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Experimental study of granular surface flows via a fast camera:
A continuous description
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Depth averaged conservation equations are written for granular surface flows. Their application to
the study of steady surface flows in a rotating drum allows to find experimentally the constitutive
relations needed to close these equations from measurements of the velocity profile in the flowing
layer at the center of the drum and from the flowing layer thickness and the static/flowing boundary
profiles. The velocity varies linearly with depth, with a gradient independent of both the flowing
layer thickness and the static/flowing boundary local slope. The first two closure relations relating
the flow rate and the momentum flux to the flowing layer thickness and the slope are then deduced.
Measurements of the profile of the flowing layer thickness and the static/flowing boundary in the
whole drum explicitly give the last relation concerning the force acting on the flowing layer. Finally,
these closure relations are compared to existing continuous models of surface flovi20020
American Institute of Physics[DOI: 10.1063/1.1459720

I. INTRODUCTION report on the existence of the two anglégand 6, . This
model has then been extended to describe thick surface
Granular media present numbers of interesting and unfows 1112
usual propertiesithe intrinsic dissipative nature of the inter- All these models are based on the assumption that a
actions between the constituent macroscopic particles setsrict separation between flowing grains and static grains can
granular matter apart from conventional gases, liquids or solbe made. They end in a system of two coupled equations
ids. One of the most interesting phenomena in granular syswith the same form, differing only through their closure re-
tems is the transition from a static equilibrium to a granularlations. Those are chosen from theoretical considerations,
flow: contrary to ordinary fluids, a granular packing can re-linking, for example, the coupling term to the effective force
main static even with an inclined free surface. But when theapplying on the flowing phaggéor Saint-Venant approagior
angle of the surface exceeds some threshold vajuyethe  to the microscopic effects of the flowing grains collisions on
packing can not sustain the steep surface and starts to floiMe static bedfor BCRE approach An original approach,
until its angle relaxes under a given angle of repdseThe  proposed by Aranson and Tsimring, should also be
motion has the particularity to be a surface flow: most of thementioned:® Assuming a continuous transition between
packing remains static. The condition governing the transiflowing grains and static grains, they have developed a
tion between the solid state and the liquid state as well as thgheory based on hydrodynamic equations coupled with an
internal equations of the flowing layer are still today underorder parameter equation describing the solid/flowing transi-
debate’ This makes the description of such flows rather dif-tion. This theory accounts for most of the behaviors recently
ficult. observed in experiments on the rough inclined pf4he.
People have benefited from the particularity of these  Thin rotating drums, i.e., rotating drums whose gap is
types of flows to be surface flows to apply to them depthsmall compared to the diameter, have been widely used to
averaged conservation laws, the Saint-Venant equatiand, investigate properties of granular materials: Evesque and
to use the approximations developed in hydrodynamics for ®ajchenbacht and Jaegeret al!® have studied avalanche
thin fluid film flowing down an inclined plane. Savage and size distribution. Rajchenbach has used it in an attempt to
Huttef* and more recently Pouliqurapplied these equa- find constitutive mechanical laws in 2D beads pacKihg.
tions to describe the motion of granular material down aNakagawaet al'® have used magnetic resonance imaging to
rough inclined plane. Khakhaetal® and Elperin and measure density and velocity field in a thick rotating drum.
Vikhansky have studied steady flows in a rotating drum us-We propose here to study steady surface flows in a rotating
ing the same theoretical framework. They succeed to repodrum for a quasi-2D packing of monodisperse beads in order
on the different free-surface shapes successively observed find experimentally the closure relations needed to com-
when the rotation speed increases. Finally, Douatlgl®  plete the depth averaged hydrodynamic equations.
and very recently Khakhaet al® have used these equations In Sec. Il, basic conservation laws are presented. It is
to describe avalanches at the surface of a heap. Anothehown how the closure relations can be deduced from the
model, referred to as the BCRE mod@has also been pro- experimental velocity profile inside the flowing layer at the
posed a few years ago: it deals with thin surface granulacenter of the drum and from the flowing layer profile. The
flows including avalanches and succeeds, for example, texperimental setup is then describ&sec. Il). Beads are
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In the following, the volume fractiop is supposed to be
constant(this assumption will be discussed and justified in
Sec. V) and Eqgs(1) and(2) are simplified accordingly. The
expressions ofv,), (v,%), andF as a function of the flow
macroscopic parameteisand the anglé(x,t) between the
solid/flowing interface and the horizontal are required to
close the two equationd) and (2). Let us apply these two
FIG. 1. Steady surface flow in a drum at rotation spBed thin cascading  conservation equations to the description of steady surface
layer 01_‘ thickngssR (in gray) flows on a s_tatic bc_ed whose local s_lope with flows in a rotating drun(see Fig. J. In this case, time de-
the horizontal ig9. The transport theorem is applied on the voluvhkimited L . . .
by the vertical slices.(x) and 2 (x+dx) on the one hand and by the free rivatives terms in Eqs(l) and (2) vanish and the veIOCIty
surface and the static/flowing interface on the other hand. The resulting|,— _ g Of the static grains at the bed/layer interface can be
equations are written in the curvilinear fram& (€,). The frame €y ,&;) is written
the gravity frame located at the center of the drOmThe solid rotation at
a pointM located at the solid/flowing interface &rii wherer is the dis- Ul,— _r=Qrn, (4
tance betwee® andM andn the unit vector perpendicular to, and oriented
to the left of OM.

where () is the rotation speed of the drum,the distance
between the center of the dru@® and the pointM of the
interface wherej|,— _y is calculated, and the unity vector
studied on the microscopic scale in Sec. IV: velocity andperpendicular to, and oriented to the left@M (see Fig. L
volume fraction profiles are measured on elementary slice$hen, Eqs(1) and(2) become

via a fast camera. In Sec. V, the flowing layer thickness and

the angle between the interface and the horizontal are meaﬂ(R@ ))=—Q(X cosé+H sin ) (5)
sured in the whole drum. The closure relations are deducedx X '

Finally, they are compared in Sec. VI to the ones assumed b

the different models proposed in the litterature. d_(R<vX2>)+Q2(x cosé+H sin6)
X
Il. THEORETICAL FRAME: SAINT-VENANT % (X sin 6— H cos)
DESCRIPTION
Let us consider the situation depicted in Fig. 1. The ap-  x 7{(X cosf+H sing) = E (6)
proach is limited to the 2D situation. The material can then P

be divided into two parts: a thin cascading layer flows on ayhere X(x),H(x)) is the coordinate oM in the gravity
static bed. The boundary between these two phases is sufjame whose origin coincides with the center of the drum
posed to be sharp. This assumption will be discussed an@ee Fig. 1 andH the Heaviside function.

justified in Sec. IV. As the flowing layer is assumed to be  The aim of the paper is first to investigate the beads
thin, the velocity of grains is essentially parallel to the static/hehavior on the microscopic scale: the profiles of the veloc-
fIOWing bOUndary. The most natural frame is Consequentlyty vx(z) and volume fractiorp(z) are measured on an el-
the curvilinear frame &,€;) where &, (respectively,€;) is  ementary slice. The evolution of these profiles wRfand 6
locally tangent(respectively, normaito this interface. The  allows one to deduce the first two closure relatiqos)
origin is set at the free surface. Calling,(v,) the velocity X(R,0) and(v,?)(R,6). Then, profilesR(x) and 6(x) are

at the(x, 2 coordinate, the mass and momentum conservameasured on the macroscopic scale, in the whole drum.

tion equations can be writtéf These profiles confirm the form of the first two closure rela-
9 9 tions, extend their range of validity and allow one to find the
E((p)R)ﬂL 5(R<pvx>)+(pvz)|2:_R=0, (1) last closure relatiofF (R, 6).

J J
a(R<PUX>)+5(R<va2>)+(pUXUZ)|Z:7R:F, 2

whereR is the flowing layer thicknesg the solid fraction

andF the x component of the force acting on the volume of
the flowing layer bounded by the two surfacE$x) and

3 (x+dx). The quantities R(pv,)) and R{pv,?)) are, re-

spectively, the flow rate and the flux sfcomponent of mo- . Y~ beam
mentum through the surfac&(x) (see Fig. 1 while :
(pv)l,=_r and (pv,w,)|,- _r represent, respectively, the
flow rate and the flux ok component of momentum passing
through the static/flowing boundarA) denotes the average
of the quantityA across the flowing layer FIG. 2. Schematic drawing of the experimental setup.

rotating drum

Light source
Fast camera
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FIG. 3. Determination of beads velocities. Left: one of the 200 raw frameQ foB rpm. Frames are binarized and beads position is then defined as the center
of mass of white areas. Right: corresponding calculated velocity field.

IIl. EXPERIMENTAL SETUP IV. MICROSCOPIC SCALE: VELOCITY AND VOLUME
FRACTION PROFILE ON AN ELEMENTARY SLICE

The experimental setup is illustrated in Fig. 2. It consists
mainly in a duralumin rotating drum of diametdd, Sequences of frames are recorded via a fast camera at a
=45 cm and of gag=7 mm. The drum is half filled by a sampling ratefs=1 kHz. The shutter speed is of 0.1 ms. The
packing of steel beads of diametdr=3+0.05mm. The recorded region is located at the point whetg| - _g.NA)
drum can then be considered as a Hele-Shaw &B{e =0 (roughly corresponding to the center of the djurim
~2d) where the packing has a 3D microscopic structurenjs region, 6, R, and {v,(z)} are invariant under a small
(especially a disordered structure contrary to 2D packing,ansiation alongg, . The recorded region can then be con-
whose stable structure is crystallnehile keeping a 2D gjgered as a statisfactory elementary sligeand 6 in this
macroscopic geometry. The volume fraction measured jusglrea are controlled by changir®, but cannot be modified

after the filling is 0.52-0.02. The gape hgs peen chasen independently. The recorded region size in pixel is 480
slightly larger than & to prevent any jamming in beads flow. . . .

- L X 234, one pixel corresponding to 0.227 mm. The digital
The use of steel beads of millimetric size allows to have a

good control of geometrical and mechanical properties an{nages are processed to obtain the position of the center of

to limit capillary and electrostatic effects at the expense of ass Of_ the beads seen through the glass portisele Fig.
larger scale experiment. 3). The image of a single bead is made up of about 33

The rotation speef can be varied from 0.001 rpm up to pixels depending on the distance of the bead to the porthole.
30 rpm. For small, typically smaller than 0.1 rpm, the The error on the determination of beads location is thus

mean angle of the free surfasescillates between the angle 200Ut 50um. One can then extract both volume fraction and
of flow 64=27.5-0.7° and the angle of reposg=23.5 Velocity profiles.. _ _ _
+0.6°. This intermittent behavior is not studied in this pa-  Volume fraction profile cannot be measured directly in
per. For 0=0.1rpm, surface flow becomes steady. TheOUr experiment since all beads are not seen through the port-
beads are lighted via a continuous halogen lamp and regimd®le. One has thus calculated from numerical simulated
obtained forQ) varying from 1 rpm up to 6 rpm are recorded packing the relationship between the real volume fraction
via a fast camera. On this range of rotation speed, the widtAnd the volume fraction estimated from the beads seen
of the flowing layerR is well defined and inertial effects are through the portholgsee Appendix A The experimental
negligible (the Froude number FrQ2?D,/2g<0.01 whereg  volume fraction profiles can then be deduced. The errors

is the gravity constaint made on these profiles is mainly dominated by the statistical
10 10 . . .
e e e e e e e e FIG. 4. Left: solid fraction profildav-
0 & - free surface eraged over 1000 framesThe error
-10p ~TTTTTTEET e SREEEEEEEEEE bars correspond to a 99% confidence
20 eee (a) interval. Right: velocity profile(aver-
P flowing laver °, aged ovc_er 200 framest the center of
£ 30 g lay oy the rotating drum fo)=6 rpm. The
5_40 """"""""" 'eée' """ error bars, corresponding to a 99%
N & confidence interval, are smaller than
-50 , < the point sizev,, is linear withzin the
-60r  static phase - flowing layer. Insetw, /v,,—o Vs the
~70 depth showing the exponential creep
) . 80 o, 20 40 6 Jso deformation in the static phase. The
'800 0.1 0.2 0.3 04 05 0.6 0 500 1000 1500 2000 straight line corresponds to an expo-
v v, (mm/s) nential fit.
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10 T T T 30
1rom 2 rpm 3 pm 4 rpm 6 rpny
or ° O* * ¥ . k AAA o * 20 . ° ] FIG. 5. Left: velocity profile at the
-10 0% x * T oA AL 10} 1 center of the drum for differerf2. The
20 oo‘i e e j % ¥ o ] z origin is set at the free surface. For
—_ S*ita® L * —_ all these Ry, 6,) couples measured at
E-SO gt At 2 ¥ 5—10- the center of the drumy, is linear
< 40 iAifr * =20 « Q=6mmR._ = 45mm e, = 48° with z. Right: superposition of the ve-
N ® % - 0~ 0= . " .
_50 o _30 s Q=4pmRj=42mme, =41° locity profiles. All these proflleg have
s + Q=3pmR_=36mme_ = 38° been translated along the axis to
-6or 2 -40 + Q=2mpm R§ = 30mm eg = 33°] make their static/flowing interface co-
_70f % _50 o Q=1mmR = 18mm 9, =31° incide. Thez origin is s_et arbitrary.
3 (a) ® b The velocity gradienty is independent
-80 : ‘ : ~60 ~ >
0 500 1000 1500 0 500 1000 1500 of bothR and 6.
v, (mm/s} v, (mm/s)

processing of the data: profiles have been averaged oveented in Fig. &). In Fig. 5b), all profiles have been trans-
1000 frames to limit this error. A typical volume fraction lated along thez axis to make the static/flowing interface
profile is represented in Fig(d: p varies typically from 0.3 coincide. The velocity profile remains linear in the whole
to 0.4 in the flowing layer, except at the free surface in aflowing layer and the velocity gradient is independent of
small region(about three beads diametemshere p drops bothR and 6.
quickly down to zero. This last region is assumed to be sharp  Velocity profiles measured at five different points
and corresponds to the free surface boundary. The assumegually distributed along the free surface fo=6 rpm are
tion p=constant can then be questioned: relaxing this asrepresented in Fig. 6. At these locatiodgk andd, 6 are no
sumption amounts to repla¢e,) and(v,?), respectively, by more equal to zero. The thickness of the recorded region has
{pv,)l{p) and (pv,®)/{p). As p variations are negligible been decreased to minimize these drifts,(z)} does not
compared tw, variations,p can be assumed to be constant.depend on the location in the drum, which means that
Frames processing allows to evaluate beads vel@ity {v,(z)} does not depend athR/dx andd#/dx. The velocity
Appendix B). A typical velocity profile is represented in Fig. profile can then be written inside the flowing layer as
4(b). The velocity varies linearly with depth in the flowing
layer and decreases exponentially with depth in the solid vx(2)=¥(z+R) (7)

phase, with a characteristic decay length 7.6 mm=2.5d o 1 . —— .
independent of), i.e., independent of botR and § in agree- with y=34* 0'55. » or 7_0'67 g/d. Such order O.f magni-
ment with'® [see inset of Fig. @)]. The plastic motion of the tude can be easily understobdwhgn a bead collides with
solid phase is thus localized in a narrow layer at the solidf" qnderlylng grain, all the kinetic energy is absorb_ed by
liquid interface whose thicknessscales on the microscopic ”.‘“'“P'e collisions. Then, the balance between potential and
length, the diameted of grains, and can thus be considered Ifm'e'nc enerlgy'on imean free pathdqf orderdglfeac(ids tlo a

as zero at macroscopic scale. This plastic motion is not stucl'—m'tlng velocity between two & ]acept cads layers
ied in this paper. equal to\/gd, and consequently to a velocity gradient of the

6 order of Jg/d.

The rotation speed) has been varied from 1 rpm to i
rpm in order to study variations of the velocity profile wih The knowledge of the profilfv(2)}(R, 6) enables us to
calculate the first two closure relations:

and 6. The corresponding velocity profiles have been repre-

(v)(R,0)=3R, (8)
30 =
20 o * <Ux2>(Rr'9):%')’2R2- 9)
o
10t > -
4
[
-~ 0 P
£ o
E-10
N _oof A
-30f ¥ °
e
-40f X
-0 500 1000 1500
v, (mm/s)

FIG. 6. Superposition of the velocity profiles obtained b6 rpm at five
different locations equally distributed along the free surface. The velocity
gradient depends weakly on the location in the drum. All these profiles hav&IG. 7. Frame processing. Left: one of the 512 raw fram@s=@ rpm).
been translated along tizeaxis to make their static/flowing interface coin- Frames are subtractedx2, binarized and gathered by bursts of 25 frames.
cide. Thez origin is set arbitrary. The velocity gradiefytis consequently  The resulting frame is smoothed via a dilation-erosion filter. Right: one of
independent of botdR/dx anddé/dx. the 20 resulting frames showing the flowing layer.
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200

100 FIG. 8. Typical profiles obtained fof)=3 rpm. Left:

profiles H(X) and S(X). Dashed circle correspond to
rotating drum limits. One can see a large rangjgin
the right part of the drum where the layer thickness
varies while the static/flowing boundary slope almost
does not change. Right: profiR(x).

(mmy)
=

-100

-200

o] 100 200 300 400 500
-200 -100 0 100 200 X (mm)

This scaling law is different from the one observed inFig. 7). The fluctuations on each point of these profiles are
granular flows down the rough inclined plane for 2D around 1.5 mm. The profiles are then averaged over 20
packindg® and for 3D packing? In these experimentsp,)  frames. Consequently, the resulting errors on Hdtand S
was found to scale aB*2 A linear profile with a velocity —are around 0.3 mm. The curvilinear coordinatgX), the
gradient independent oR has also been observed by |ocal angled(X), and the flowing layer thicknes®(X) are
Rajchenbach at the surface of a 2D packing in a rotatinghen deduced using the procedure given in Appendix C. Re-
drum?’ This tends to confirm that boundary conditions Cansylting errors orR is about 1 mm[see Fig. &)]. On the
strongly affect the velocity profile and questions the abilityupper part of the profile, the local slope is consiaete Fig.
of a classical constitutive law relating the shear stress to thg(a)] on a range whose size decrease wkkis increased.

: 17 . >~ .
strain rate’ _ _ ~ One can study on this rangg, the variation of the different
Let us note that velocity gradient observed by Rajchen-

_ : : variables withR for a fixed angled,, depending on the rota-
bach in 2D packing scales a&in 6 contrary to ours. How- tion speed) 9'&q dep g
ever, in our series of experimen&yaries only from 31° up . . . .

. . o g Let us first confirm the first closure relatidiEg. (8)]
to 48°, which corresponds to variations ¢$in¢ from 0.72 established at the end of the last section: the drift velocit
to 0.86. Consequently, the difference betwéebehaving as : y

Jsind and ¥ constant does not differ much from the error (l;ﬁ;(z;(n) bfoz?eigutl)atierigr?g;i:]henﬁ);f;rigﬁmégs))’ :'i()il)r;a
bars and it is not possible to conclude at this point which o P y g g Y -9

. . l. . . — 71
the two scaling is the right one. This will be tested on a moreg(a) shows the variation ofv,) vs 2R with y=345" as

significant range o, from 0° up to 48°, in the next section. Suggested in the preceding section for differét. This
confirms the assumption of a linear profile,(z)} with a

] velocity gradient independent &%

}:/L'\O/l\'?ﬁ\'?giﬁigg:;éhﬁ. :NRSE:;ETSH(;F THE _ I-_et us answer now .the guestion abqut the dependen.ce of

STATIC/FLOWING BOUNDARY v with 6. To test the different assumptions on this scaling,
profiles H(X) and R(X) have to be taken into account in

The determination of the last closure relatiBifR,6)  their whole: Typically, forQd =6 rpm, 6(X) varies from 0° to

requires the determination 8fand6in the whole drum. The  4g° The procedure will be the following: from the profile

experimental protocol is the following: sequences of 512Hexp(x) obtained experimentally, one deducétx), H(x),

frames are _record(_ed via a fas_t camera at a samplingfgate 6(x) and, by integrating Eq(5), the flow rate{R(v )}(x).

=250 Hz with a pixel resolution of 480400. In order to The theoretical profiles for the flowing thickne%r?)(x),

keep a §uﬁ|C|ent resolution on the profiles, Fhe rotating dru”hg,?)(x), and Rgﬁ)(x) are then calculated assuming, respec-
is visualized by halves, a pixel corresponding to 0.468 mmtively the relations

Image processing allows to isolate the flowing layer and both
the interface profiled (X) and the free surface profig(X), (@ R(v,)=pR2 corresponding to a velocity gradient inde-
expressed in the gravity framéy,€7), can be extractetf. pendent off;

oo Q=6 mom L FIG. 9. Left: mean drift velocit)v,) vs %'yR on the
600} & Q=4 rgm e range L . Right: test of the relatiorv=pR in the
+ Q=3mpm whole drum. The theoretical profilesRy®(x),
e gfﬂpm Rin®(x), andRy{?(x) are calculated from the experi-
E4oo = mental profile HeX) using the assumptiongd) v
o0 =pR (solid line), (b) v =pRy/sin 6 (dashed lingor (c),
3 (b) v=pRycoshsin(@,— ,)/sin b, sin 6, (dotted line.
200 The angled, is the angle at the interface where there is
100 - no interchanget,= 38° (respectively,0,=48°) for Q)
L (a) =3 rpm (respectively) =6 rpm). All these theoretical

0 100 200 300 400 500 600 700 o 100 200 300 200 500 prof!les are then compa}red to the exper_lmel_it@Jp(x)
vy R/2 (mm/s) x (mm) profile. In all case,p is chosen to minimize|Ry,

—Rexd-
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FIG. 10. Left: variation of/pyR vs R for different(}.
Right: friction force on the lateral plan€g; /p vs R.
The solid line corresponds to E(L2) (translated verti-
cally by a constant valye =10 m™ 1.

40

This last contribution is the one responsible for the de-
crease ofF/pyR with R as a parabola. It can be obtained
directly from the value of and the first two contributions

140 16710
Q=61rpmy,
120 P 14
ﬁ100 12
E 80 Q=4mpmay, &10
o« L8
: sol ©2=3PMu, LLmG x
w 40 Q=2 rpm\\ 4 2
20 Q=1rmpm
™~ @ ° (b)
00 10 20 30 40 G0 10 20 30
R (mm) R (mm)
(b) R(v,)=pR?\sind corresponding to a velocity gradient
% scaling as\/sin @ as observed by Rajchenbath;
(© R{v,)=pR?/cosdsin(b,— 6,)/sin 6,sin 6, corre-

sponding to a velocity gradienty scaling as
\Jcoshsin(@,— 6,)/sin By sin 6, (6, is the angle of repose

Fw andFg;. Figure 1@b) represents the variation &g, /p
vs R for different 6, . Its variation with 6, appears to be

and 6, is the angle at the interface where there is noweak. The form ofFg;, can be understood through the fol-

interchanggas predicted by Orpe and KhakHfar.

lowing processFg;=[ (chrBfr dz where og(2) is the stress
exerted by the boundary on the layer betweeand z+dz.

These three profiles are then compared to the experimefy model oy, let us apply the following processrg,

tal profile Rey(X) [see Fig. %)]. The fit parameter ig. The
scenario (@) leads to better fits, with a fit parameter
=14s!, independent of), about 20% smaller thaf/2.

=vdép wherev is the frequency of bead-boundary collision
and &p the x momentum lost by each collision. Asis con-
stant, the mean free path is constant in the layer and

This difference may come from the boundaries: the velocity.. , (z): Each collision with the boundary is inelastic. Con-
gradienty has been determined from the velocity of only the sequentlysp=v, . Finally one can writerg;, = npv2 with 7

beads observed through the porthole wipilis related to the
mean velocity of all the beads.

At this point, one can evaluate the forée Numerical
calculation of the second left-hand term of E). shows that

it is negligible compared to the first left-hand term and can

thus be neglected. From E(p), the simplified Eq.(6) and
the closure relation&3) and(9), one finds
F
; = yRQ(H sin#+ X coséh). (10
The last closure relation can then be determined. Fro
the experimentaX(x), H(x), and R(x) profiles, one can
deduceF(x) using Eq.(10). Figure 1Qa) presents the varia-

tion of F/pyR vs R for different 6, . F/pyR seems to de-
crease as a parabola wilh

pYR
A minimal form of the forceF should include

@
(b)

(©

F1(0)—F,(0)R?. (1)

The weightF,,=pgRsin 6.

A pressure ternfp=—kpg(dR/dx)cosé.®> SinceR is
negligible compared t®, this term can be neglected.
The friction on the static phas&g;=— upgRcosé.

A priori, x depends orR and 6. Experiments show

however thafu reach quickly a constant value close to

tané, independent oR and 6 as soon aR is larger to
a few beads diametef3.In our caseu can be consid-
ered as constant.

Finally, the friction on the lateral boundarieBg;
zf(F;O'BfrdZ.

constant and, after integration over the width of the flowing
layer:

¥

Bir = —PTRa- (12)

This closure relation indeed allows one to reproduce the
experimentalF g (R) profiles obtained for differend, [cf.
Fig. 10b)]. In our experiment,7=10 m 1. The order of

magnitude ofy can be understood in the following way: the
momentum lost by each collision is of order<{%) wheree

My the restitution coefficient. For our beads=0.95. The

mean free path is of the same order of the bead diandeter
Consequently, one expecig=(1—e)/d=10m *.
The last closure relation that follows from the above

discussion thus reads

F=pgRsin#— upgRcosf— 1n¥°R>. (13)

VI. DISCUSSION

Using the closing relations E¢B), Eq.(9), and Eq.(13),
the conservation equatior$) and(2) become

JR JR T 14

gt + o (14

o =-T 15

E_ [ ( )
where

V=2(v,)=yR (16)
and
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F g . 1., velocity profile has been found linear with a gradigntn-
=R 5 (Sind—pcos)— z YR (17)  dependent of botiR and 6. The closure relations have been
pYR ¥ : - : -

_ _ _ deduced: the mean drift velocity,) and the mean kinetic
This system of equations contains three parameters: the Venergy (v,%) are given, respectively, byv,)=%yR and
locity gradienty, the friction coefficientu, and a third pa-  R(y 2)=1y°R2. The last relation relating the fordeacting
rameter» characterizing the friction on_lateral poundanes. on the flowing layer t&R and 6 has also been explicitly given
These three parameters depend on microscopic features gfd reveals the importance of lateral boundaries. Two param-
the beads such as their dlameter, their coefficient of reStlttherS, name|y the friction Coefficiem of the f|OW|ng |ayer
tion and their roughness, and of the gap of the drum. It capn the static bedclose to tarf,) and a coefficient; charac-
be compared to the different existing continuous models proterizing the friction on lateral boundaries are needed to de-
posed in Refs. 8-12. scribeF. Finally, the closed equations have been compared

These two equations are very close to the one proposeg existent continuous models. Their differences have been
by Douadyet al.” They have supposed a linear velocity pro- discussed: a new term whose form is given should be in-
file with a constant velocity gradient as observed in our extjuded to take into account lateral boundary effects. The pre-
periment. Moreover, for largR, variation of the forcd- with cise study of the dependence of the three paraméteys,
Randéis qualitatively similar to ours, but they attribute this and 7 with the beads diameterS, the beads coefficient of res-

variation to the friction of the f|0W|ng Iayer to static grains titution, the beads surface roughneSS, and the cell gap repre-
instead of invoking friction effects on the lateral boundariessents interesting topic for a future investigation.

as we have done.

Khakharet al® have proposed a derivation of depth av-
eraged conservation equations very close to that of Ref. 8.
They also have assumed a linear velocity, but with a gradien(f‘CKNOWLEDGMENTS
dependent ob. As for the closing relations proposed by Ref.

o . . . The authors thank J.-Ph. Bouchaud for a critical reading
8, variation ofF with R is attributed to a dependency of the

. o of this paper. They are grateful to B. Faucherand and M.
shear stress at the solid/flowing interface wRitather than  pjanejies for their participation to the data collection. They

to boundary effects. also acknowledge discussions with M. Bonetti, P. Claudin, A.

Another mod% has also been proposed a few years ag§aerr, 5. Douady, P. Evesque, D. Khakhar, and O. Pouliquen.
by Bouchauckt al.™" The original model, devoted to describe They thank C. Gasquet and P. Meininger for technical sup-
avalanche triggering, deals with thin moving layers Rf port

=<d and cannot be compared to ours. But this model has later

been extended to describe thick surface flows by Boutreux

et al!! These models assume a constant advection velocity

V, small variations off around#, , and relate the coupling APPENDIX A: DETERMINATION OF THE VOLUME
term I to the effect of collisions between the moving grains FRACTION PROFILE

on the static bed. For thin flowing layet3all the moving
grains are assumed to be in contact with the static bed and %e
have the same probability to interact with E=aR(6

— 6,) with a constant. For thick granular flow$only grains
belonging to the first layers can interact with the static bed
The influence of the others is shielded by these first laylérs.
is then more naturally assumed to be independeriR:df
=a(#— 6,) with a constant. This last form is compatible
with our form of I' expanded to first order id— 6,. The
constant can be evaluateti® a= g cosé, /y. Thanks to their
simplicity, these two last models allow analytical exact
solutions?*~26 But the assumption of a constant velocity
prevents them from describing quantitatively the avalanche
front?’ or avalanches amplitudés.

3D disordered packing of different volume fractions con-
d between two plates have been simulated. Numerical
packing have been constructed by dropping randomly beads
in a cell of gape. Beads are randomly located at a given
altitude. Their altitudes are then minimized under the two
following constraints: the beads should stay in the cell and
the distance between their center of mass and the center of
mass of beads already in the cell should be superiat. to
Confined packing of volume fraction 0.5 can then be ob-
tained. Confined packing of lower volume fraction are then
obtained either by contracting beads and cell dimensions
without changing the position of beads center of mass or by
?emoving randomly a given number of beads. One can then
determine the beads actually observed through the porthole,
i.e., the beads whose center of mass is not hidden by the
VIl. CONCLUSION presence of the other beads closer to the porthole. Both real
volume fractionp™? and the volume fractiop"'®" evaluated
Depth averaged conservation equations have been writrom the observed beads are calculatsde Fig. 11 p™?
ten for granular surface flows. Their applications to the studyaries linearly withp"®". For d=3 mm ande=7 mm,
of steady surface flows in a rotating drum allow one to find

experimentally the closure relations of these equations from  prea=1 g1pView, (A1)
measurements of the velocity profile in the flowing layer at A
the center of the drum and from the flowing layer thicknigss Direct experimental measurementspd and p¥®" just

and the interface slopé profiles. These measurements haveafter the filling the drum, i.e., fop“fa'z 0.57 (see Sec. ),
been performed for a quasi-2D packing of steel beads. Theonfirm the value of the ratip"2/ p¥ieW.
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