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Abstract

Granular media, commonly refered to as a-thermal systems, obey a dissipative dynamics
a priori very different from an Hamiltonian evolution. However everyday life and recent ex-
periments suggest that a thermodynamical description of granular media might be feasible.
Especially in the context of gentle compaction of grains, strong similarities with the be-
haviour of thermal glassy systems have been underlined. Given that granular media consist
in a large number of grains, there is a strong motivation for providing a statistical ground to
this hypothetic thermodynamical description. It has been argued by Edwards and collabora-
tors that the dynamics is controlled by the mechanically stable — the so-called blocked —
configurations and that all such configurations of a given volume are statistically equivalent
This immediately leads to the definition of a configurationalentropy and the associated state
variable, the compactivity, the formal analogy of a temperature. First attempts to test this flat
measure assumption have been conducted. However, clear evidence in real granular media
is still lacking. In this lecture, we will first discuss the meaning of thermal vs. a-thermal sys-
tems, second review old and new results revealing the strongsimilarities between granular
media close to the jamming transition and super-cooled liquids close to the glass transition,
and finally present and discuss Edwards proposal, together with recent experimental results
on the volume statistics inside a granular packing.
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1 Introduction

Granular media composed of large enough grains(d≥ 250µm) are often refered to as dissi-
pative a-thermal systems. Indeed the energy necessary to move a grain is much larger than
kBT, and the interaction between the grains, whether it is friction or inelastic collisions,
involves dissipation. For such systems, despite evidencesof thermodynamical properties,
such as experimentally reproducible relations between macroscopic quantities, a proper sta-
tistical approach remains to be constructed. Also, there are many similarities between ther-
mal systems close to the glass transition and granular mediaclose to the so-called jamming
transition. These similarities have inspired a lot of recent work towards a statistical descrip-
tion of granular media. However, it is important to note thatthere are a priori two different
issues, one being the description of glassy systems (thermal or not) in the aging regime, the
other one being the identification of a precise prescriptionfor the statistical description of
a-thermal systems in general. Figure 1 summarises the four corresponding situations which
have to be considered.

Thermal systems a-thermal systems

Stationary dynamics Gibbs equilibrium a-thermal stationary states
Aging dynamics thermal glasses a-thermal glasses

Figure 1:Equilibrium vs. glassy behaviour of thermal vs. a-thermal systems. Temperature
is well defined in the context of equilibrium. Although the present lecture concentrates
on the glassy behaviour of granular media (second line of second column), we try in the
first section to clarify the difference between thermal and a-thermal systems in the simpler
context of stationary dynamics (first line).

In the present lecture, we first try to clarify what is meant — at least here — by a-thermal
systems, and present a possible illustration in the contextof stochastic dynamics. Then we
review experimental results on dense granular media. Some results clearly deal with the
glassy behaviour of these systems, others concentrate on the stationary or ”super-cooled
liquid” regime. In the following, we introduce the prescription proposed by Edwards as a
ground for a statistical description of granular media. We discuss the various elements of
this proposal, especially focusing on the conditions required to test them experimentally. Fi-
nally we present some experimental results on the statistical properties of a dense granular
sample.

This lecture is the result of a research under progress. Manyconcepts remain to be
clarified. Despite enormous effort in the recent years, manyexperimental results are still
lacking and those existing may well find new interpretationsin a close future due to the
progresses on the theoretical side. The reader shall take itas it is : a number of thoughts
which we hope will help and motivate him on his way towards thefascinating world of the
so-called a-thermal systems.
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2 Thermal vs. a-thermal systems

2.1 Definitions and general considerations

We first would like to clarify what we mean by ”dissipative a-thermal system”.
By thermal system one means a system which can couple to the usual thermal envi-

ronment: the individual components of the system exchange energy with the individual
components of the surrounding. The molecules of a gas in a boxfor instance exchange
momentum and thereby kinetic energy with the molecules of the gas surrounding the box.
Matter in general is thermal because the microscopic components of matter, the atoms, are
of the same scale.

By a-thermal system one means a system whose individual components are of such a
large scale compared to the components of the surrounding that the energy received from the
thermal environment cannot make them move. One also calls such individual components
non-Brownian particles. The thermal environment only contributes to thermalize the matter
of which these components are made. Millimetric steel beadsfor instance won’t rearrange
by thermal motion, but the steel itself is of course at the room temperature.

Now, a last concept to discuss is dissipation. One needs to consider three scales, the
thermodynamic scale, the particles scale and a cutoff scalebelow which the internal degrees
of freedom of the particles are excluded from the description. For instance, in the case of a
gas, one may choose to include in the description the electrons and their excitation levels, but
not the nucleons. As long as the energy of interaction between the particles is low enough
not to excite these sub-cutoff internal degrees of freedom,the dynamics is conservative.
Dissipation occurs when there is a flux of energy from the scale of the particles to the scale
of the excluded degrees of freedom.

Figure 2 illustrates the above concepts. In the case of usualthermal systems (fig. 2a), the
particles inside the system exchange energy with each otherand with the particles outside
of the system. The dynamics both inside and outside the system is conservative and the
internal degrees of freedom are not excited. In the stationary state, the fluxes of energy are
described by the usual equilibrium statistical physics, and lead to the equilibration of the
well defined usual temperature. In the case of a a-thermal dissipative system surrounded by
a usual thermal environment - for instance a granular systemin a lab (fig. 2b)- the fluxes
of energy are different. The particles inside the system notonly exchange energy during
their interaction but also excite internal degrees of freedom excluded from the description –
such as the phonons. These degrees of freedom, in turn, exchange energy with the thermal
environment (fig. 2c). However there is no transfer of energyfrom the thermal environment
to the particles inside the system because of the scale gap. Such a system has to be forced
to be maintained in a stationary state different from the rest.

With such images in mind, nothing prevents from imagining the situation where both
the system and its surrounding are composed of large scale particles subject to a dissipative
dynamics - for instance a small subsystem of a large granularsystem (fig. 2d). In this
case, one recovers a situation similar to that of the usual thermal systems, in the sense that
particles inside the system exchange energy with the particles outside the system. However,
the dynamics are not conservative anymore. Obtaining a stationary state requires to force
both the system and its environment. Whether the fluxes of energy in such a stationary
situation could be described by a generalised statistical physics, and thereby a generalised
temperature, remains presently an open question of major importance.
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(a) (b)

(c) (d)

Figure 2:Flux of energies in thermal conservative systems vs. a-thermal dissipative sys-
tems. The interactions among the various components are symbolised by straight segments.
The dots are particles of gas inside the system in red and outside in dark. The blue circles
are grains. The red grids inside the grains symbolise the internal degrees of freedom of the
grains. (a): a gas embedded in a gas environment : the particles inside the system exchange
energy with each other and with the surrounding particles. (b): a granular media embedded
in a gas environment : grains interact with each other; the particle of gas also; the grains do
not receive energy from the gas. But, as shown on (c): (zoom of(b)) the grains dissipate
– flux of energy towards the internal degrees of freedom, as symbolised by the arrow loop
–, which in turn exchange energy with the gas. (d): a subsystem of grains inside a larger
system of grains. The gas is ignored in the description. The situation is very similar to that
of (a) except for the dissipation which must be taken into account
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2.2 Illustration in the context of stochastic dynamics

In the following we will describe a class of systems which maymimic the above situations
in the context of a stochastic description – using the masterequation formalism.

One crucial goal of a statistical approach for a-thermal dissipative systems would be to
give a precise definition of thermodynamical intensive parameters and to predict their rela-
tionship with extensive macroscopic variables like energyor volume. Indeed many attempts
have been made to define out of equilibrium temperature [15].In the context of thermal
glasses, which we will focus on in the next sections, the notion of effective temperature has
been defined recently as the inverse of the slope of the fluctuation-dissipation relation in the
aging regime [19]. This definition was inspired by the dynamical results obtained within a
class of mean-field spin glass models [18]. A lot of numericalsimulations [58, 6, 63, 9, 16]
and experiments [37, 7, 39, 22, 2, 64] have been conducted to test the validity of this def-
inition. The situation we want to consider in this section israther different from that of
thermal glasses which are Hamiltonian systems following a non-stationary dynamics with
very large relaxation times (first column - second line of figure 1). Here we want to focus on
the stationary dynamics of a-thermal particles which follow a non-conservative dynamics
(first line - second column of figure 1).

In order to find a stochastic model that describes in the best possible way a given com-
plex Hamiltonian system, without knowing a priori the equilibrium distribution, one should
at least preserve the symmetries of the original Hamiltonian system, which are the energy
conservation and the time-reversal symmetryt →−t. Energy conservation is easily imple-
mented in the stochastic rules by allowing only transitionsbetween states with the same
energy. On the other side, the time-reversal symmetry in theHamiltonian system can be in-
terpreted in a stochastic language as the equality of two opposite transition rates between the
micro-statesα andβ : W(β |α) = W(α |β ), a property called micro-canonical detailed bal-
ance or micro-reversibility. In the context of a dissipative dynamics, the energy is not con-
served anymore and one expects the time-reversal symmetry and thereby micro-reversibility
to break down. In the most general case, there are little chance to go any further in the de-
scription. Following [10, 11] we consider here a subclass ofsuch systems for which we
assume that the dynamics still conserves some other quantity — let us call it U.

The stochastic evolution is given by the master equation:

dPα(t)
dt

= ∑
β

W(α |β )Pβ (t)−W(β |α)Pα(t) (1)

wherePα(t) is the probability of the micros-tateα . In the hamiltonian case, the stationary
regime is given by the uniform distribution,Pα = 1/Ω(E), whereΩ(E) = ∑α δ (Eα −E) is
the number of states of energy E. When micro-reversibility is broken, the microcanonical
stationary distribution is a priori not uniform anymore:Pα = fα/Zµ(U), where fα is the
statistical weight of the configurationα and Zµ(U) = ∑α fα δ (Uα −U) can be called a
microcanonical partition function. Indeed, the conservation ofU was chosen so as to mimic
a microcanonical situation. Yet, one sees that the absence of micro-reversibility already
yields an important difference, the non uniformity of the stationary distribution.

In order to define a temperature in this context, one can try tofollow a procedure similar
to that of the equilibrium statistical physics. For an equilibrium system in the microcanon-
ical ensemble, temperature is introduced in the following way. Considering a large system
S with fixed energy, one introduces a partition into two subsystemsS1 andS2, with en-
ergyE` (` = 1,2). These two subsystems can mutually exchange energy; the only constraint
is that the total energyETOT is fixed, and that the energy of interaction is small so that
ETOT = E1 + E2. The key quantity is then the numberΩS1(E`) of accessible states with
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energyE` in the subsystemS`. Assuming that the subsystems do not interact except by
exchanging energy, the number of states of the systemS compatible with the partition
(E1,E2) of the energy is equal toΩS1(E1)ΩS2(E2). SinceE1+E2 is fixed, the most proba-
ble valueE∗

1 is found from the maximum, with respect toE1, of ΩS1(E1)ΩS2(ETOT−E1).
Maximising this product with respect toE1, one finds the usual result:

∂ lnΩS1

∂E1

∣

∣

∣

E∗
1

=
∂ lnΩS2

∂E2

∣

∣

∣

E−E∗
1

(2)

Defining the microcanonical temperatureT̀ of subsystem̀ by the relation

1
T̀

=
∂ lnΩN`

∂E`

∣

∣

∣

E∗
`

(3)

one sees from Eq. (2) thatT1 = T2, i.e. that the temperatures are equal in both subsystems
(throughout the lecture, the Boltzmann constantkB is set to unity). In addition, it can be
shown that the common valueT does not depend on the partition chosen; as a result,T is
said to characterise the full systemS .

Very interestingly, this microcanonical definition of temperature can be generalised in
a rather straightforward way to the more general case that weconsider. Yet, it should be
noticed first that microscopic configurations compatible with the given value of the con-
served quantityU are not equiprobable, so thatΩS is no longer relevant to the problem.
But starting again from a partition into two subsystemsS` = {α`}(` = 1,2) as above, one
can determine the most probable valueU∗

1 from the maximum of the conditional probability
P(U1|UTOT) that subsystemS1 hasU = U1 given that the total conserved quantity isUTOT.
The conditional distributionP(U1|UTOT) is given by:

P(U1|UTOT) = ∑
α∈S

Pα(UTOT)δ (Uα1 −U1)

=
1

Zµ(UTOT)
∑

α∈S

fα δ (Uα −UTOT) δ (Uα1 −U1)

=
1

Zµ(UTOT)
∑

α∈S

fα δ (Uα2 −U2) δ (Uα1 −U1) (4)

Now assuming — this is a major assumption — that the stationary distribution factorizes
(i.e. fα(U1 +U2) = fα1(U1) fα2(U2), one obtains thatP(U1|UTOT) may be written in a com-
pact form as:

P(U1|UTOT) =
Zµ(U1)Zµ(UTOT−U1)

Zµ(UTOT)
(5)

This result generalises in a nice way the equilibrium distribution. Indeed at equilibrium
P(E1|E) = Ω(E1)Ω(E−E1)/Ω(E) andZµ(U) turns precisely intoΩ(E). Finally the most
probable valueU∗

1 satisfies
∂ lnP(U1|UTOT)

∂U1

∣

∣

∣

U∗
1

= 0 (6)

which yields
∂ lnZµ

∂U1

∣

∣

∣

U∗
1

=
∂ lnZµ

∂U2

∣

∣

∣

UTOT−U∗
1

(7)

So in close analogy with the equilibrium approach, one can define an intensive parameterỲ
for subsystemS` through

1
Ỳ

=
∂ lnZµ

∂U`

∣

∣

∣

U∗
`

(8)
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Then Eq. (7) implies thatY1 = Y2. It can be shown [11] thatY can be computed from the
global quantityZµ(U) instead ofZµ(U1) or Zµ(U2), and is thus independent of the partition
chosen. This intensive parameter associated to the conservation of the global quantityU
characterises the statistical state of the whole system.

Up to now, we have considered only the ‘microcanonical’ (in ageneralised sense) distri-
butionPα(U). Yet, it would be interesting to introduce also the analogous of the canonical
distribution. To do so, one must compute the distributionPcan(α) associated to a small (but
still macroscopic) subsystemScan= {α} of a large isolated1 systemS = {(α ,α ′)}. The
configurations corresponding to the reservoir{α ′} have to be integrated out and one finds
under the same assumption of factorizabilityfα ,α ′ = fα fα ′ the following distribution:

Pcan(α) = ∑
α ′

1
Zµ(U)

f(α ,α ′) δ (Uα +Uα ′ −U) (9)

=
1

Zµ(U)
fα ∑

α ′
fα ′ δ (Uα +Uα ′ −U) (10)

The above summation is nothing but the microcanonical partition function of the reservoir
Z′

µ(U −Uα), which can be expanded to first order as:

lnZ′
µ (U −Uα) = lnZ′

µ(U)− 1
Y

Uα (11)

assuming thatUα �U , which is true as long asScan is much smaller thanS . The derivative
of lnZ′

µ(U) has been identified with 1/Y using Eq. (8). Introducing this last result into
Eq. (9), one finally finds

Pcan(α) =
1

Zcan(Y)
fα exp

(

−Uα

Y

)

(12)

whereZcan(Y) = Z′
µ(U)/Zµ(U) –note thatU is the conserved quantity of the global system

which includes the reservoir and thatY is the associated intensive parameter imposed to the
subsystemScan.

At this stage, it is worth making a break and to summarise the above results. Basi-
cally, it has been shown that for a stochastic dynamics, which does not conserve energy but
conserves another extensive quantity, and which does either not satisfy micro-reversibility :

• one looses the property of uniformity for the probability distribution in the micro-
canonical ensemble;

• if the microcanonical distribution factorizes, one can still define an intensive parameter
associated with the conserved quantity;

• this intensive parameter equilibrates between subsystems;

• one can compute a canonical distribution, which is different from but similar to the
Gibbs distribution

The last point calls for a special remark. Because of the factorisation of the distribution
in the non-uniform measure and the Gibbs weight, the thermodynamical algebra remains
valid. First, one can show that the dynamical entropy definedas

SU(t) = −∑
α

Pα(t) ln
Pα(t)δ (Uα −U)

fα
(13)

1Isolated here means thatU is conserved inside the large system
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is a non-decreasing function of time, which is maximal in thestationary state with the cor-
responding valueS(U) given by:

S(U) = −∑
α

Pα(U) ln
1

Zµ(U)
= lnZµ(U) (14)

Second, it is straightforward that

〈U〉 = −∂ lnZcan

∂γ
(15)

〈Un〉− 〈U〉n = (−1)n∂ n lnZcan

∂γn for n > 1, (16)

whereγ ≡Y−1. Finally a generalised free energyF(Y) is also naturally introduced through

F(Y) = −Y lnZcan= 〈U〉−Y S (17)

To conclude this part we shall say that the above formal analogy, which looks encour-
aging for further developments, has its drawback : given thevery strong similarity at the
thermodynamical level with usual thermal equilibrium, it will be experimentally difficult to
distinguish between the two statistics. We will come back tothis point in section 4.2.

3 Glassy behaviour of granular media

In this part of the lecture we will review a selection of experimental results, which underline
the similarity between granular media close to the jamming transition and super-cooled
liquids close to the glass transition. It is assumed that thereader is familiar with the glass
transition. He might otherwise refer to the other chapters of the present textbook.

3.1 Experimental evidence of the analogy at the macroscopic
level

The first set of experimental results concentrates on evidences of the analogy at the macro-
scopic level. Generically, one considers a three dimensional sample of grains under com-
paction. We have tried to classify these results according to the following scheme:

• Relaxation towards a stationary state

• Fluctuations and critical slowing down

• Aging and Memory effects

Accordingly we will browse across the results obtained by different groups to illustrate these
behaviours. For simplicity we will refer to these experiments by their localisation. Yet, let
us first present the various experimental set-up and protocols. Obviously, we can not provide
here with all the details of these experiments, which can be found in the original papers.

Figure 3(a) displays the device used in Chicago by Knight et al. [44]. Monodisperse,
2mm diameter glass beads are confined in a 1.88cmm diameter 1m long Pyrex tube mounted
on a vibration exciter. The beads are maintained under vacuum. They are prepared in a low
density initial stage of packing fractionΦ0 = 0.577. No convection was observed. The
vibration is composed of well separated taps of amplitudea. The acceleration profile of one
tap is shown in the inset.Γ = aω2/g is the control parameter. The column density was
measured with capacitors.
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(a) (b) (c)

(d) (e)

Figure 3: Experimental devices. (a): Compaction under vibration in alarge aspect ratio
column. Knight et al. [44] (Chicago); (b): Compaction undervibration in a small aspect
ratio cell. Philippe et al. [59, 60] (Rennes); (c): Compaction under cyclic shear. Nicolas et
al. [56] (Marseille); (d): Compaction in a fluidized bed. Schröter et al. [62] (Austin); (e):
Vibration. D’Anna et al. [21, 22] (lausanne).

Figure 3(b) shows a picture of the set-up used in Rennes by Philippe and Bideau [59,
60]. A glass cylinder of diameter 10cm, filled with 1mm diameter glass beads up to 10cm
height, is shaken at regular intervals by an electromagnetic exciter delivering independent
vertical taps of amplitudea. The experiments start from a reproducible loose packingΦ0 =
0.583. Boundary effects are restricted but convection is observed. Γ = aω2/g is again the
control parameter. The average volume fraction in the bulkΦ is estimated by measuring the
absorption of aγ-ray beam through the packing.

Figure 3(c) presents a different mode of compaction used in Marseille by Nicolas et
al. [56]. A parallelipipedic box (10.5cm high, 7.9cm wide and 10.2cm deep) full of 3mm
diameter glass beads is submitted to a horizontal shear through the periodic motion of two
parallel walls. The granular packing is confined on the top bya rectangular plate mounted
on a vertical rail. The volume fraction during the compaction process is recorded via the
vertical position of the top plate. The mean initial volume fraction of the packing isΦ0 =
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0.592. The lateral plates are oscillating quasi-statically between angles±θ , θ being the
control parameter. The volume fraction is recorded in the vertical position.

Figure 3(d) illustrates the set-up and protocol used in Austin by Schröter et al. [62]. In
an original way, the compaction is conducted in a fluidized bed made of a square bore glass
tube (24.1mm 24.1mm) filled with about 3.6× 106 glass beads of 250± 13µm diameter.
The beads are fluidized with pulses of temperature-controlled de-ionised water. Flow pulses
are generated by a computer-controlled syringe pump so thatduring a flow pulse the bed
expands until its height reaches a stable value. After each flow pulse, the bed settles into a
stable time-independent configuration, whose volume fraction is determined by measuring
the bed heighth with two CCD cameras at a 90◦ angle.

Finally figure 3(d) displays the apparatus used in Lausanne by D’Anna et al. [21, 22] for
studying the jamming transition in weakly perturbed granular media. The granular material,
glass beads of diameterd = 1.1± 0 : 05mm is contained in a metallic bucket of 150mm
height and 94mm diameter, filled to a height of 130mm. The system is subjected to taps,
the control parameter beingΓ, the peak acceleration of the container, normalised by the ac-
celeration of gravity,g. The granular noise is measured with the help of a torsion oscillator,
the rotating probe of which is immersed in the granular material.

Apart from these experiments, we will also discuss the results obtained by Kabla and De-
bregeas [43] in Paris. In their experiment glass beads of diameter 45µm, contained in a glass
cell (30mm,10mm,2mm), fully saturated with pure water, are very gently vibrated with a
piezoelectric actuator on which the cell is rigidly mounted. The mean packing fraction is
obtained by measuring the position of the upper surface of the pile with a CCD camera.
One tap consists in a train of square wave vibrations. The microscopic dynamics induced
by these gentle taps is probed by multi-speckle diffusive wave spectroscopy (MSDWS).

3.1.1 Relaxation towards a stationary state

The very first evidence of a ”glassy” behaviour in dense granular media under compaction is
the very slow relaxation towards a stationary state with a well defined volume fraction. Fig-
ure 4 presents the various compaction curves obtained in theexperiments described above.
Apart from the experiment in Austin (fig. 4(c)), which is veryspecific and to which we will
come back in more details in section 4.2.1, the number of tapsis always counted on a log-
arithmic scale. For both the experiments in Chicago (fig. 4(a)) and Marseille (fig. 4(b), it
is not even clear that a stationary state is reached within the duration of the experiment. In
the case of the experiment in Rennes(fig. 4(d), a stationary state is obtained, but for large
vibration amplitudes only.

11



(a) (d)

(b) (e)

(c) (f)

Figure 4:Compaction experiments. (a): Chicago, packing densityρ as a function of the
logarithm of the number of tap for various amplitude of vibration ranging fromΓ = 1.4 to
5.4 (inset is the same plot in linear scale); (b): Marseille, compaction curves forθ = 5.4◦

for two different runs. Insert: semi-logarithmic scale; (c): Austin, the volume fraction
of the sedimented bed for different flow ratesQ; (d): Rennes, temporal evolution of the
mean volume fraction for different tapping intensities ranging from Γ = 0.96 to 5.0; (e):
Rennes, collapse of the compaction curves obtained with 15 values ofΓ between 1.01 and
6.0. χ = (Φss−Φ(t))/(Φss−Φ(0)) is plotted as a function ofu = (t/τ)β . The solid line
is the exponential function expected in the case of a stretched exponential law; (f): Rennes,
two estimations of the relaxation timeτ as functions of the inverse of the tapping intensity
Γ.
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To be more precise, various fits have been proposed to describe these experimental data.
Both Chicago and Marseille experimental data are best fittedby the heuristic expression :

Φ∞ −Φ(t)
Φ∞ −Φ(0)

=
1

1+Bln
(

1+ t
τ
) , (18)

whereas Rennes compaction curves are better described by a stretched exponential:

Φ∞ −Φ(t)
Φ∞ −Φ(0)

= exp

[

−
( t

τ

)β]

, (19)

whereΦ∞,B,τ andΦ(0) are free parameters depending only onΓ. The latter behaviour, in-
troduced by Kohlrausch [47],Williams and Watts [38], oftendenoted the KWW law, is com-
monly observed in the relaxation of thermal glasses, the stretched exponential seemingly
indicating the superposition of several relaxation times.Also, in the case of Rennes exper-
iment, the relaxation time dependence is reminiscent of an Arrhenius lawτ = exp(Γ0/Γ),
for an activated process (fig. 4f). There has been a lot of discussion about the validity of one
or the other fit. As a matter of fact, both are plausible in the context of glassy dynamics. The
Arrhenius dependence of the relaxation time is reminiscentof strong glasses, whereas one
interprets the logarithm dependence as the signature of a fragile glass behaviour. Indeed, as
emphasised by Boutreux and de Gennes [13], a Vogel-Fulcher dependence of the relaxation
time would lead to a logarithmic relaxation of the density.

3.1.2 Fluctuations of density around the steady state

In statistical mechanics the study of fluctuations can be used to investigate the microscopic
states that are accessible to a system maintained at a fixed temperature. In granular media,
density fluctuations in the steady state are related to the different volume configurations
accessible to the grains subject to an external vibration. We will come back in section 4.1 to
the formal analogy proposed by Edwards to relate the role played by vibrations in a-thermal
systems, such as granular media, and the role of temperaturein thermal systems. For the
moment let us come back to some experimental results obtained by Nowak et al. [57] in the
Chicago experimental set up.

(a) (b) (c)

Figure 5: Density fluctuations around the steady state in Chicago experiment (a): How
to reach a reversible steady state branch; The sample is prepared in a low density initial
configuration and then the acceleration amplitude is first slowly increased – solid symbols –
and then decreased – open symbols. – The upper branch is reversible, see square symbols.
(b): Power spectrum of the density fluctuations; (c): Relaxation frequency as a function of
the vibration amplitude.
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We saw in the above section that for small values ofΓ, it is difficult, if not experimentally
impossible, to reach a steady-state by merely applying a sufficiently large number of taps
of identical intensity. Nowak et al. showed that, in this case, it is possible to reach a steady
state by annealing the system 5(a). Experimentally, the value ofΓ is slowly raised from 0 to
a value beyondΓ∗ ' 3, above which subsequent increases as well as decreases inΓ at a suf-
ficiently slow ratedΓ/dt lead to reversible, steady-state behaviour. IfΓ is rapidly reduced to
0 then the system falls out of the steady state branch. Along the reversible branch, the den-
sity is monotonically related to the acceleration. AsΓ is increased both the magnitude of the
fluctuations around the steady state and the amount of high-frequency noise increase. Fig-
ure 5(b) displays the power spectrum of the density fluctuationsS(ω), where the frequency
ω is measured in units of inverse taps. Three characteristic regimes emerge: (i) a white
noise regime,S(ω) ∼ ω0 below a low-frequency cornerωL, (ii) an intermediate-frequency
regime with nontrivial power-law behaviour, and (iii) a simple roll-off S(ω) ∼ ω−2 above a
high frequency corner,ωH . As shown on figure 5(c), bothωL andωH increase asΓ is in-
creased. Over the relatively small available range ofΓ, the variation ofωH is consistent with
an activated process behaviour:ωH = ω0 exp(−Γ0/Γ). Approximating to the first order in
Γ the bi-univoque relationρ(Γ) characterising the steady state branch, one sees that this
mechanically activated law turns into a Vogel-Fuscher dependance in density, compatible
with the observed logarithmic relaxation, as emphasised inthe previous section. Note that
according to this last remark, the distinction between strong and fragile glasses is not really
relevant in the case of a transition controlled by density.

3.1.3 Towards the jammed state

The above results were obtained for large enough external solicitations. We will now turn to
the behaviour of granular media when the external driving isreduced. Typically one expects
a transition close toΓ = 1 since below this value, the grains are not allowed to lift off from
the bottom of the container.

(a) (b)

Figure 6:The transition at weak amplitude of vibration (a): ’Asymptotic’ (after 10000 taps)
density as a function of the vibration amplitude in Chicago experiment (the two curves cor-
respond to two experimental determinations). (b): Arrhenius dependance of the relaxation
time as a function of the vibration amplitude in Rennes experiment. Inset: variation of the
final volume fraction in the cases where a steady state is actually reached.

This is indeed the case as illustrated on figure 6. In the Chicago experiment (fig. 6a),
one sees that the densification after 10000 taps significantly increases forΓ > 1.5. Note that
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this is not a well defined threshold, since it depends on the number of taps, as well as on the
details of the experiments. Figure 6(b) shows better evidence of the transition, where one
clearly observes a sharp increase of the relaxation times when decreasingΓ below one. The
slope variation in the log-lin plot, which indicates a jump in the ’energy barrier’ of the me-
chanically activated process suggested by the Arrhenius laws, finds a natural interpretation
in the difference of energy landscape seen by a grain, whether it lifts off or not!

Let us now turn to the Lausanne experiment by D’Anna et al. [21], where a critical
slowing down, qualitatively analogous to super-cooling towards the glass transition has been
observed. The noise in figure 7(a) exhibits a 1/ f 2 spectrum, characteristic of a diffusive
process, even forGamma� 1. This is already a clear indication that a weakly perturbed
granular medium can display a diffusive behaviour well below the fluidization limit.

(a) (b)

Figure 7: Towards the jammed state in lausanne experiment (a): Low frequency power
spectrum of the torsion oscillator deflection for various intensities of the tapsΓ∈ [0.025,3.6]
(b): Critical slowing down. The power spectrum level at 1 Hz,obtained from continuous
vibration measurements. Some points (circles) are obtained from tapping spectra. The
dotted line is obtained according to a Vogel-Fuscher fit.Γ0 is the perturbation intensity
where the configuration diffusivity, extrapolates to zero.Γ f is the fluidization threshold.
Inset, the same data as in the main panel in a semilogarithmicplot.

By the Wiener-Khintchine theorem, for a 1/ f 2 noise, the value of the noise at a given fre-
quency is proportional to the diffusion coefficient. Hence,figure 7 displays the characteristic
diffusion coefficient as a function of the vibration amplitude for very small amplitude. One
observes atΓ f ' 1 the signature of the vibration-induced fluidization. Second, the diffusion
coefficient approaches zero critically, that is, the inverse noise level diverges. This critical
approach to zero can be described by a modified Vogel-Fuscherform Aexp[B(Γ−Γ0)

p] with
Γ0 = 0.005 andp = −0.4.

All the above results clearly enforce the analogy between the granular behaviour and the
physics of glass-forming liquids that super-cool.

3.1.4 Aging and Memory effects

Now that the analogy between thermal glasses and dense granular media has experimental
grounds, it is tempting to look for specific behaviours of glasses such as aging and memory
effects in granular media close to the jamming transition.

Aging was indeed experimentally observed by Kabla and Debregeas [43] in Paris using
multi-speckle diffusive wave spectroscopy (MSDWS) to probe the micron-scale dynamics
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of a water saturated granular pile submitted to discrete gentle taps. The pile is first prepared
in a reproducible way at low volume fraction, then submittedto high amplitude taps until
it reaches a prescribed packing fraction. Only then the dynamics of contacts is probed by
submitting the cell to very gentle taps. Figure 8(a) displays the compaction curves during
the full procedure. One recognises typical compaction curve during the first stage. In con-
trast, the low intensity vibrations do not induce significant further evolution of the packing
fraction except for initially very loose packs. To quantifythe internal dynamics, one mea-
sures the intensity correlation of speckle images — produced by the multiple scattering of
photons through the sample —, taken between taps, as a function of the number of tapst that
separate them. This function generally depends on the totalnumber of small amplitude taps
tw that have been performed. Accordingly one computes the two-times correlation function
g(tw, t):

g(tw, t) =
< I(tw + t)I(tw) >spkl − < I(tw) >2

spkl

< I(tw)2 >spkl − < I(tw) >2
spkl

, (20)

whereI is the speckle intensity,<>spkl denotes the average over several speckles.

(a) (b)

Figure 8:Aging is a gently vibrated granular media in Paris experiment (a): The packing
fraction for four experimental runs. Each run consists of a first step in which high amplitude
taps allow rapid compaction of the sample, followed by a sequence of gentle vibrations,
during which the internal dynamics is probed. The arrows indicate the change in tapping
intensity. (b): Two-time relaxation curves for different waiting time.

Figure 8(b) shows three correlation functions obtained with the same sandpile at different
values oftw. These functions, well fitted by stretched exponentials, clearly demonstrate an
increase of the relaxation time withtw. This dynamical arrest is the signature of the aging
behaviour as exhibited in various glassy systems.

As for memory effects, they were observed both in Chicago by Josserand et al. [42] and
in Marseille by Nicolas et al. [56]. In the case of Chicago, the granular sample is densified
during a set of three experiments up to the same volume fraction Φ0, but with three different
accelerationsΓ0, Γ1, andΓ2. After Φ0 is achieved at timet0, the system is tapped with the
same intensityΓ0 for all three experiments. As seen in figure 9, the evolution for t > t0
strongly depends on the history, which is the simplest form of memory effect. In the case of
Marseille, a periodic shear with inclination angleθ1 is first imposed to a random packing,
and at a given time, the shear amplitude is suddenly changed to another valueθ2 and later
switched back toθ1. As can be seen, increasing the shear angle produces a rapid fall of
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volume fraction, followed by a slow and continuous increase. When shear angle is decreased
back, a rapid increase of the packing fraction occurs, before recovering the slower one. This
is another evidence of memory effect in the packing in the sense that points A and B in
figure correspond to packings having the same volume fraction, with different responses to
the same shear amplitude.

(a) (b)

Figure 9: Memory effect in granular media under compaction. (a): Chicago experiment,
time evolution of packing fraction for a system which was compacted toρ0 = 0.613 at time
t0 using three different accelerations:Γ1 = 1.8(•),Γ0 = 4.2(4), andΓ2 = 6.3(�). After
the densityρ0 was achieved, the system was vibrated at accelerationΓ0. (b): Marseille
experiment, example of angle variation during the compaction process. The insert shows a
close-up of the first jump.

Altogether, we have seen in this section that the jamming transition of granular me-
dia shares strong similarities — exceedingly slow relaxation, critical slowing down, aging,
memory effects — with the glass transition of super-cooled liquids. These similarities are
not trivial given the very distinct microscopic processes underlying the dynamics in both
systems: in glassy liquids, relaxation occurs by thermallyactivated rearrangements of the
structure. In granular materials, the thermal environmentis ineffective and relaxation results
from the local yielding of contacts triggered by externallyapplied vibrations.

3.2 Recent experimental results at the grain scale

In this section, we will report recent experimental results, which deal with the microscopic
behaviour of granular materials under cyclic shear. The goal of these experiments is to find a
microscopic ground for the analogy evidenced in the previous section. The first experiment
was conducted in Marseille by Pouliquen et al. [61] in the device already presented. The
second experiment was conducted in Saclay by Marty et al. [54] and Dauchot et al. [23] in
a similar device, but significantly different in several aspects. We will first summarise the
results obtained in Marseille before describing in more details those, more recent and more
complete, obtained in Saclay.

3.2.1 Fluctuating motion during compaction

In Marseilles experiment, the goal was to provide a link between the macroscopic dynamics
and the microscopic structure of the packing during compaction by analysing the individ-
ual motion of the grain. Accordingly the particles are tracked during compaction using an
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index matching method. The first experiments are performed at a constant shear angle. An
example of the particle motion is presented in figure 10.1(b), where the plot represents the
successive positions of the particles measured after each shear cycle. At first sight parti-
cles go down as expected for a macroscopic compaction — see the evolution of the volume
fraction in figure 10.1(b)—. On top of this mean vertical displacement, one observes fluc-
tuating motion characterised by ball-like regions as shownin the close-up of figure 10.1(c),
revealing a caging process. The random motion of the particles is trapped for a while before
escaping and being trapped again in another cage.

(1) (2)

Figure 10:Fluctuating particle motion in Marseille experiment. (1):Compaction forθ =
5.4◦; (a) Volume fraction as a function of the number of cycles. (b) Examples of trajectories
during 15 000 steps. The disks give the beads size and indicate the initial position of the
tracers; (c) Examples of cages (trajectories plotted for time slots between 2500 and 5000
steps). (2): (a) Volume fraction as a function of cycles whenθ varies stepwise (see text);
(b) Corresponding trajectory of one particle. Changes in colour correspond to changes inθ ;
(c) Displacement field measured in the cell whenθ changes from 10.4◦ to 1.4◦

In order to further investigate the link with compaction , experiments are performed where
the shear amplitude is discontinuously decreased. The corresponding volume fraction vari-
ation is plotted in figure 10.2(a). As expected from the results presented in the previous sec-
tion, successive increasing steps in volume fraction are observed. The typical microscopic
behaviour of a particle during this experiment is presentedin figure 10.2(b). The volume
explored by the particle during its random motion successively shrinks when the shear am-
plitude decreases because the mean particle displacement decreases. However, each time
the shear angle changes, the other particles below the test particle experience the same de-
crease in their exploration volume. The result is a net downward motion observed when
the angle changes. The observed volume fraction variation thus results from the change in
the volume randomly explored by the particles. This becomesclear in figure 10.2(c) when
looking at the displacement of all the particles during a sudden change of shear amplitude.
In conclusion a simple scenario can be proposed for the compaction process and its memory
effect. The slow dynamics of compaction observed in experiment at a constant amplitude is
to be attributed to the changes of cages. These changes are irreversible and push the system
towards more and more compact configurations. On the contrary, the rapid change of vol-
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ume fraction observed when changing the amplitude is simplyrelated to the change of the
cage size, without important structural changes. This explains why this variation of volume
is reversible and can be recovered by coming back to the previous amplitude of excitation.
The existence of these two processes which affect differently the packing volume fraction
explains that memory effects can be observed.

At this stage, it becomes obvious that a detailed statistical study of the particles dis-
placements should bring a lot of information. What are the property of diffusion? The cage
changes certainly involve complex cooperative processes.How are the correlations involved
in such process? In Marseille experiment, the dynamics is not stationary and particles ex-
perience only a few cage changes before being trapped in their final location. Also, it was
impossible to follow all particles in their 3D motion.

3.2.2 Cages and diffusion properties without compaction

Answering the above questions in a steady state situation, following all the grains, was the
goal of the experimental set up built in Saclay. A prototype of the experimental set-up (fig-
ure 11a), allowed Marty and Dauchot to investigate experimentally the diffusion properties
of a bi-dimensional bi disperse dry granular material underquasi-static cyclic shear. More
specifically, they studied in detail the cage dynamics responsible for the sub-diffusion in the
slow relaxation regime, and obtained the values of the relevant time and length scales. In a
second version of the set-up (figure 11c), which allows to follow all the grains in a selected
area of interest, measurements of multi-point correlationfunctions are produced. The inter-
mediate scattering function and its self-part, displayingslower than exponential relaxation,
suggest dynamic heterogeneity. Further analyses of four point correlation functions reveal
that the grain relaxations are strongly correlated and spatially heterogeneous, especially at
the time scale of the collective rearrangements. Finally, adynamical correlation length is
extracted from spatio-temporal pattern of mobility. The present section is devoted to the
first set of results, the dynamical heterogeneities being described in the next section

(a) (b) (c)

Figure 11:Experimental set-up; (a) Prototype used for the measurement of the diffusion
properties (b) Scheme of the shear cell; (c) Final set-up used for following all grains and
measuring the spatio-temporal correlations.

The first experimental setup is as follows: a bi-dimensional, bi-disperse granular mate-
rial, composed of about 6 000 metallic cylinders of diameter4 and 5 mm in equal propor-
tions, is sheared quasi-statically in a horizontal deformable parallelogram of constant vol-
ume (volume fractionΦ ' 0.86). The shear is periodic, with a shear amplitudeθmax= 10◦.
The authors follow a sample of 500 of the grains with a CCD camera which takes a picture
of the system each time it comes back to its initial position(θ = 0◦). The unit of time is
then one cycle, a whole experiment lasting 10 000 cycles. Theunit of length is chosen to be
the mean particle diameter d. The system is prepared by removing a fraction of the grains,
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shaking the remaining sample, putting back all the grains, and shearing the system during
10 to 20 cycles at high shear amplitude and rate. Figure 12 shows typical trajectories with
well identified cages.

(a) (b)

Figure 12:Evidence of cages. (a) Some tracers trajectories. (b) Gray:a typical trajectory;
black: 2000 consecutive steps of the same trajectory. The circle indicates the particle size.

(a) (b)

Figure 13: Diffusion properties (a) pdf of the displacements∆X(τ)/σX for τ =
1(•),10(?),100(◦),1000(+); the solid line is the Gaussian distribution [inset: non-
Gaussian parameterα(τ)]; (b) σ(τ) =

√

< ∆r2(τ) >; dotted lines show the slopes 1/4
and 1/2; dashed lines indicate the position of the crossover(r∗, t∗) [inset:σX(τ) andσY(τ);
no anisotropy is observed].

The probability distributionP(∆X(τ)) of the displacements of one particle during a time
stepτ displayed on figure 13(a) forτ = 1,10,100,1000, exhibit fat tails compared to the
Gaussian case, and thereby confirms the intermittent behaviour of the dynamics. The non-
Gaussian parameter defined byα = (< ∆X4 > /3 < ∆X2 >2)−1 (inset of figure) is indeed
different from zero and is maximum, with a plateau, forτ ' 100. For larger times, the
distribution progressively recovers gaussianity. The root mean square displacement presents
two regimes (figure 13b): at short times, the dynamics is sub-diffusive (logarithmic slope
1/4), while it becomes diffusive (logarithmic slope 1/2) at long times. These results confirm
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and precise the image of particles trapped in cages, where the cage sizer∗ = 0.3d and the
cage lifetimet∗ = 300 are given by the the crossover between the two regimes.

It is of interest to compare these results with those obtained by Weeks and Weitz [69] in a
colloidal suspension of hard spheres, that is athermalsystem. This system undergoes a glass
transition for a packing fractionΦg = 0.58. Typical trajectories shown on figure 14(left)
and obtained via confocal microscopy forΦ = 0.52 exhibit caged motion, with sudden
cage rearrangements. The typical cage size is here also a fraction of the particle diameter.
As shown on figure 14(right-a), the motion is diffusive at very short times, then becomes
sub-diffusive at intermediate time scales, and finally recovers a diffusive behaviour at large
time scales. The sole difference with the granular system isthe diffusive motion at very
short times, a signature of the thermal activation induced by the solvent of the colloidal
suspension. Finally, the non-gaussian parameter (figure 14-right-b) also exhibits a peak
which becomes sharper whenΦ approachesΦg. The type of plateau that has been observed
in Saclay typically occurs forΦ = 0.52, that is at a relative distance to transition of 10%.

Figure 14: Evidence of cages. Left: one layer of particles through a three-dimensional
sample of the colloidal suspension, with arrows indicatingthe direction of motion for parti-
cles with displacements. Lighter colours indicate particles with larger displacements. Inset:
120 min. trajectory of one particle from this sample. Right:(a) Mean square displacements.
(b) Non-Gaussian parameter.

Let us now report the kind of analysis that can be conducted tobetter characterise the dy-
namics. A very convenient tool introduced by Doliwa and Heuer [26, 27], is the conditional
probability P(x12|r01) (resp. P(y12|r01)) of the projectionx12 (resp. y12) of the displace-
ment during a given time intervalτ along (resp. orthogonally to) the direction of the motion
during a previous time interval of the same durationτ , conditioned by the lengthr01 of the
motion during the previous time interval.
These quantities are displayed on figure 15. A first observation is that the mean value of
y12 is zero, while the mean value ofx12 is always negative. More precisely, for a given
time intervalτ , < x12 > decreases linearly withr01 for r01 < r∗, then saturates at a con-
stant negative value. The decrease is stronger for smallτ and disappears forτ > t∗. On the
contrary, the saturation always occurs atr01 = r∗, a strong indication that the dynamics is
controlled by the cage size. Altogether for displacements smaller thanr∗, the larger a step
the more anti-correlated is the following step, which reflects a systematic back dragging ef-
fect experienced by the particle trapped in its cage. For displacements larger thanr∗, a cage
rearrangement has occurred, and so the anti-correlation does not increase any more. Yet,
the constancy of< x12 > at this saturation value reveals some memory of the fact thatpart
of the trajectory was made in a cage. At largerτ these effects become weaker, an indication
that cages relax and adapt to the new positions of the enclosed particles. One can even go
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(a) (b)

Figure 15:Temporal correlations. (a) and (b) conditional probabilities (in colour scale)
P(x12|r01 and P(y12|r01; the white traces are the mean values< x12 > and < y12 >; (c)
< x12 > for different values ofτ (from bottom to top:τ = 100;300;500) (d) Widths of the
distribution ofx12(σ//) andy12(σ⊥) versusr01 for τ = 10 andτ = 500.

further in the interpretation of these distributions by extracting their widthsσ// andσ⊥. The
increase ofσ// with r01 reveals that large steps are more likely for particles whichmoved
farther during the previous time interval. This is an indication of the existence of a popula-
tion of fast particles, a typical feature of glass forming systems, as pointed out, for example,
in [41, 26, 68]. Second, we see that for short time intervals,the increase ofσ// is larger than
the one ofσ⊥. This reflects some anisotropy in the motion, as observed in the string-like
cooperation observed numerically by Donati et al. [28]. Both effects concern movements
on short time scales, since they tend to disappear as the timeintervalτ is increased.

Let us now turn to the investigation of some spatial correlations. We choose to illustrate
an other technique introduced by Hurley and Harrowell [41],based on relaxation times. For
a particlei, the relaxation timeTi(r) is defined as the time needed by the particle to reach a
given distancer for the first time. The distribution of these relaxation times is shown in the
inset of figure 16(a), forr = r∗.
Defining Ti,`(r) as the mean relaxation time of the particles contained in a circle of radius
` centred on particlei, then the dependance on` of the fluctuations ofTi,`(r) should pro-
vide some information about the typical lengthL over which cooperative effects take place.
A well normalised quantity to compute ism2`(r) =

〈

(Ti,` −Ti,avg)
2)
〉

/
〈

(Ti,1−Ti,avg)
2)
〉

,
whereTi,avg is the mean relaxation time averaged over all particles.m2`(r) is plotted versus
` for differentr on figure 16(a).m2`(r) naturally decreases with̀but is not monotonic with
r. To quantify this, one can plotL (defined as the integral ofm2 over` ) versusr and obtain
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(a) (b)

Figure 16:Spatial heterogeneities (a) Second momentm2(`) of the relaxation time distri-
bution, for different values of the cutoff distancer[0.1(•),0.3(?),0.5(+)]; the dependence
of these curves onr is not monotonic (inset: relaxation time distribution forr = 0.3) (b)
characteristic lengthL; it has a maximumL∗ for r = r∗.

the curve of figure 16(b).L reaches a maximum of 7 particle diameters forr = r∗ which
means that cage rearrangements are phenomena which imply more cooperation than the
dynamics at other scales and that about a hundred particles are involved in such rearrange-
ments. One then sees that cage rearrangements are highly cooperative phenomena. This,
added to the small value ofr∗ shows that the picture of a particle escaping from a static cage
formed by its nearest neighbours is over simplified.

Apart from precising the dynamics of the specific granular system presented here, this
section also aimed at illustrating what can be done to characterise temporal and spatial
correlations in systems in which one does not have access to the motion of all particles.
In the same spirit, it is also possible to investigate some spatial correlations and discuss
the existence of dynamical heterogeneities by consideringmulti-time correlation functions.
However the analysis hardly leads to definitive conclusionsand would lead us to discussions
which are out of the realm of the present lecture. The reader who is interested can refer to
the original work by Heuer et al. [40] and its application to the present system of interest
by Marty et al. [54]. To obtain further evidences of the spatial correlations, and a better
characterisation of the dynamical heterogeneities, one can no longer avoid to follow all
particles. The next section will present the kind of analysis conducted in Saclay in the case
of granular media, taking benefit of the bi-dimensional geometry of the set-up.

3.2.3 Spatial correlations and dynamical heterogeneities

The above sections 3.2.1 and 3.2.2 provided a “microscopic”confirmation of the similar-
ity between glass and jamming transitions. The typical trajectories of grains display the
so-called cage effect and are remarkably similar to the onesobserved in experiments on col-
loidal suspension [68] and in molecular dynamics simulations of glass-formers [45, 46]. As
for glass-formers, and contrary to standard critical slowing down, this slow glassy dynamics
does not seem related to a growingstatic local order. For glass-formers it has been shown
numerically [3, 41, 50, 8, 70] and experimentally [30] that instead thedynamicsbecomes
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strongly heterogeneous anddynamical correlationsbuild up when approaching the glass
transition. Recent theoretical works [1] and the end of the previous section suggest that this
also happens close to the jamming transition.

The aim of the present section is to present the analysis of the slow dynamics close to
jamming measuring multi-point correlation functions as ithas been done for super-cooled
liquids [45, 46, 34, 29]. First, we shall focus on two point functions, in particular the inter-
mediate scattering function and its self-part, whose slower than exponential relaxation sug-
gests dynamical heterogeneity. Then we shall turn to four point correlation functions. They
have been introduced for glass-formers to properly measuredynamical correlations [34, 29]
and indeed reveal that the dynamics is strongly correlated and heterogeneous. Finally, we
shall focus on spatio-temporal pattern of mobility, out of which we extract a direct measure-
ment of a dynamical length-scale.

The second Saclay experimental setup 11(c) contains a bi-dimensional, bi-disperse gran-
ular material, composed of about 8.000 metallic cylinders of diameter 5 and 6 mm in equal
proportions, which is again sheared quasi-statically in anhorizontal deformable parallelo-
gram. The shear is periodic, with an amplitudeθmax= ±5◦. The volume accessible to the
grains is maintained constant and the the volume fraction isΦ = 0.84. In this set up, it is
possible to follow 2818 grains (located in the center of the device to avoid boundary effects)
with a High Resolution Digital Camera which takes a picture each time the system is back
to its initial positionθ = 0. These conditions are very similar to those of the prototype and
by repeating the same analysis the cage radius is found to ber∗ = 0.2 and the cage lifetime
t∗ = 300.

The intermediate scattering function and its self part are commonly used in the literature
when describing the structure and the dynamics of a liquid ora glass. We still recall here
some useful algebra which will allow us to introduce a more general quantity – the density
overlap – and give us the opportunity to introduce our notations. The very first quantity of
interest is the instantaneous density field.

ρ̂(r, t) = ∑
i

δ (r − r i(t)) (21)

wherer i(t) is the position of theith particle at timet. One has that

〈ρ̂(r, t)〉 = ρ̄ = cst and
∫

dr ρ̂(r, t) = N hence ρ̄ =
N
V

. (22)

Here and in the following, the hatted quantities denote the non average observable. In the
experiment the average〈·〉 means a time average over 300 steps separated by 10 cycles
each, taking care that on such time scales the processes are stationary. One then introduces
a generalised density correlation function by considering

Wa(t) = 〈Ŵa(t)〉 =
1
N

∫

drdr′〈δ ρ̂(r, t)wa(r − r ′)δ ρ̂(r ′,0)〉, (23)

whereδ ρ̂ = ρ̂ − ρ̄ andwa(r − r ′) is some kernel with a space scalea to be precised later.
Replacingρ̂ by its definition (21), one obtains after a small calculation:

Wa(t) =
1
N

∫

drdr′∑
i, j

〈δ (r − r j(t))wa(r − r ′)δ (r ′− r i(0))〉− ρ̄
∫

drwa(r) (24)

=
1
N

(

〈∑
i, j

wa(r j(t)− r i(0))〉− < wa >V

)

(25)

where< . >V is the mean value of the kernel function over the sample volume. The self
part of this correlation function is given by considering only one particle, hence the same
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formula replacingr j(t) by r i(t) and summing over one particle only. When considering the
self part of such a correlation function, one obtains information about the single particle
relaxation. When dealing with the non self correlation, onegains information about the
structural relaxation. Usingexp(ik.r) for wa(r), where the space scalea is given by 2π/k,
Wa(t) is nothing but the intermediate scattering functionF(k, t). Whenwa(r) is some over-
lap function decreasing from one inr = 0 to zero for increasingr, Wa(t) is called the density
overlap correlation function, further notedQ(a, t), as introduced by Franz and Parisi [34]
and largely used by Donati et al. [29]. Practically, in the following computationsδ (r) is
approximated by a Gaussian of width 0.3.

The self part of the intermediate scattering functionFs(k, t), where the subscripts here
and in the following is for ”self part”, is plotted on the leftof figure 17(a) as a function
of time for different values ofk ranging from 1 to 29. Contrary to glass-formers there is
no visible plateau in this correlation function although from trajectories it was possible to
identify a clear cage effect as seen in the previous section.A possible explanation is that the
difference between the time-scales for the relaxation inside the cage and the escape from
the cage is not large enough to give rise to a clear plateau. Except for very smallk the
decrease ofFs(k, t) is slower than exponential in time. A good fit is provided by a stretched
exponential: exp[−(t/τ(k))β(k)]. We plot on the right of figure 17τ(k) (top) andβ (k)
(bottom) as a function ofk. At small k the relaxation time scales ask−2 and the exponent
β (k) is one. As expected, the grains perform a Brownian motion on large length and time
scales and thereforeFs(k, t) ' exp(−Dk2t) for small k and larget [D is the self-diffusion
coefficient of the grains]. Increasingk the stretched exponent decreases and is of the order
of 0.7 for k of the order of 2π, corresponding to the inter-grain distance, and even lowerfor
higher values ofk. A very similar behaviour has been found in numerical simulations of
glass-formers [45, 46]. Also the decrease ofτ(k) steepens sharply for largek. This might
be related to the sub-diffusive behaviour observed in the previous section : at short time the
displacement distribution is roughly Gaussian with a variance varying ast1/2 (not t like for
standard diffusion). Hence, it would be natural that at large k the relaxation time went as
k−4. An overall very similar behaviour for the intermediate scattering functionF(k, t) (not
plotted here) is obtained.

(a) (b)

Figure 17:Time correlations (a):Fs(k, t) as a function of time for different values of the
wave-vectork = 1,3, ...,29. The black lines represent fits of the form exp[−(t/τ(k))β(k)];
on the right:τ(k) (top) andβ (k) (bottom) as a function ofk. (b): Qa(t) as a function of
time fora = 0.05,0.1, ...,0.5.
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Dynamical heterogeneity is one of the possible explanationof the non-exponential re-
laxation ofFs(k, t) (and ofF(k, t)): the relaxation becomes slower than exponential because
there is a wide spatial distribution of time-scales [30]. However this is not the only possible
scenario [20, 30]. In the following we want to go one step further and show direct “smoking
gun” evidences of dynamical correlations. The proper way tounveil these correlations is
through the fluctuations of the correlations [34]. The idea is that the temporal correlation
is itself the order parameter of the transition. Accordingly, its fluctuations should unveil
correlations exactly as fluctuations of the magnetisation unveil magnetic correlations close
to a ferromagnetic transition. These fluctuations are characterised by four points correlation
functions generically defined as:

χW
4 (t) = N〈

(

Ŵa(t)−〈Ŵa(t)〉
)2〉 (26)

whereWa can be the intermediate scattering function, the density overlap, or their self part.
It happens that the complex exponential kernel used to construct the intermediate scattering
function -historically justified by the light scattering experiments- induces artificial fluctua-
tions which prevent from properly computing the corresponding χ4. From that point of view,
the density overlap is much more convenient. Figure 17(b) displaysQ(a, t), where the over-
lap functionwa(r) has been chosen as a non-normalised Gaussian:wa(r) = exp(−r2/2a2).
The evolution ofQa(t) is a measure of how long it takes for the systems to de-correlate from
its density profile at timet = 0. One can verify that the behaviour ofQ(a, t) is very similar
to that ofFs(k, t), as for glass-formers [34, 50].

(a) (b)

Figure 18: Four-points correlations (a):χFs
4 (t) as a function of time for values ofk =

1,3, ...,29. Inset: Log-Log plot fork = 7,9,11,13. (b):χQ
4 (t) as a function of time for

values ofa = 0.05,0.1, ...,0.5. Inset: Log-Log plot fora = 0.1,0.15,0.2,0.25.

Figure 18(a) displaysχFs
4 (t) for k= 1,3, ...,29. It has the form found for glass-formers [3,

50, 8, 70, 67]: it is of the order of one at small and large timesand displays a peak at a time
somewhat larger than the cage lifetime. The largestχFs

4 (t) is obtained fork = 9 correspond-
ing to a length of the order of the cage size. The behaviour at small and large times is in
a sense expected since in these limitsχFs

4 (t) can be related to static correlation functions,
which, as discussed previously, do not show any long range order. Alternatively the peak
is a clear signature of dynamic heterogeneity and shows thatthe dynamics is maximally
correlated on time-scales of the order of the relaxation time. A rough estimation of the cor-
responding dynamical correlation length is obtained by identifying the peak ofχFs

4 (t), of
the order of 100, to a correlated areaπξ 2

het, leading to a lengthξhet ∝ 6 in agreement with
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the estimate of the previous section. Very similar results are found forχQ
4 (t) as shown in

figure 18 fora = 0.05,0.1, ...,0.5. It is interesting to note that, as found for glass-formers
in [50], the main contribution toχQ

4 (t) comes from the fluctuations of the self-part ofQ.
Indeed we checked that for small and intermediatea, χQ

4 (t) ' χQs
4 (t) and only fora > 0.25

one starts to see a difference. The growth ofχFs
4 (t) (resp. χQ

4 (t)) before the peak seems to
follow a power law with an exponent which depends onk (resp.a) and varies between 1 and
2/3. As discussed in [67] the form ofχFs

4 andχQ
4 provides interesting information on the

mechanism behind dynamical heterogeneity. Such power law behaviours with exponents
between 1 and 2/3 suggest that the dynamic correlations cannot be induced byindependent
defects or free volume diffusion [67].

It would now be very interesting to have some insight on the spatial origin of the fluctua-
tions evidenced by the computation ofχ4(t). One way to understand how these fluctuations
relate to spatial heterogeneities of the dynamics is to decompose, say,Q(a, t) in local con-
tributions:NQ̂(a, t) = ρ

∫

drq̂a(r, t) whereq̂a(r, t) = 1/ρ̄
∫

dr′δρ(r, t)wa(r − r ′)δρ(r ′,0).

(a) (b)

(c) (d)

Figure 19:Grey-scale plot of ˆqas(r, t), at t = 154,435,1113,2526 from top to bottom in a
grey-scale (a = 0.15). Black regions correspond to lower values of ˆqas. The displacements
of the particles during the interval of timet are plotted in yellow. The yellow dots are
particles that have been lost during tracking.

Using this last expression one finds thatχQ
4 (t)= ρ

∫

drGQ
4 (r, t) whereGQ

4 (r, t)= 〈[q̂a(r, t)−
〈q̂a(r, t)〉][q̂a(0, t)− 〈q̂a(0, t)〉]〉. This last expression states thatχQ

4 (t) is nothing but the
mean value over the sample of the spatial correlations amongthe local temporal correlation.
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It clearly shows that a large value ofχQ
4 (t) has to be related to long range spatial correlations

of GQ
4 (r, t), which is the spatio-temporal representation of the local temporal correlations.

Figure 19 presents a grey-scale plot of the self-part ˆqas(r, t) = ∑i δ (r − r i(0))wa(r i(t)−
r i(0)) for t = 154,435,1113,2526 anda = 0.15. By definition ˆqas(r, t) measures in a coarse
grained way the local mobility: if the particle that was close to r at t = 0 moved away
more thana in the time intervalt then ˆqas(r, t) ' 0. The yellow lines in figure 19 are the
particle displacements in the time intervalt. The four chosen time intervals correspond from
top to bottom to short-times, relaxation times, moderate long times, long-times. At short-
times (t = 154) only few particles have moved and from figure 19 it appears that they do
so in a string-like fashion. On larger times (t = 435,1113) the relaxed regions are ramified
and finally, at very long time (t = 2526) the overall majority of the particles has moved
substantially but there remain few (rather large) regions not yet relaxed. These findings,
similar to the ones found in simulation of super-cooled liquids [3, 50] and experiments on
colloidal suspensions [69] suggest that the mobility is organised in clusters, which are the
direct visual evidence of the dynamical heterogeneities.

(a) (b)

Figure 20: (a): Self part of the Van Hove correlation function after angular integration
at t = 438; the continuous line is the pdf obtained assuming a Gaussian distribution. (b):
ln(G4(r,438)) as a function ofr; the straight line is a linear fit.

To further quantify the heterogeneities, we estimate how large is the mobility difference
between fast and slow grains. Figure 20(a) displays the selfpart of the Van-Hove corre-
lation function, i.e. the probability distribution of the grains displacements amplitudes for
t = 438 (corresponding to the maximum ofχQ

4 (t)). It clearly demonstrates the excess of
fast and slow grains compared to the distribution obtained when assuming a Gaussian pro-
cess (in continuous line). The fast grains are roughly five time faster than the slow ones.
Furthermore, we obtainG4(r,438) by computing the radial autocorrelation of ˆqas(r, t), and
averaging over ten realizations. Figure 20(b) shows thatG4(r,438) decays exponentially
over a characteristic dynamical lengthξ = 7, in agreement with the value obtained from the
peak ofχFs

4 .

3.3 Partial Conclusion

In this second part of the lecture, we have seen that the analogy observed at the macroscopic
level between dense granular media close to the jamming transition and super-cooled liquids
close to the glass transition has indeed microscopic grounds. Despite the difference in the
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driving mechanisms – a mechanical instead of a thermal forcing –, the diffusion properties
of a single particle and the collective relaxation of the system share very strong similarities
including the existence of a dynamical length increasing atthe transition.

At the root of these very strong similarities is the physicalnature of the transition. In the
case of thermal systems close to the glass transition, the dynamics is dominated by the com-
plex shape of the multidimensional potential energy landscape. The thermal activation being
weaker and weaker, the system spend more and more time in meta-stable states. Eventually
the system does not equilibrate on experimental time scalesand falls out of equilibrium.
In the case of the dense granular systems under gentle forcing, the grains rearrange among
mechanically stable configurations which are the equivalent of the meta-stable states. When
the external forcing is decreased, or when the density is increased, the grains rearrangements
become more and more difficult to produce. In both cases, the relaxation evolves towards a
global structural relaxation involving collective behaviours and characterised by dynamical
heterogeneities.

As a matter of fact, the analogy is so strong that the glass transition can be seen as a
specific case of jamming transition as suggested by Liu and Nagel [52]. The interest of
such a unifying view is double. First, as we shall see in the last part of the present lecture,
theories developed in the field of glasses have inspired interesting development in the field of
granular media. Second, as we saw in this part, granular media can be seen reciprocally as a
very convenient experimental system for studying the microscopic features of the structural
relaxation close to the glassy state.

4 Looking for a statistical description

As just stated, one of the key ingredients of the non-trivialphenomenology observed in both
granular media and thermal glasses is the large number of microscopic meta-stable states,
among which the system hops during its slow dynamical evolution. In the context of glassy
systems, Stillinger et al. [65, 66], introduced the conceptof inherent structures, namely the
potential local minima. Following the ideas of Goldstein [36], the phase space trajectory of
the system can be described as successive steps among the potential basins. The entropy is
then claimed to be separable into one vibrational part accounting for the vibrational modes
around the minima and one configurational part accounting for the numerous inherent struc-
tures. In the thermodynamical analogy proposed by Edwards [33], that we will discuss in
the following, the mechanically stable states of a granularpacking are given a similar role
to that of the inherent states and called ”blocked states”.

The natural question that immediately arises is that of the weight of these configurations
in a given experiment and how they encode the specificity of the dynamics. Various forms
of the fluctuation-dissipation relation have been generalised to out of equilibrium situations
of thermal systems by Cugliandolo, Kurchan and collaborators [18, 19]. Such generalisa-
tions lead to the definition of an effective temperature for the long-time behaviour of glassy
systems. The existence of such an effective temperature suggests for these systems some
kind of ’ergodicity’ in the dynamics among the meta-stable states. Extending these ideas to
the case of granular media as suggested by Kurchan [48, 49] may provide some validity to
Edwards’ assumption that all blocked configurations in the jammed state are equiprobable
leading to the so called ”Edwards’ ensemble”.

However the situation is far from being clear. Let us recall some of the remarks made by
Bouchaud [12] in his lecture in Les Houches, to motivate the last part of the present lecture:

• Despite phenomenological analogies between temperature and gentle tapping, one
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should keep in mind that tapping is a long-wavelength excitation, whereas tempera-
ture is thought to give rise to very short wavelength excitation. Accordingly detailed
balance and activated process ideas might need to be reconsidered.

• The choice of the microscopic variables is already not obvious. Also, dealing with
continuous variables such as the contact forces for instance, one has to assume the
uniformity of the a priori measure on the forces as done on thecanonical variables
(position and momentum) when building the microcanonical ensemble for particles.
However, in the latter case, the procedure is justified by theLiouville theorem re-
sulting from the Hamiltonian dynamics. In the case of granular media no physical
prescription has been proposed yet.

In this part, we will present Edwards’ proposal, discuss howand whether they can be
tested experimentally and finally produce some recent results on free volume statistics inside
a bi-dimensional granular packing.

4.1 Edwards’ proposal

In the statistical physics of Hamiltonian systems [51, 25],the microscopic configurationsC
are described by the canonical variables prescribed by the Liouville’s theorem, the momenta
and positionsC (pi ,qi) of all particles. In the case of an isolated system with totalenergy
E, one obtains as a stationary state of the Liouville’s equation, a uniform equilibrium prob-
ability density over the micro-states of energyE. Accordingly for a system defined by its
HamiltonianH(pi ,qi):

P(C (pi ,qi)) =
1

Ω(E)
δ (H(pi,qi)−E) with Ω(E) =

∫

∏
i

dpidqiδ (H(pi ,qi)−E).

(27)
The entropy at equilibrium and the temperature are then given following the construction
presented in section 2.2 by:

S(E) = −∑
C

P(C ) ln(P(C )) = lnΩ(E) and β =
1
T

=
∂ lnΩ(E)

∂E
. (28)

Behind this very elegant formalism stand a few but essentialproperties of Hamiltonian sys-
tems. We have already mentioned the prescription for the appropriate microscopic variables
(pi ,qi), by the Liouville’s theorem, which derives itself from the canonical structure of the
equations of Hamilton. One must also consider the symmetries such as the time reversal
and the time translational invariances, the latter giving rise to the conservation of energy.
Finally, assuming that the uniform distribution is the truedistribution of the system is given
by the ergodic hypothesis.

Consider now a granular media close to the jammed state. In Edwards’ description [33,
31, 32], it is first assumed that the volumeV is the key macroscopic quantity governing
the behaviour of the system. Then, it is assumed that the statistics is completely dominated
by the ”blocked configurations”, which are claimed to all have the same statistical weight.
Hence the probability of a configurationC in a system of fixed volumeV is:

P(C ) =
1

Ω(V)
Θ(C )δ (V(C )−V) with Ω(V) =

∫

dC Θ(C )δ (V −V). (29)

whereΘ(C ) is a constraint to restrict the configurations to the ”blocked states”. An analo-
gous entropy and the corresponding analogue of the temperature, named the ”compactivity”
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are then given by

S(V) = −∑
C

P(C ) ln(P(C )) = lnΩ(V) and
1
X

=
∂ lnΩ(V)

∂V
. (30)

Given the very strong properties of the Hamiltonian systemswhich support the equilib-
rium statistical description, Edwards’ proposal looks at first sight a rather crude analogy and
at least calls for a few comments.

• Let us discuss first the choice of the volume. It is a natural extensive macroscopic
quantity and it clearly plays a crucial role in the rearrangements of the grains among
jammed configurations. However, it should be shown that it isconserved by the dy-
namics, a key ingredient for the above construction as illustrated in the first part of this
lecture. The total volume accessible to the grains can be fixed, such as in the shear
experiment conducted in Saclay. Assuming then some tiling of the space accessible
to the grains in a given experiment, the grains rearrangements can be described by a
redistribution of the volume among the grains. In this sense, there is indeed a local
conservation of the volume. Even if the total volume is not fixed, as in most tapping
experiments, on can check that the system is large enough to ensure sufficiently small
fluctuations of its volume. In such a case, provided that the grains rearrangements do
not cascade to the free surface of the packing, the system canserve as a reservoir of
volume for a sub-system, which then has to be described in thecanonical formalism.
Yet, one sees that one important hypothesis is to have enoughlocal redistribution of
the volume.

• The choice of the microscopic variables, as already mentioned, is extremely ambigu-
ous. There is no general prescription neither for the minimal list of relevant physical
quantities, nor for the choice of the appropriate variablesto describe them. Ignor-
ing physical quantities will falsify the computation of thedensity of states. Having
no prescription for the correct choice of variables inducesan irreducible ambiguity
since the uniform measure for continuous variables is not conserved under a change
of variables.

• Time reversal symmetry and the ergodic hypothesis are crucial for assuming a uniform
distribution among the accessible configurations. Given the existence of dissipation
and the very slow compaction of granular media under gentle tapping there is little
chance to observe time reversal symmetry in the general case. Furthermore, even for
a stationary dynamics, checking the existence of micro-reversibility in a real system,
is out of reach of experimental investigations.

Altogether Edwards’ description is a challenging proposal, the implementation of which
is far from being obvious and which calls for experimental and numerical validations. De-
spite some clear examples where Edwards approach fails [35], various checks have been
made so far in mean field models of the glass transition [55], in schematic finite-dimensional
models with kinetic constraints [4, 5], in spin glass modelswith a-thermal driving between
the blocked states [24] and finally in a few more realistic models of particle deposition [14]
or MD simulations of shear driven granular media [53]. Reviewing these studies is out of
the scope of this lecture. It should be stated however that inmost of these works, the accent
is put on the validation of the uniform measure over the blocked states. A given model be-
ing chosen, its dynamics is computed at constant volume. Blocked states are identified and
dynamical averages of macroscopic quantities are comparedwith averages over the blocked
states assuming equal weights. The issue of the proper choice of variables to describe a
granular media is not considered. Finally most of these models use Monte-Carlo algorithm
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to generate the dynamics so that implicitly, the dynamics isreminiscent of an Hamiltonian
kind of dynamics. In the last section, we will discuss what can be tested experimentally in
Edwards’ proposal and present recent results obtained in this direction.

4.2 Experimental test of Edwards’ proposal?

4.2.1 Volume fluctuations

Formula (29) gives the probability of a given configuration of volumeV, according to Ed-
wards’ proposal. In order to investigate its validity, let us assume that the probability dis-
tribution over the blocked configurations isnot uniform, but given by a densityf (C ). For-
mula (29) then turns into:

Pµ(C ) =
1

Zµ(V)
f (C )Θ(C )δ (V(C )−V) with Zµ(V) =

∫

dC f (C )Θ(C )δ (V(C )−V)

(31)
As for usual thermodynamics, it is uneasy to study an isolated system since the experimen-
tally measurable quantities of interest are then fixed from the outside. The usual way to
proceed is to consider a subsystem, free to exchange volume with a reservoir, that is a sys-
tem in the canonical situation. We have seen in the first part of this lecture, section 2.2,
equation (12), that,provided that both f(C ) and Θ(C ) factorize for any partition of the
system, the canonical probability distribution can be written :

Pc(C ) =
1

Zc(X)
f (C )Θ(C )exp−(V(C )/X) with

1
X

=
∂ lnZµ(V)

∂V

∣

∣

∣

V∗
, (32)

whereV∗ is the most probable value of the volume of the reservoir.
This probability distribution is still out of reach of experimental and even numerical

investigations, since it requires to sample all microscopic configurations. However, as seen
in section 2.2, equation (15), the usual thermodynamical equalities remain valid, so that the
fluctuations of the volume can be related to the average volume by:

〈V2〉− 〈V〉2 = X2∂ 〈V〉
∂X

. (33)

Inverting this relation, one can in principle extract from the simultaneous measure of〈V〉
and〈V2〉 the dependance of the compactivity on the volumeX(V). This is precisely what has
been done by Schröter et al. [62] in the Austin experimentalset-up presented on figure( 3d)
and that we will now discuss in more details.

In their work Schröter et al. [62] use a periodic train of flowpulses in a fluidized bed. A
column of glass beads in water is expanded by an upward streamof water until it reaches a
homogeneously fluidized state, and then the flow is switched off. The fluidized bed forms a
sediment of volume fractionΦ, which depends in a reproducible way on the flow rate of the
pulse. This forcing results in a history independent steadystate where the volume exhibits
Gaussian fluctuations around its average value. The historyindependence is demonstrated
by ramping up and down in flow rate ; both the averaged volume fraction Φavg and the
standard deviationσΦ depend only on the flow rate of the last flow pulse, not the earlier
history of the bed.

As shown on figure 21(a) the variation ofσΦ with Φavg is well fitted by a parabola
with a minimum for some specific value of the averaged volume fraction. Relating this
minimum of the fluctuations to a maximum in the number of statistically independent spatial
regions at the moment of solidification, the authors suggestthe following explanation. For
smaller volume fraction, the sample is more fragile and local rearrangements induce large
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reorganisations. For larger volume fraction, the free volume becomes smaller, the system is
more jammed and any local rearrangement requires a large reorganisation of the packing.

(a) (b)

Figure 21:Fluctuations and compactivity in Austin experiment (a): Volume fluctuations
as a function of the mean volume. (b): Compactivity as a function of the mean volume.

Using the relation (33), the authors derive the following relation

λρ
m

∫ Φ

ΦRLP

dφ
(

φ
σφ

)2

=
1

X(Φ)
(34)

where it has been assumed in the spirit of Edwards’ proposal that X(ΦRLP) = ∞ and that
ΦRLP is obtained in the limit of very large flow rate. Note that in the present lectureλ ,
the equivalent of the Boltzmann constant, has been fixed to one. This relation leads to
the dependance of the compactivityX on the averaged volume fractionΦavg displayed on
figure 21(b).

The above results are the very first experimental measurements of the so-called com-
pactivity. Unfortunately, in the absence of a theoretical prediction for the dependence of the
compactivity on the volume, they do not check Edwards’ proposal in anyway. As a matter
of fact, for any system, in any situation, it is always possible to first measure the averaged
value and the fluctuations of any given macroscopic observable V, thendefine Xassuming
a thermodynamical relation such as (33) and obtainX(V).

4.2.2 Free volume distributions

To go one step further, one might think of investigating the full probability distribution of
the volume, not only at the scale of the packing but for subsystems of increasing sizes. From
the canonical probability distribution (equation 32), onereadily computes the probability of
observing a volumeV in a subsystem ofN grains:

Pc(VN) =
∫

dC Pc(C )δ (V(C )−VN) =
Zµ(VN)

Zc(X)
exp−VN/X, (35)

Apart from the exponential weight, most of the information about the system lies in the
pre-factor dependance onVN. Hence, one crucial step to go further is to precise what are
the variables which describe the microscopic configurations. Given the role played by the
volume, it could be natural to consider the volumeswi associated to each grain through some
tiling of the space, as suggested by Edwards. However, it is clear that the choice of such
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a set of variables is not sufficient since it does not include the forces at the contacts. As a
consequence one will have to include a density of stateρ(w1,w2, ...,wN) in the description
and the microcanonical partition function will read:

Zµ(VN) =
∫

∏
i

dwiρ(wi) f (wi)Θ(wi)δ (∑
i

wi −VN). (36)

One already sees that without a theoretical prescription for the density of statesρ , a
formidable task to achieve, there is little chance to test the measuref (wi). Let us take
an example to make this last point more precise. Consider a system for which f (wi) =

∏i w
η−1
i [10, 11] and for whichρ(λw1,λw2, ...,λwN) = λ γNρ(w1,w2, ...,wN). Then intro-

ducing the adimensionalized volumesωi defined bywi = ωiVN/N = ωiνN, one obtains:

Zµ(VN) = (V/N)N−1(V/N)γN(V/N)N(η−1)
∫

∏
i

dωiρ(ωi)Θ(ωi)δ (∑
i

ωi −N), (37)

and thereby

Pc(νN) =
A(N)

Zc(X)
ν(γ+η)N−1

N exp−NνN/X. (38)

This last expression shows clearly that the details of the microcanonical measure (here the
value ofη) cannot be distinguished from the specific properties of thedensity of state (here
the value ofγ). In particular the uniform measure(η = 1) does not emerge as a special case.

However, the microscopic physics of the system remains fully embedded in the micro-
canonical partition function and therefore, it is still of interest to investigate its shape and
in particular to evaluate its dependence on the system size.This task has been conducted
by Da-Cruz et al. [17] in the case of a bi-dimensional packing. The experimental set up
(Fig. 22a) consists in a rectangular glass container which contains 5000 nickel plated brass
cylindrical spacers of two different diametersds = 4mm anddl = 5mm in equal number.
In the following ds has been chosen as the unit length. The cell is half filled witha single
layer of such hard disks mixed together, resulting in an homogeneous and disordered bi-
dimensional packing. The cell is mounted on a horizontal axis and rotated around this axis
in such a way that the grains fall from one side to the other every half cycle. The experi-
mental procedure is the following. The cell starts in a vertical position and is rotated one
cycle, at a constant speed of one cycle per minute. During this cycle, the grains fall from
one side to the other and then back to the initial side. The engine is stopped, the system
allowed to reach a mechanically stable state, and a picture of the bulk is taken. 15 000 of
such cycles are performed. The pictures hence taken displayon average 300 grains. For
each picture the centers of the spacers are located and theirVoronoi diagram is computed
(Fig 22b), taking into account the bidispersity of the assembly. One then collects the area
of the cells along with the type, position and index of the associated grains. Out of these
raw data, the statistical distribution of the free volumes occupied first by one grain, then by
clusters of an increasing number of neighbouring grains areextracted and analysed.

Figure 22(b) displays the distribution of the Voronoi cell areas. The distribution displays
two peaks centered on< vs >= 1.00 (resp.< vl >= 1.49), the averaged area occupied by the
small, (resp. the large) grains computed independently. Also indicated on the figure are the
minimal values that a Voronoi cell can possibly take - the closest regular hexagon- for each
type of grain,vmin

s =
√

3/2' 0.866 andvmin
l =

√
3/2(dl /ds)

2 ' 1.35. Both peaks present a
well defined exponential tail, which is easily isolated whenconsidering the distributions of
the free volume (vf

s,l = v−vmin
s,l ), for each type of grain as shown on the inset of figure 22(b).

Note that these exponential tails and the associated characteristic free volumes should not
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Figure 22: (a) Experimental set-up and sketch of the modified Voronoi tessellation; (b)
Distribution of the Voronoi cells area. Vertical dashed lines : minimal Voronoi cell area.
Vertical dash-dotted lines : conditional average Voronoi cell area. Inset: distributions of the
free volume conditioned by the grain size; (dark): small grains; (grey): large grains

be interpreted as a signature of the Gibbs weight, and thereby as some kind of validation of
Edwards’ hypothesis as sometime suggested in the literature. At least one should consider
larger subsystems.

Accordingly, let us turn to the free volume distributions for clusters of neighbouring
grains. Figure 23(a) displays the distribution of the free volume per grain inside clusters of
N neighbouring grains,vf

N = N−1ΣN
i=1vf

i . The authors choose to describe the distributions
of the free volume per grain inside a cluster ofN neighbouring grains by a Gamma law
of parametersηN andXN as suggested by the the shape of the distributions, the example
discussed here above and the expected convergence towards the gaussian law :

P(vf
N) =

1

XηN
N Γ(ηN)

(vf
N)ηN−1e−vf

N/XN . (39)

whereΓ is the Euler Gamma function. Once chosen the form of the distributions, one com-
putes their first two moments and obtainηN andXN, through the relations< vf

N >= ηNXN

and< vf
N

2
> − < vf

N >2= ηNXN
2. As expected,< vf

N > rapidly evolves towards a con-

stant (figure 23(b)-top). On the contrary< vf
N

2
> − < vf

N >2 varies likeN−α with α =
0.75±0.0025, in contrast with the 1/N dependence expected for independent variables (fig-
ure 23(b)-bottom). Altogether, the distribution of the free volume per grain inside clusters of
N grains is well described by a Gamma law, the parameters of which exhibit the following
dependences onN : ηN = ηe f fNα andXN = Xe f fN−α , with η = 3.5 andX = 0.041.

Altogether, rewriting the above Gamma law in the limit of largeN, one obtains that the
logarithm of the distribution of the free volume per grain inside clusters ofN grains scales
asNαg(v,ηe f f ,Xe f f) with g(v) = η(ln(v/(ηX))− v/(ηX)+ 1), α ' 3/4, ηe f f ' 7/2 and
Xe f f = 0.041. Finally, one can also write the distribution of the freevolume per grain inside
clusters ofN grains as:

P(v) =
1

Z(N,η ,X)
e−Nα( v

X −s(v)), with s(v) = η ln(v), (40)

and thereby1
X = ∂s

∂v

∣

∣

∣

〈v〉
, an exact result given the Gamma law distribution and more generally

expected from a saddle point calculation in the largeN limit.
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Figure 23: Free volume statistics. (a): distributions of the free volume per grain inside
clusters of N grains; the larger N, the narrower the distribution. (b): dependence onN of
the first (top) and second (bottom) moments of the free volumedistributions (◦): computed
from the data; (∗): extracted from the fit of the distributions by a Gamma law; (plain line):
fit of their dependence onN

This central result deserve a few comments : First, the observed non extensive factorNα

is presumably the evidence of long range correlations between the free volumes of individual
grains. Indeed, in the presence of correlations decaying with the distancer as 1/rγ , one has
in two dimensions, forγ < 2, that the second moment of the average ofN centered random
variable scales likeN−γ/2. In the present case, we would thus infer the existence of long
range correlations decaying like 1/r3/2. If the existence of such long range correlations
is confirmed, then the thermodynamical description will have to take them into account in
order to define properly the extensive and the associated intensive parameters. For instance,
the use of the relation (33) as done by Schröter et al. leads to the definition of a compactivity,
which depends on the system size! Also, the existence of suchlong range correlations may
invalid the hypothesis of a local conservation of the volume. Second the above analysis has
allowed to define two effective parameters which characterise the probability distribution
of the free volume for one grain. How do they relate to Edwards’ compactivity? Do they
equilibrate between subsystems put into contact? Is it still possible to define a thermometer
in the most general sense? Many questions remain open.

To conclude this part, testing Edwards hypothesis appears to be extremely challenging.
Whereas much of the focus is usually put on the uniformity assumption for the probability
distribution of the blocked states, we have seen here that inpractice it is hard to distinguish
it from another factorizable distribution, until one has a full microscopic description of
the systems and its dynamics. Conversely, a lot can be learned from the investigation of
the probability distributions of various macroscopic variables. It is of major interest to
understand how many intensive parameters are necessary to describe these distributions and
whether they equilibrate between subsystems in contact. Identifying these parameters would
be a major step in the thermodynamical description of granular systems.
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5 Conclusion and perspectives

In this lecture we have tried to discuss both theoretical ideas and experimental results on
the thermodynamics of granular media and its statistical grounds. After having precised the
concepts of thermal vs. a-thermal systems, we have reviewedthe experimental evidences of
the strong similarities between the granular media close tothe jamming transition and super-
cooled liquids close to the glass transition, at both the macroscopic and the microscopic
scale. Finally, we have discussed in details Edwards’ proposal for a statistical description of
jammed granular media and illustrated the kind of experimental study, which are conducted
in this spirit.

As recalled in the introduction, the understanding of granular media and a-thermal sys-
tems in general is far from being completed. Many of the ideasexposed here will change;
many experimental results will find new interpretations. Let us still stress one more time,
what we believe are the main messages of this lecture in the present state of knowledge.

In the first part, it was shown that the definition of a temperature or an equivalent is ac-
tually not related to the scale of the particles, but to the existence of an extensive conserved
quantity. In the second part, it has been observed that the idea of a unified description for the
glass and the jamming transition has indeed strong evidences at the scale of the individual
particles. Finally, we saw that from an experimental point of view, testing the uniformity of
the measure over the blocked configurations is a chimera, until a full microscopic descrip-
tion of the system is provided. However, in the meantime looking for relevant extensive
and intensive thermodynamical parameters is a key step for achieving a thermodynamical
description of non-hamiltonian systems. In this matter we have stressed that one must be
careful with potential long range correlations and associated non-extensivity.

Finally, let us suggest some further developments in the field. In the first part, we have
seen how to define a thermodynamical equivalent of the temperature for stationary non-
hamiltonian dynamics with a conserved quantity. Kurchan has proposed to extend the defi-
nition of the effective temperature obtained in the glassy regime for thermal glasses, to the
case of a-thermal systems [48]. It would be of great interestto relate both approaches. One
way for instance would be to study glassy regimes in a modifiedversion of the model in-
troduced by Bertin et al [10]. Given the strength of the similarities between granular media
close to the jamming transition and the super-cooled liquids close to the glass transition, and
given the rather easy access to the details of the particles dynamics in the case of the granu-
lar media, it would be of great benefit to further investigatethe mechanisms underlying the
development of the dynamical heterogeneities. Finally, given the possibility of extracting
intensive parameters from the free volume distributions inside a granular packing, it is now
a priority to test whether some of these parameters equilibrate between subsystems.
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[1] R. Stinchcombe A. Lefèvre, L. Berthier. cond-mat/0410741, 2003.

[2] B. Abou and F. Gallet. Probing an nonequilibrium einstein relation in an aging col-
loidal glass.Phys. Rev. Lett., 93(160603), 2004.

[3] H.C. Andersen.PNAS, 102:6686, 2005.

[4] A. Barrat, J. Kurchan, V. Loreto, and M. Sellitto. Edwards’ measures for powders and
glasses.Phys. Rev. Lett., 85:5034–5037, 2000.

[5] A. Barrat, J. Kurchan, V. Loreto, and M. Sellitto. Edwards’ measures: a thermody-
namic construction for dense granular media and glasses.Phys. Rev. E, 63:51301,
2001.

[6] J. L. Barrat and W. Kob.Europhys. Lett., 46:637, 1999.

[7] L. Bellon, S. Ciliberto, and C. Laroche.Europhys. Lett., 53:511, 2001.

[8] L. Berthier. Phys. Rev. E, 69(020201(R)), 2004.

[9] L. Berthier and J. L. Barrat.Phys. Rev. Lett., 89(095702), 2002.

[10] E. Bertin, O. Dauchot, and M. Droz. Temperature in nonequilibrium systems with
conserved energy.Phys. Rev. Lett., 93:230601, 2004.

[11] E. Bertin, O. Dauchot, and M. Droz. Non-equilibrium temperatures in steady-state
systems with conserved energy.Phys. Rev. E, 71:046140, 2005.

[12] J.P. Bouchaud. Granular media: some ideas from statistical physics. lecture given in
Les Houches, 2002.

[13] T. Boutreux and P. G. de Gennes.Physica A, 244:59, 1997.

[14] J. J. Brey, A. Prados, and B. Sanchez-Rey. Thermodynamic description in a simple
model for granular compaction.Physica A, 275:310–324, 2000.

[15] J. Casas-Vasquez and D. Jou.Rep. Prog. Phys., 66:1937, 2003.

[16] A. Crisanti and F. Ritort.J. Phys A: Math. Gen., 36(R181), 2003.

[17] F. Da Cruz, F. Lechenault, O. Dauchot, and E. Bertin. Free volume distributions inside
a bidimensional granular medium. InPowders and Grains 2005, Stuttgart, 2005.

[18] L. F. Cugliandolo and J. Kurchan.Phys. Rev. Lett., 71:173, 1993.

[19] L. F. Cugliandolo, J. Kurchan, and L. Peliti.Phys. Rev. E, 55:3898, 1997.

[20] L.F. Cugliandolo and J.L. Iguain.Phys. Rev. Lett., 85:3448, 2000.

[21] G. D’Anna and G. Gremaud. The jamming route to the glass state in a weakly per-
turbed granular media.Nature, 413:407–409, 2001.

[22] G. D’Anna, P. Mayor, A. Barrat, V. Loreto, and F. Nori. Observing brownian motion
in vibration-fluidized granular matter.Nature, 424:909–911, 2003.

[23] O. Dauchot, G. Marty, and G. Biroli. Dynamical heterogeneity close to the jamming
transition in a sheared granular material. condmat0507152submitted to Phys. Rev.
Lett., 2005.
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[35] C. Godrèche and J.M. Lück. Metastability in zero-temperature dynamics: Statistics of
attractors.J. Phys. Cond. Matt., 2005. to appear, condmat/0412077.

[36] M. Goldstein.J. Chem. Phys., 51:3728, 1969.

[37] T. S. Grigera and N. E. Israeloff.Phys. Rev. Lett., 83:5038, 1999.

[38] G.Williams and D.C.Watts.Trans. Faraday Soc., 66:80, 1970.

[39] D. Herisson and M. Ocio.Phys. Rev. Lett., 88(257202), 2002.

[40] A. Heuer.Phys. Rev. E, 56:730, 1997.

[41] M.M. Hurley and P. Harrowell.Phys. Rev. E, 52:1694, 1995.

[42] C. Josserand, A. V. Tkachenko, D. M. Mueth, and H. M. Jaeger. Memory effect in
granular materials.Phys. Rev. Lett., 85:3632–3635, 2000.

[43] A. Kabla and G. Debregeas. Contact dynamics in a gentlyvibrated granular pile.Phys.
Rev. Lett., 92(035501), 2004.

[44] J. B. Knight, C. G. Fandrich, C. N. Lau, H. M. Jaeger, and S. R. Nagel. Density
relaxation in a vibrated granular media.Phys. Rev. E, 51:3957–3963, 1995.

[45] W. Kob and H. C. Andersen.Phys. Rev. E, 51:4626–4641, 1995.

[46] W. Kob and H. C. Andersen.Phys. Rev. E, 52:4134–4153, 1995.

[47] R. Kohlrausch.Pogg. Ann. Phys. Chem., 91:179, 1854.

[48] J. Kurchan. Emergence of macroscopic temperatures in systems that are not thermo-
dynamical microscopically: towards a thermodynamical description of slow granular
rheology.J. Phys. Condens. Matter, 29:6611–6617, 2000.

[49] J. Kurchan. In A.J. Liu and S.R. Nagel, editors,Jamming and Rheology : Constrained
dynamics on Microscopic and Macroscopics scales, pages 72–79, London, 2001. Tay-
lor and Francis.

[50] N. Lacevic, F.W. Starr, T.B. Schroeder, and S.C. Glotzer. J. Chem. Phys, 119:7372,
2003.

[51] L.D. Landau and E.M. Lifshitz. Pergamon, New-York, 1970.

[52] A. J. Liu and S. R. Nagel. Jamming is not just cool anymore. Nature, 396:21–22,
1998.

39



[53] H. A. Makse and J. Kurchan. Testing the thermodynamic approach to granular matter
with a numerical model of a decisive experiment.Nature, 415:614–616, 2002.

[54] G. Marty and O. Dauchot. Subdiffusion and cage effect ina sheared granular material.
Phys. Rev. Lett., 94:015701, 2005.

[55] R. Monasson. The structural glass transition and the entropy of the metastable states.
Phys. Rev. Lett., 75(15):2847, 1995.

[56] M. Nicolas, P. Duru, and O. Pouliquen. Compaction of a granular material under cyclic
shear.Eur. Phys. J. E, 3:309–314, 2000.

[57] E.R. Nowak, J.B. Knight, E. Ben-Naim, H.M. Jaeger, and S.R. Nagel. Density fluctu-
ations in vibrated granular materials.Phys. Rev. E, 57(2):1971, 1998.

[58] G. Parisi.Phys. Rev. Lett., 79:3660, 1997.

[59] P. Philippe and D. Bideau. Compaction dynamics of a granular medium under vertical
tapping.Europhys. Lett., 60:677–683, 2002.

[60] P. Philippe and D. Bideau. Granular medium undervertical tapping: Change of
compaction and convection dynamics around the liftoff threshold. Phys. Rev. Lett.,
91:104302, 2003.

[61] O. Pouliquen, M. Belzons, and M. Nicolas. Fluctuating particle motion during shear
induced granular compaction.Phys. Rev. Lett., 91:014301, 2003.
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