot of data on the underlying interoscopic mechanisms (Clotzer et al.)
 Colloidal Suspensions Experiments at high density + confocal microscopy => direct observation of the individual particle paths (Weeks et al.)
 - Here:
 - Experimental study of the diffusion properties and microscopic behaviors in a gramilar media, driven as differently as possible from a thermal excitations
 - Can we give a precise meaning to the above analogy?

The experimental set up

A 2D bi-disperse dry granular media under cyclic shear (not just an analog computer)

The system

- 8000 particles Bi-disperse (Ø=4 and 5mm Quasi-static shear
- Constant Volume (⊕≑0.86)

The protocol

- 10.000 cycles .0max=10 : max strain≢0.3 500 tracers are followed
 - A snapshot is taken at each cycle

NB . Different from an analog computer (good models of friction are still lacking)

Typical trajectory

Hard spheres vs. "soft" potentials ?

Intermittent moves and subdiffusion

r*=0.3 and t*=300

For $\tau > t^*$, the anti-correlations vanishes

 $\forall \tau \leq t^*, \text{ the saturation occurs for } r_{01} = t^*$

Anti-correlations (II)

Varying the timescale τ

Heterogeneities (I)

previous move

=> suggest the string-like cooperation observed by Donati et al.

While rms(y, .) remains constant : preferentially parallel to the

Heterogeneities (II)

(Doliwa and Heue

 10^{2}

 10^{1}

Cages and collective dynamics

Cages are rather small (r*=0.3)

What are cages? How many grains are involved in

a cage reservangement?

Need to follow all particles

New exp. set up

Some information on the structure

A rather long ranged structure Significant fluctuations in the local density Work under progress :spatio-temporal structure

Direct observation of the dynamics

A closer look at the grain scale

Void redistribution allows cage re-arrangement Dynamics facilitation (but also inhibition) How long is the range of the correlations?

A broader look at the dynamics

First quantitative estimations

=>-up to / particles diameters

Conclusion and Perspectives

Dense granular media are analogous to glasses in the sense that their diffusion properties are identical at timescales larger that the thermal regime.

It is a good idea to make use of theoretical ideas from glasses in the field of dense granular media #> A granular experimental set-up is an efficient

tool to study glasses at the particle level. Further work will deal with:

A more precisessindy of the microscopic dynamics

(Clusters?, Strings?, Dynamical heterogeneities?, 74)

The study of a response function (RFD, Leff?)
Aging with or without compaction

&FD, Teff?}