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Thermal versus a-thermal systems



Thermal vs. a-thermal systems :
Definitions and general considerations




hermal vs. a-thermal systems :
llustration in the context of stochastic dynamics

|

Gibbs Equilibrium Stationary state for a
dissipative system

Micro-states o | o = {q;,p;}, 1=1...N o= {x},1=1...N

Dynamics | Hamiltonian structure Dissipative
Liouville’s theorem

Conserved | Conservation of energy | Conservation of some
quantity other extensive quantity U

Time reversal | Micro-reversibility No micro-reversibility

symmetry Weop = Woo

Probability | uniform over config. of | a priori not uniform f,
P(a) energy E




For thermal systems :
1 o(E_ —-E,) with
Q(E, )
Q(E,) =) 6(E, ~ Ey)

o

Pla) =

In the present case :

P(a)=— (IU 1.5, =)

Z,@) =Y 1,6, -U,)

the total number of configuration
of energy E,

with

a micro-canonical

partition function




E, E,

For thermal systems : Eror=E,E,
P(E,, E, })= Q(E)UE,) = UE)UEror — E))
maximization vs. E,=> I _olnQ(E)| _onQ(E) _ 1
L 0B |, OB, | T,
In the present case : u | U, .
UTOT_U1+U2

LS 16U, ~Up)SU, ~U,)

P(UI‘UTOT): Za:Pﬂ (UTOT )5(Uozl -U)) = Zﬂ Uror) &

assuming the factorisation | £, (U, +U, )= Jfo U S, (U,)

PU Uy )= 2ulUDZ2Us) paximization || _olnz,U)

Zy(UTOT) Yl 5U1

U,/




For thermal systems : E@=- %
In the present case : o] o
U, ZQJzUo‘Ul :
P(al) ZP { 1’ 2} 7 (U )Zfal a25(U U UZ)
: Pllaa)= Z(U) DA,y )
+fact0r1sat10n Jara, =S fa,
P(a,)= Ja > f.6(U,~U -U,)= Ja ZR?U,-U)
c 1 7 (UO) - oy 0 1 2 Zu(UO) Y7, 0 1
+ expansion ln(Zf(UO—Ul))zln(Z:f(UO))—%U1
1 : Z,WU,) 0lnZ,(U,)
P(a)=——f, exp(-U,/Y) with Z (Y)=—- and Y = ~

Z.(Y) "~ Z,(U,) ouU,

c

iS

U




One can define a dynamical entropy :

: P (a,t)o(U,-U) _
>(U,t)E;Pﬂ(a,t)ln[ - 1 j/ S(U)=n(Z,U))

It 1s straightforward that :

>:_81nZC(U)

Y

with v =—
oy : Y

U

\

and<U”>—<U>n

One naturally introduces :

F(Y)=-YIn(Z (Y))=<U >-YS(<U >)
Comments!




For a stochastic dynamics, which does not conserve
energy and which does either not satisfy micro-
reversibility but conserves another extensive quantity :

one looses the property of uniformity for the probability
distribution 1n the micro-canonical ensemble;

1f the micro-canonical distribution factorizes, one can still
define an intensive parameter associated with the conserved
quantity;

this intensive parameter equilibrates between subsystems;
one can compute a canonical distribution, which 1s different
from but similar to the Gibbs distribution

Drawbacks : very similar indeed !




Glassy behaviour of granular media

The jamming transition

Macroscopic behaviours
Relaxation towards a stationary state
Fluctuations and critical slowing down
Aging and Memory effects

At the scale of the grain
Internal structure & Diffusion properties
Dynamical heterogeneities



[n this review : from liquid to solid, the jamming transition
and its analogy with the glassy transition

“Jamming 1s not just cool anymore”™

Tempersturs = Are the dynamics of different systems approaching the
jammed state similar?

=If temperature and applied stress play similar roles [...] is it
possible that driven athermal systems might be described by an
effective temperature?

bubies, HOMEE . =[s statistical mechanics useful at all in describing these
systems?
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Lelaxation towards a stationary state




Very Slow compaction
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Fluctuations around the steady state

sirreversible,
S
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Wy = Wy exp(_rlﬁl /F)= wﬂexp[_}ﬂrﬂ /(pmax_ P)]



Fluctuations around the steady state
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Towards the jammed state

Tapping moda Torskon
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Aging and Memory effect
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Aging and Memory eftect
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Internal structure

FIG. 2. ia) Evolution of the
pair correlation function for 17
=3.0. ik} Steady-state pair come-
lation  functions obtained for 17
=095 1.6 and 3.0,

FIG. 3 iaj Evolution of the
volume distribution of the pores
dunng compaction with ['=3.10,
Inzet of (a): decreass of vy /{w)
with the number of cacillations &

and for I'=3.0. (b) Volume distri-
butions of the pores for the initial
packing and for three different
steady-state packings obtainad for
I'=10.95, 1.6, and 3.0 (b,




Diffusion properties : Cage effect




lore details on diffusion
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VIore details on diffusion
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Granular media = + Dissipative

| m—

—

Energy lost towards the
thermal environment

Need for a statistical description of dissipative systems
with mechanical excitation but no thermal noise

Stochatic dynamics 1. A conserved quantity Thermo
without detailed balance BUT 2. Factorization of the I > eneralizatio
(time 1rreversibility) microcanonical distribution  ©

Is there any chance to succeed in the case of dense granular media ?

They are indeed very similar to supercooled liquids close to the glass
transition, both at the and at the scales

Let’stry | eEdwards’ proposal
*Experimental investigation



lore details on diffusion




Viore details on diffusion




More details on diffusion

01 02 03 04 05 01 02 03 04 05 r
o1 01

(Doliwa and Heuer : thermal hard spheres simulation)



More details on diffusion
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More details on diffusion
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Inirleyr and Harrowwall



Open questions :
» What are the details of the structure?
" How does it evolves 1n time?
» Could one 1dentify dynamical heterogeneities?
" How do they relate to the cage dynamics?

Need to follow
all particles




T F |
wt e T
o ol
- l'a.-"'-'.' I‘l'll.'i':'

‘J =4

=




Instantaneous density field:

o(r.) = 3. 8(r=r(1)) ; p={p(r,t))=cste and [drp(r,t)=N=>p=N/V

Generalized density correlation function

1

7,0 = (,(0) =~ [ drdr’ (3p(r.t)w, (= )dp(r",0)) With %=p=r

N -
:]1[<%;wa(rj(t)—ri(0))>—,0jdr w,(7)

For instance :

F(k,t): Intermediate scattering function

Q(a,t): Density overlap correlation function

w (r—r") =kernel

NB: self-part

w. (r) =exp(ikr); k =27x/a

w, () =exp|—z | |



Dynamical heterogeneities




Fluctuations of the temporal relaxation
2

X! ()= N, 0~ () )
Relation to spatial heterogeneities

1 ' ' ' . 1 oc

W, (0=— j drdr op(r, yw, (r =1)3p(r'0) =~ j dr W (r,1)
with W' (r,1) = i j dr'op(r,t)w, (r—r")op(r',0)
yo,

= X{®=p[drG_ (r.0)

with GJ ) = ([, - (" (. 0) . 0,00~ (. 0,0))




Dynamical heterogeneities




© Spatio-temporal evolution of g °(r,t)




Dynamical heterogeneities

pdfién InG 4(F,t=433:l
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The strong similarities between granular media
close to the jamming transition observed at the
macroscopic scale, are also present at the scale of
the grain 1irrespectively of the kind (thermal vs.
athermal forcing)

Dense granular media 1s a good playground to test
theoretical 1deas from the field of glasses

These similarities call for a common description,
hence a statistical ground for the thermodynamics
of granular media and more generally athermal
systems




Looking for a statistical description

Edwards’ proposal

Experimental test ?
Volume fluctuations

Free volume distributions



Towards a statistical description I

Classical Gas Granular Media

Micro-states G | {x.p.},i=1...N

o=1...Nc
Accessible | Conservation of energy | Conservation of volume
configurations Blocked states

Probability | Gibbs measure : Edwards’ hypothesis :
P(G) uniform over all unjform over all
accessible configurations sed configurations




Consequence on the volume distribution for a
subsystem of N grains.

1

P (C)= Z.) S(O)OC)Yo(V. —V,)

- —(V(C)/ X) ith 1 aln(z“)
Wi =

P(C )——Z 5 f(O)O(C)e X ov |,

PV,)= j dCP.(C)S(V,. V) = ZCE)J(V))

with |7, (V) = [dCf (CO)Q(C)o(V ~ V)

=j}mmM«mwdiw< &Zwtw




A “simple” example:
Consider a dynamics (such as tapping) for which by
construction the explored configurations are blocked

Assume f(w})=]]w"" (see Bertin et al PRL 93 230601)

i=1 . c
NB: n=1 is the uniform measure

Considering that p(A@,,..Aw,) = A" p(®,.,...0,)

Introducing w, = %Va)i =v,®, one obtains :
7 N-1 V N v Nn=-1) y N
Z,(Vy)= (WNJ (FNJ (WNJ IHdwip(wla--°wN)5(Z @; — N)Q({wz })
= i=1

Vy
1 (y+m)N-1 _X/N
A(N al
Z.(X) ( )(VN) €

P(VN):




‘olume fluctuations around the steady state
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Volume distributions I




Volume distributions 11 [




Volume distributions I11 "




/olume distributions 1V




Discussion

A(N)
Z.(X)

c

)(7+77)N -1 e

(v

’ (VN):




The apparent validity of a statistical description
(irrespective of the micro-canonical measure) suggest

to write : f
_NQ(VN —Xs(v]j;)j
P(v]) = : e o
Z(X,N) with s(v}) =nIn(v})
nd thereby R =

=— =
X o] )
The micro-canonical partition function for one grain 1s

not simply proportional to the free volume per grain

A typical activated process within such a system has
an activation rate a la Vogel Fiicher.




The distribution of the free volumes per grain inside
clusters of N grains follows a Gamma law, whose
parameter suggest :

the existence of long range correlation responsible for some
non-extensivity; (nota bene impact on thermo relation use).

to effectively resume the macroscopic properties of the
sample within a “free energy function per grain”

The analysis does not require to make any hypothesis
on the micro-canonical measure, so that it actually
does not address Edwards hypothesis




Granular media = + Dissipative
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Energy lost towards the
thermal environment

Need for a statistical description of dissipative systems
with mechanical excitation but no thermal noise

Stochastic dynamics 1. A conserved azantity
without detailed balance BUT 2. Fac\™
(time 1rreversibility)

Thermo
generalizatio

Is there any chance to succeed in the case of dense granular media ?

They are indeed very similar to supercooled liquids close to the glass
transition, both at the and at the scales

Let’stry | «Edwards’ proposal V is conserved, P, is uniform

*Experimental investigation OK irrelevant

10— > Intensive parameters @ but non extensivity @



The definition of a “temperature” 1s not related to the scale
of the particles, but to the existence of an extensive
conserved quantity.

The 1dea of a unified description for the glass and the
jamming transition has indeed strong evidences at the scale
of the individual particles.

From an experimental point of view, testing the uniformity
of the measure over the blocked configurations is a
chimera, 1n the absence of a full microscopic description of
the system.

However, looking for relevant extensive and intensive
thermo-dynamical parameters 1s a key step. Take care with
potential long range correlations and associated non-
extensivity!




How are related the “temperature” for stationary non
Hamiltonian dynamics with a conserved quantity and
the effective temperature obtained in the glassy regime
via the fluctuation-dissipation theorem?

It would be of great benefit to further investigate the
mechanisms underlying the development of the
dynamical heterogeneities and how do they relate to the
structure

Given the possibility of extracting intensive parameters
from the free volume distributions inside a granular
packing, 1t is now a priority to test whether some of
these parameters equilibrate between subsystems.




