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Experimental study of granular surface flows via a fast camera:
A continuous description

D. Bonamy, F. Daviaud, and L. Laurent
Service de Physique de l’Etat Condense´, CEA Saclay, 91191 Gif sur Yvette, France

~Received 19 March 2001; accepted 18 January 2002; published 1 April 2002!

Depth averaged conservation equations are written for granular surface flows. Their application to
the study of steady surface flows in a rotating drum allows to find experimentally the constitutive
relations needed to close these equations from measurements of the velocity profile in the flowing
layer at the center of the drum and from the flowing layer thickness and the static/flowing boundary
profiles. The velocity varies linearly with depth, with a gradient independent of both the flowing
layer thickness and the static/flowing boundary local slope. The first two closure relations relating
the flow rate and the momentum flux to the flowing layer thickness and the slope are then deduced.
Measurements of the profile of the flowing layer thickness and the static/flowing boundary in the
whole drum explicitly give the last relation concerning the force acting on the flowing layer. Finally,
these closure relations are compared to existing continuous models of surface flows. ©2002
American Institute of Physics.@DOI: 10.1063/1.1459720#
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I. INTRODUCTION

Granular media present numbers of interesting and
usual properties:1 the intrinsic dissipative nature of the inte
actions between the constituent macroscopic particles
granular matter apart from conventional gases, liquids or
ids. One of the most interesting phenomena in granular
tems is the transition from a static equilibrium to a granu
flow: contrary to ordinary fluids, a granular packing can
main static even with an inclined free surface. But when
angle of the surface exceeds some threshold valueud , the
packing can not sustain the steep surface and starts to
until its angle relaxes under a given angle of reposeu r . The
motion has the particularity to be a surface flow: most of
packing remains static. The condition governing the tran
tion between the solid state and the liquid state as well as
internal equations of the flowing layer are still today und
debate.2 This makes the description of such flows rather d
ficult.

People have benefited from the particularity of the
types of flows to be surface flows to apply to them de
averaged conservation laws, the Saint-Venant equations,3 and
to use the approximations developed in hydrodynamics fo
thin fluid film flowing down an inclined plane. Savage an
Hutter4 and more recently Pouliquen5 applied these equa
tions to describe the motion of granular material down
rough inclined plane. Khakharet al.6 and Elperin and
Vikhansky7 have studied steady flows in a rotating drum u
ing the same theoretical framework. They succeed to re
on the different free-surface shapes successively obse
when the rotation speed increases. Finally, Douadyet al.8

and very recently Khakharet al.9 have used these equation
to describe avalanches at the surface of a heap. Ano
model, referred to as the BCRE model,10 has also been pro
posed a few years ago: it deals with thin surface gran
flows including avalanches and succeeds, for example
1661070-6631/2002/14(5)/1666/8/$19.00
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report on the existence of the two anglesud and u r . This
model has then been extended to describe thick sur
flows.11,12

All these models are based on the assumption tha
strict separation between flowing grains and static grains
be made. They end in a system of two coupled equati
with the same form, differing only through their closure r
lations. Those are chosen from theoretical consideratio
linking, for example, the coupling term to the effective for
applying on the flowing phase~for Saint-Venant approach! or
to the microscopic effects of the flowing grains collisions
the static bed~for BCRE approach!. An original approach,
proposed by Aranson and Tsimring, should also
mentioned.13 Assuming a continuous transition betwee
flowing grains and static grains, they have developed
theory based on hydrodynamic equations coupled with
order parameter equation describing the solid/flowing tran
tion. This theory accounts for most of the behaviors recen
observed in experiments on the rough inclined plane.14

Thin rotating drums, i.e., rotating drums whose gap
small compared to the diameter, have been widely use
investigate properties of granular materials: Evesque
Rajchenbach15 and Jaegeret al.16 have studied avalanch
size distribution. Rajchenbach has used it in an attemp
find constitutive mechanical laws in 2D beads packing17

Nakagawaet al.18 have used magnetic resonance imaging
measure density and velocity field in a thick rotating dru
We propose here to study steady surface flows in a rota
drum for a quasi-2D packing of monodisperse beads in or
to find experimentally the closure relations needed to co
plete the depth averaged hydrodynamic equations.

In Sec. II, basic conservation laws are presented. I
shown how the closure relations can be deduced from
experimental velocity profile inside the flowing layer at th
center of the drum and from the flowing layer profile. Th
experimental setup is then described~Sec. III!. Beads are
6 © 2002 American Institute of Physics
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1667Phys. Fluids, Vol. 14, No. 5, May 2002 Experimental study of granular surface flows
studied on the microscopic scale in Sec. IV: velocity a
volume fraction profiles are measured on elementary sl
via a fast camera. In Sec. V, the flowing layer thickness a
the angle between the interface and the horizontal are m
sured in the whole drum. The closure relations are dedu
Finally, they are compared in Sec. VI to the ones assume
the different models proposed in the litterature.

II. THEORETICAL FRAME: SAINT-VENANT
DESCRIPTION

Let us consider the situation depicted in Fig. 1. The
proach is limited to the 2D situation. The material can th
be divided into two parts: a thin cascading layer flows o
static bed. The boundary between these two phases is
posed to be sharp. This assumption will be discussed
justified in Sec. IV. As the flowing layer is assumed to
thin, the velocity of grains is essentially parallel to the sta
flowing boundary. The most natural frame is consequen
the curvilinear frame (exW ,ezW ) whereexW ~respectively,ezW ! is
locally tangent~respectively, normal! to this interface. Thez
origin is set at the free surface. Calling (vx ,vz) the velocity
at the~x, z! coordinate, the mass and momentum conser
tion equations can be written8,9

]

]t
~^r&R!1

]

]x
~R^rvx&!1~rvz!uz52R50, ~1!

]

]t
~R^rvx&!1

]

]x
~R^rvx

2&!1~rvxvz!uz52R5F, ~2!

whereR is the flowing layer thickness,r the solid fraction
andF the x component of the force acting on the volume
the flowing layer bounded by the two surfacesS(x) and
S(x1dx). The quantities (R^rvx&) and (R^rvx

2&) are, re-
spectively, the flow rate and the flux ofx component of mo-
mentum through the surfaceS(x) ~see Fig. 1! while
(rvz)uz52R and (rvxvz)uz52R represent, respectively, th
flow rate and the flux ofx component of momentum passin
through the static/flowing boundary.^A& denotes the averag
of the quantityA across the flowing layer

FIG. 1. Steady surface flow in a drum at rotation speedV. A thin cascading
layer of thicknessR ~in gray! flows on a static bed whose local slope wi
the horizontal isu. The transport theorem is applied on the volumeV limited
by the vertical slicesS(x) andS(x1dx) on the one hand and by the fre
surface and the static/flowing interface on the other hand. The resu
equations are written in the curvilinear frame (eW x ,eW z). The frame (eWX ,eWZ) is
the gravity frame located at the center of the drumO. The solid rotation at
a pointM located at the solid/flowing interface isVrnW wherer is the dis-
tance betweenO andM andnW the unit vector perpendicular to, and oriente

to the left ofOMW .
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^A&5
1

R E
2R

0

A dz. ~3!

In the following, the volume fractionr is supposed to be
constant~this assumption will be discussed and justified
Sec. IV! and Eqs.~1! and~2! are simplified accordingly. The
expressions of̂vx&, ^vx

2&, andF as a function of the flow
macroscopic parametersR and the angleu(x,t) between the
solid/flowing interface and the horizontal are required
close the two equations~1! and ~2!. Let us apply these two
conservation equations to the description of steady sur
flows in a rotating drum~see Fig. 1!. In this case, time de-
rivatives terms in Eqs.~1! and ~2! vanish and the velocity
vW uz52R of the static grains at the bed/layer interface can
written

vW uz52R5VrnW , ~4!

where V is the rotation speed of the drum,r the distance
between the center of the drumO and the pointM of the
interface wherevW uz52R is calculated, andnW the unity vector
perpendicular to, and oriented to the left ofOMW ~see Fig. 1!.
Then, Eqs.~1! and ~2! become

d

dx
~R^vx&!52V~X cosu1H sinu!, ~5!

d

dx
~R^vx

2&!1V2~X cosu1H sinu!

3~X sinu2H cosu!

3H~X cosu1H sinu!5
F

r
, ~6!

where (X(x),H(x)) is the coordinate ofM in the gravity
frame whose origin coincides with the center of the dru
~see Fig. 1! andH the Heaviside function.

The aim of the paper is first to investigate the bea
behavior on the microscopic scale: the profiles of the vel
ity vx(z) and volume fractionr(z) are measured on an e
ementary slice. The evolution of these profiles withR andu
allows one to deduce the first two closure relations^vx&
3(R,u) and ^vx

2&(R,u). Then, profilesR(x) and u(x) are
measured on the macroscopic scale, in the whole dr
These profiles confirm the form of the first two closure re
tions, extend their range of validity and allow one to find t
last closure relationF(R,u).

g

FIG. 2. Schematic drawing of the experimental setup.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 3. Determination of beads velocities. Left: one of the 200 raw frames forV53 rpm. Frames are binarized and beads position is then defined as the c
of mass of white areas. Right: corresponding calculated velocity field.
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III. EXPERIMENTAL SETUP

The experimental setup is illustrated in Fig. 2. It consi
mainly in a duralumin rotating drum of diameterD0

545 cm and of gape57 mm. The drum is half filled by a
packing of steel beads of diameterd5360.05 mm. The
drum can then be considered as a Hele–Shaw cell (D0@e
'2d) where the packing has a 3D microscopic struct
~especially a disordered structure contrary to 2D pack
whose stable structure is crystalline! while keeping a 2D
macroscopic geometry. The volume fraction measured
after the filling is 0.5760.02. The gape has been chose
slightly larger than 2d to prevent any jamming in beads flow
The use of steel beads of millimetric size allows to hav
good control of geometrical and mechanical properties
to limit capillary and electrostatic effects at the expense o
larger scale experiment.

The rotation speedV can be varied from 0.001 rpm up t
30 rpm. For smallV, typically smaller than 0.1 rpm, the
mean angle of the free surfaceū oscillates between the ang
of flow ud527.560.7° and the angle of reposeu r523.5
60.6°. This intermittent behavior is not studied in this p
per. For V>0.1 rpm, surface flow becomes steady. T
beads are lighted via a continuous halogen lamp and reg
obtained forV varying from 1 rpm up to 6 rpm are recorde
via a fast camera. On this range of rotation speed, the w
of the flowing layerR is well defined and inertial effects ar
negligible~the Froude number Fr5V2D0/2g<0.01 whereg
is the gravity constant!.
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IV. MICROSCOPIC SCALE: VELOCITY AND VOLUME
FRACTION PROFILE ON AN ELEMENTARY SLICE

Sequences of frames are recorded via a fast camera
sampling ratef s51 kHz. The shutter speed is of 0.1 ms. Th
recorded region is located at the point where (vzW uz52R .nW )
50 ~roughly corresponding to the center of the drum!. In
this region,u, R, and $vx(z)% are invariant under a sma
translation alongeW x . The recorded region can then be co
sidered as a statisfactory elementary slice.R and u in this
area are controlled by changingV, but cannot be modified
independently. The recorded region size in pixel is 4
3234, one pixel corresponding to 0.227 mm. The digi
images are processed to obtain the position of the cente
mass of the beads seen through the glass porthole~see Fig.
3!. The image of a single bead is made up of about 2363
pixels depending on the distance of the bead to the porth
The error on the determination of beads location is th
about 50mm. One can then extract both volume fraction a
velocity profiles.

Volume fraction profile cannot be measured directly
our experiment since all beads are not seen through the p
hole. One has thus calculated from numerical simula
packing the relationship between the real volume fract
and the volume fraction estimated from the beads s
through the porthole~see Appendix A!. The experimental
volume fraction profiles can then be deduced. The err
made on these profiles is mainly dominated by the statist
e

n

p
e
-

FIG. 4. Left: solid fraction profile~av-
eraged over 1000 frames!. The error
bars correspond to a 99% confidenc
interval. Right: velocity profile~aver-
aged over 200 frames! at the center of
the rotating drum forV56 rpm. The
error bars, corresponding to a 99%
confidence interval, are smaller tha
the point size.vx is linear withz in the
flowing layer. Inset:vx /vxuz50 vs the
depth showing the exponential cree
deformation in the static phase. Th
straight line corresponds to an expo
nential fit.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 5. Left: velocity profile at the
center of the drum for differentV. The
z origin is set at the free surface. Fo
all these (R0 ,u0) couples measured a
the center of the drum,vx is linear
with z. Right: superposition of the ve-
locity profiles. All these profiles have
been translated along thez axis to
make their static/flowing interface co
incide. The z origin is set arbitrary.
The velocity gradientġ is independent
of both R andu.
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processing of the data: profiles have been averaged
1000 frames to limit this error. A typical volume fractio
profile is represented in Fig. 4~a!: r varies typically from 0.3
to 0.4 in the flowing layer, except at the free surface in
small region~about three beads diameters! where r drops
quickly down to zero. This last region is assumed to be sh
and corresponds to the free surface boundary. The assu
tion r.constant can then be questioned: relaxing this
sumption amounts to replace^vx& and^vx

2&, respectively, by
^rvx&/^r& and ^rvx

2&/^r&. As r variations are negligible
compared tovx variations,r can be assumed to be consta

Frames processing allows to evaluate beads velocity~see
Appendix B!. A typical velocity profile is represented in Fig
4~b!. The velocity varies linearly with depth in the flowin
layer and decreases exponentially with depth in the s
phase, with a characteristic decay lengthl57.6 mm.2.5d
independent ofV, i.e., independent of bothR andu in agree-
ment with19 @see inset of Fig. 4~b!#. The plastic motion of the
solid phase is thus localized in a narrow layer at the so
liquid interface whose thicknessl scales on the microscopi
length, the diameterd of grains, and can thus be consider
as zero at macroscopic scale. This plastic motion is not s
ied in this paper.

The rotation speedV has been varied from 1 rpm to
rpm in order to study variations of the velocity profile withR
andu. The corresponding velocity profiles have been rep

FIG. 6. Superposition of the velocity profiles obtained forV56 rpm at five
different locations equally distributed along the free surface. The velo
gradient depends weakly on the location in the drum. All these profiles h
been translated along thez axis to make their static/flowing interface coin
cide. Thez origin is set arbitrary. The velocity gradientġ is consequently
independent of bothdR/dx anddu/dx.
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sented in Fig. 5~a!. In Fig. 5~b!, all profiles have been trans
lated along thez axis to make the static/flowing interfac
coincide. The velocity profile remains linear in the who
flowing layer and the velocity gradient is independent
both R andu.

Velocity profiles measured at five different poin
equally distributed along the free surface forV56 rpm are
represented in Fig. 6. At these locations,dxR anddxu are no
more equal to zero. The thickness of the recorded region
been decreased to minimize these drifts.$vx(z)% does not
depend on the location in the drum, which means t
$vx(z)% does not depend ondR/dx anddu/dx. The velocity
profile can then be written inside the flowing layer as

vx~z!5ġ~z1R! ~7!

with ġ53460.5 s21, or ġ.0.6Ag/d. Such order of magni-
tude can be easily understood:17 when a bead collides with
an underlying grain, all the kinetic energy is absorbed
multiple collisions. Then, the balance between potential a
kinetic energy on a mean free path of order ofd leads to a
limiting velocity between two adjacent beads laye
equal toAgd, and consequently to a velocity gradient of th
order ofAg/d.

The knowledge of the profile$vx(z)%(R,u) enables us to
calculate the first two closure relations:

^vx&~R,u!5 1
2ġR, ~8!

^vx
2&~R,u!5 1

3ġ
2R2. ~9!

y
eFIG. 7. Frame processing. Left: one of the 512 raw frames (V53 rpm).
Frames are subtracted 232, binarized and gathered by bursts of 25 frame
The resulting frame is smoothed via a dilation-erosion filter. Right: one
the 20 resulting frames showing the flowing layer.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 8. Typical profiles obtained forV53 rpm. Left:
profiles H(X) and S(X). Dashed circle correspond to
rotating drum limits. One can see a large rangeLV in
the right part of the drum where the layer thickne
varies while the static/flowing boundary slope almo
does not change. Right: profileR(x).
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This scaling law is different from the one observed
granular flows down the rough inclined plane for 2
packing20 and for 3D packing.21 In these experiments,^vx&
was found to scale asR3/2. A linear profile with a velocity
gradient independent ofR has also been observed b
Rajchenbach at the surface of a 2D packing in a rota
drum.17 This tends to confirm that boundary conditions c
strongly affect the velocity profile and questions the abil
of a classical constitutive law relating the shear stress to
strain rate.2,17

Let us note that velocity gradient observed by Rajch
bach in 2D packing scales asAsinu contrary to ours. How-
ever, in our series of experiments,u varies only from 31° up
to 48°, which corresponds to variations ofAsinu from 0.72
to 0.86. Consequently, the difference betweenġ behaving as
Asinu and ġ constant does not differ much from the err
bars and it is not possible to conclude at this point which
the two scaling is the right one. This will be tested on a m
significant range ofu, from 0° up to 48°, in the next section

V. MACROSCOPIC SCALE: PROFILES OF THE
FLOWING PHASE HEIGHT AND OF THE
STATICÕFLOWING BOUNDARY

The determination of the last closure relationF(R,u)
requires the determination ofR andu in the whole drum. The
experimental protocol is the following: sequences of 5
frames are recorded via a fast camera at a sampling raf s

5250 Hz with a pixel resolution of 4803400. In order to
keep a sufficient resolution on the profiles, the rotating dr
is visualized by halves, a pixel corresponding to 0.468 m
Image processing allows to isolate the flowing layer and b
the interface profileH(X) and the free surface profileS(X),
expressed in the gravity frame (eXW ,eZW ), can be extracted~cf.
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Fig. 7!. The fluctuations on each point of these profiles a
around 1.5 mm. The profiles are then averaged over
frames. Consequently, the resulting errors on bothH and S
are around 0.3 mm. The curvilinear coordinatex(X), the
local angleu(X), and the flowing layer thicknessR(X) are
then deduced using the procedure given in Appendix C.
sulting errors onR is about 1 mm@see Fig. 8~b!#. On the
upper part of the profile, the local slope is constant@see Fig.
8~a!# on a range whose size decrease whenV is increased.
One can study on this rangeLV the variation of the different

variables withR for a fixed angleūV depending on the rota
tion speedV.

Let us first confirm the first closure relation@Eq. ~8!#
established at the end of the last section: the drift veloc
^vx& can be calculated from the experimentalx(X), H(X),
andR(X) profiles by integrating numerically Eq.~5!. Figure
9~a! shows the variation of̂vx& vs 1

2ġR with ġ534 s21 as

suggested in the preceding section for differentūV . This
confirms the assumption of a linear profile$vx(z)% with a
velocity gradient independent ofR.

Let us answer now the question about the dependenc
ġ with u. To test the different assumptions on this scalin
profiles H(X) and R(X) have to be taken into account i
their whole: Typically, forV56 rpm, u(X) varies from 0° to
48°. The procedure will be the following: from the profil
Hexp(X) obtained experimentally, one deducesX(x), H(x),
u(x) and, by integrating Eq.~5!, the flow rate$R^vx&%(x).
The theoretical profiles for the flowing thicknessRth

(a)(x),
Rth

(b)(x), and Rth
(c)(x) are then calculated assuming, respe

tively, the relations

~a! R^vx&5pR2 corresponding to a velocity gradient inde
pendent ofu;
-

is
FIG. 9. Left: mean drift velocitŷ vx& vs
1
2ġR on the

range LV . Right: test of the relationv5pR in the
whole drum. The theoretical profilesRth

(a)(x),
Rth

(b)(x), andRth
(c)(x) are calculated from the experi

mental profile Hexp(X) using the assumptions~a! v
5pR ~solid line!, ~b! v5pRAsinu ~dashed line! or ~c!,
~b! v5pRAcosu sin(u02ur)/sinu0 sinur ~dotted line!.
The angleu0 is the angle at the interface where there
no interchange:u0538° ~respectively,u0548°! for V
53 rpm ~respectively,V56 rpm!. All these theoretical
profiles are then compared to the experimentalRexp(x)
profile. In all case,p is chosen to minimizeuRth

2Rexpu.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 10. Left: variation ofF/rġR vs R for differentV.
Right: friction force on the lateral planeFBfr /r vs R.
The solid line corresponds to Eq.~12! ~translated verti-
cally by a constant value!: h.10 m21.
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~b! R^vx&5pR2Asinu corresponding to a velocity gradien
ġ scaling asAsinu as observed by Rajchenbach;17

~c! R^vx&5pR2Acosu sin(um2ur)/sinumsinur corre-
sponding to a velocity gradientġ scaling as
Acosu sin(u02ur)/sinu0 sinur ~u r is the angle of repose
and u0 is the angle at the interface where there is
interchange! as predicted by Orpe and Khakhar.22

These three profiles are then compared to the experim
tal profile Rexp(x) @see Fig. 9~b!#. The fit parameter isp. The
scenario ~a! leads to better fits, with a fit parameterp
514 s21, independent ofV, about 20% smaller thanġ/2.
This difference may come from the boundaries: the veloc
gradientġ has been determined from the velocity of only t
beads observed through the porthole whilep is related to the
mean velocity of all the beads.

At this point, one can evaluate the forceF. Numerical
calculation of the second left-hand term of Eq.~6! shows that
it is negligible compared to the first left-hand term and c
thus be neglected. From Eq.~5!, the simplified Eq.~6! and
the closure relations~8! and ~9!, one finds

F

r
5ġRV~H sinu1X cosu!. ~10!

The last closure relation can then be determined. Fr
the experimentalX(x), H(x), and R(x) profiles, one can
deduceF(x) using Eq.~10!. Figure 10~a! presents the varia
tion of F/rġR vs R for different ūV . F/rġR seems to de-
crease as a parabola withR:

F

rġR
5F1~u!2F2~u!R2. ~11!

A minimal form of the forceF should include

~a! The weightFW5rgRsinu.
~b! A pressure termFP52krg(dR/dx)cosu.5 SinceR is

negligible compared toD0 , this term can be neglected
~c! The friction on the static phase:FS fr52mrgRcosu.

A priori, m depends onR and u. Experiments show
however thatm reach quickly a constant value close
tanur independent ofR andu as soon asR is larger to
a few beads diameters.23 In our case,m can be consid-
ered as constant.

Finally, the friction on the lateral boundariesFBfr

5*0
RsBfr dz.
Downloaded 10 Oct 2003 to 132.166.47.105. Redistribution subject to A
n-

y

n

m

This last contribution is the one responsible for the d
crease ofF/rġR with R as a parabola. It can be obtaine
directly from the value ofF and the first two contributions
FW andFSfr . Figure 10~b! represents the variation ofFBfr /r
vs R for different ūV . Its variation with ūV appears to be
weak. The form ofFBfr can be understood through the fo
lowing process:FBfr5*0

RsBfr dz wheresBfr(z) is the stress
exerted by the boundary on the layer betweenz andz1dz.
To model sBfr , let us apply the following process:sBfr

5ndp wheren is the frequency of bead-boundary collisio
anddp the x momentum lost by each collision. Asr is con-
stant, the mean free path is constant in the layer ann
}rvx(z): Each collision with the boundary is inelastic. Co
sequently,dp}vx . Finally one can writesBfr5hrvx

2 with h
constant and, after integration over the width of the flowi
layer:

FBfr52r
hġ2

3
R3. ~12!

This closure relation indeed allows one to reproduce
experimentalFBfr(R) profiles obtained for differentūV @cf.
Fig. 10~b!#. In our experiment,h.10 m21. The order of
magnitude ofh can be understood in the following way: th
momentum lost by each collision is of order (12e) wheree
is the restitution coefficient. For our beads,e.0.95. The
mean free path is of the same order of the bead diameted.
Consequently, one expectsh.(12e)/d.10 m21.

The last closure relation that follows from the abo
discussion thus reads

F5rgRsinu2mrgRcosu2 1
3hġ2R3. ~13!

VI. DISCUSSION

Using the closing relations Eq.~8!, Eq. ~9!, and Eq.~13!,
the conservation equations~1! and ~2! become

]R

]t
1V

]R

]x
5G, ~14!

]H

]t
52G, ~15!

where

V52^vx&5ġR ~16!

and
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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G5
F

rġR
5

g

ġ
~sinu2m cosu!2

1

3
hġR2. ~17!

This system of equations contains three parameters: the
locity gradientġ, the friction coefficientm, and a third pa-
rameterh characterizing the friction on lateral boundarie
These three parameters depend on microscopic feature
the beads such as their diameter, their coefficient of res
tion and their roughness, and of the gap of the drum. It
be compared to the different existing continuous models p
posed in Refs. 8–12.

These two equations are very close to the one propo
by Douadyet al.8 They have supposed a linear velocity pr
file with a constant velocity gradient as observed in our
periment. Moreover, for largeR, variation of the forceF with
R andu is qualitatively similar to ours, but they attribute th
variation to the friction of the flowing layer to static grain
instead of invoking friction effects on the lateral boundar
as we have done.

Khakharet al.9 have proposed a derivation of depth a
eraged conservation equations very close to that of Re
They also have assumed a linear velocity, but with a grad
dependent ofu. As for the closing relations proposed by Re
8, variation ofF with R is attributed to a dependency of th
shear stress at the solid/flowing interface withR rather than
to boundary effects.

Another model has also been proposed a few years
by Bouchaudet al.10 The original model, devoted to describ
avalanche triggering, deals with thin moving layers ofR
<d and cannot be compared to ours. But this model has l
been extended to describe thick surface flows by Boutr
et al.11 These models assume a constant advection velo
V, small variations ofu aroundu r , and relate the coupling
term G to the effect of collisions between the moving grai
on the static bed. For thin flowing layers,10 all the moving
grains are assumed to be in contact with the static bed an
have the same probability to interact with it:G5aR(u
2u r) with a constant. For thick granular flows,11 only grains
belonging to the first layers can interact with the static b
The influence of the others is shielded by these first layerG
is then more naturally assumed to be independent ofR: G
5a(u2u r) with a constant. This last form is compatibl
with our form of G expanded to first order inu2u r . The
constanta can be evaluated:8,9 a5g cosur /ġ. Thanks to their
simplicity, these two last models allow analytical exa
solutions.24–26 But the assumption of a constant velocityV
prevents them from describing quantitatively the avalanc
front27 or avalanches amplitudes.12

VII. CONCLUSION

Depth averaged conservation equations have been
ten for granular surface flows. Their applications to the stu
of steady surface flows in a rotating drum allow one to fi
experimentally the closure relations of these equations f
measurements of the velocity profile in the flowing layer
the center of the drum and from the flowing layer thicknesR
and the interface slopeu profiles. These measurements ha
been performed for a quasi-2D packing of steel beads.
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velocity profile has been found linear with a gradientġ in-
dependent of bothR andu. The closure relations have bee
deduced: the mean drift velocitŷvx& and the mean kinetic
energy ^vx

2& are given, respectively, bŷvx&5 1
2ġR and

R^vx
2&5 1

3ġ
2R2. The last relation relating the forceF acting

on the flowing layer toR andu has also been explicitly given
and reveals the importance of lateral boundaries. Two par
eters, namely the friction coefficientm of the flowing layer
on the static bed~close to tanur! and a coefficienth charac-
terizing the friction on lateral boundaries are needed to
scribeF. Finally, the closed equations have been compa
to existent continuous models. Their differences have b
discussed: a new term whose form is given should be
cluded to take into account lateral boundary effects. The p
cise study of the dependence of the three parametersġ, m,
andh with the beads diameters, the beads coefficient of r
titution, the beads surface roughness, and the cell gap re
sents interesting topic for a future investigation.
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APPENDIX A: DETERMINATION OF THE VOLUME
FRACTION PROFILE

3D disordered packing of different volume fractions co
fined between two plates have been simulated. Numer
packing have been constructed by dropping randomly be
in a cell of gape. Beads are randomly located at a give
altitude. Their altitudes are then minimized under the t
following constraints: the beads should stay in the cell a
the distance between their center of mass and the cente
mass of beads already in the cell should be superior tod.
Confined packing of volume fraction 0.5 can then be o
tained. Confined packing of lower volume fraction are th
obtained either by contracting beads and cell dimensi
without changing the position of beads center of mass or
removing randomly a given number of beads. One can t
determine the beads actually observed through the porth
i.e., the beads whose center of mass is not hidden by
presence of the other beads closer to the porthole. Both
volume fractionr real and the volume fractionrview evaluated
from the observed beads are calculated~see Fig. 11!. r real

varies linearly withrview. For d53 mm ande57 mm,

r real51.61rview. ~A1!

Direct experimental measurements ofr real andrview just
after the filling the drum, i.e., forr real50.57 ~see Sec. III!,
confirm the value of the ratior real/rview.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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APPENDIX B: DETERMINATION OF THE VELOCITY
OF BEADS

The processing to determine beads velocity is the
lowing: each bead is tracked over 10 successive frames
soon as the displacement between two successive fram
larger thand, there is an ambiguity and the bead is cons
ered as lost. Then, only beads tracked over at least five
cessive frames are kept. They represent more than 99% o
the observed beads. The largest accessible velocity is
f sd/251500 mm/s and the error on these velocities is ab
10 mm/s. The local angleu of the surface flow with the
horizontal axis is then determined from the mean velocity
the flow calculated by averaging the velocity of all beads
all frames. All frames are then rotated byu and divided into
horizontal layers one bead diameter wide. The velocity p
file is then calculated by averaging the velocity of the be
in each layer on 200 frames. The errors made on the velo
profile is then mainly dominated by the statistical process
of the data. It is less than 20 mm/s for a 99% confiden
interval.

APPENDIX C: DETERMINATION OF X, u, AND R

From experimentalH(X) andS(X) profiles,x(X) is cal-
culated viax5*X

XPA11@(dH/dX)(y)#2 dy where P is the
upper boundary of the flowing layer@H(XP)5S(XP)#. The
local angleu(X) is defined asu5atan(dH/dX). The proce-
dure to determineR(x) is the following: for a givenx, one
first finds the corresponding static/flowing boundary po
PH of coordinate (X(x),H(x)) in the gravity frame. Then
one looks for the pointPS of coordinate (XS ,S(xS)) at the
free surface so thatPSPH

W be orthogonal toeW x @numerically,
this consists of minimizing u(X(x)2XS)cosu(x)1(H(x)
2S(XS))sinu(x)u with respect toXS#. R(x) is then defined
as uPSPHu.

FIG. 11. Variation of the real volume fraction profiler real vs the volume
fraction profile rview taking into account only the beads effectively se
through the porthole. Data come from numerical simulations.
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