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Abstract

Granular media, commonly refered to as a-thermal systeney, @ dissipative dynamics
a priori very different from an Hamiltonian evolution. However eyday life and recent ex-
periments suggest that a thermodynamical descriptionasfudar media might be feasible.
Especially in the context of gentle compaction of grainsorgg similarities with the be-
haviour of thermal glassy systems have been underlinedenGhat granular media consist
in a large number of grains, there is a strong motivation forigling a statistical ground to
this hypothetic thermodynamical description. It has begned by Edwards and collabora-
tors that the dynamics is controlled by the mechanicallplsta— the so-called blocked —
configurations and that all such configurations of a givenw are statistically equivalent
This immediately leads to the definition of a configuratiomatropy and the associated state
variable, the compactivity, the formal analogy of a tempeea First attempts to test this flat
measure assumption have been conducted. However, clel@neeiin real granular media
is still lacking. In this lecture, we will first discuss the améng of thermal vs. a-thermal sys-
tems, second review old and new results revealing the ssionidarities between granular
media close to the jamming transition and super-cooleddgjdlose to the glass transition,
and finally present and discuss Edwards proposal, togetitierecent experimental results
on the volume statistics inside a granular packing.
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1 Introduction

Granular media composed of large enough gré&ihs 250um) are often refered to as dissi-
pative a-thermal systems. Indeed the energy necessaryv® angrain is much larger than
ksT, and the interaction between the grains, whether it isidricor inelastic collisions,
involves dissipation. For such systems, despite evideot#dsermodynamical properties,
such as experimentally reproducible relations betweenesaopic quantities, a proper sta-
tistical approach remains to be constructed. Also, thererany similarities between ther-
mal systems close to the glass transition and granular nctatia to the so-called jamming
transition. These similarities have inspired a lot of réseork towards a statistical descrip-
tion of granular media. However, it is important to note tthedre are a priori two different
issues, one being the description of glassy systems (themnat) in the aging regime, the
other one being the identification of a precise prescriptmrthe statistical description of
a-thermal systems in general. Figure 1 summarises the fwrgsponding situations which
have to be considered.

Thermal systems a-thermal systems

Stationary dynamics | Gibbs equilibrium| a-thermal stationary states
Aging dynamics thermal glasses a-thermal glasses

Figure 1:Equilibrium vs. glassy behaviour of thermal vs. a-thernyatems. Temperature
is well defined in the context of equilibrium. Although theepent lecture concentrates
on the glassy behaviour of granular media (second line afrskcolumn), we try in the
first section to clarify the difference between thermal astleamal systems in the simpler
context of stationary dynamics (first line).

In the present lecture, we first try to clarify what is meant HHeast here — by a-thermal
systems, and present a possible illustration in the cowfestiochastic dynamics. Then we
review experimental results on dense granular media. Sesdts clearly deal with the
glassy behaviour of these systems, others concentrateeostdtionary or "super-cooled
liquid” regime. In the following, we introduce the presdign proposed by Edwards as a
ground for a statistical description of granular media. Wéeuks the various elements of
this proposal, especially focusing on the conditions nexglio test them experimentally. Fi-
nally we present some experimental results on the statigiroperties of a dense granular
sample.

This lecture is the result of a research under progress. Mangepts remain to be
clarified. Despite enormous effort in the recent years, nexperimental results are still
lacking and those existing may well find new interpretatioms close future due to the
progresses on the theoretical side. The reader shall taeeiftis : a number of thoughts
which we hope will help and motivate him on his way towardsfseinating world of the
so-called a-thermal systems.



2 Thermal vs. a-thermal systems

2.1 Definitions and general considerations

We first would like to clarify what we mean by "dissipativeletmal system”.

By thermal system one means a system which can couple to tla termal envi-
ronment: the individual components of the system exchamgegg with the individual
components of the surrounding. The molecules of a gas in adroxstance exchange
momentum and thereby kinetic energy with the molecules ®fs surrounding the box.
Matter in general is thermal because the microscopic commsrof matter, the atoms, are
of the same scale.

By a-thermal system one means a system whose individual @oemps are of such a
large scale compared to the components of the surroundighenergy received from the
thermal environment cannot make them move. One also callsiadividual components
non-Brownian particles. The thermal environment only dbaotes to thermalize the matter
of which these components are made. Millimetric steel béadmstance won't rearrange
by thermal motion, but the steel itself is of course at ther@aemperature.

Now, a last concept to discuss is dissipation. One needsnsider three scales, the
thermodynamic scale, the particles scale and a cutoff edbsv which the internal degrees
of freedom of the particles are excluded from the descriptkor instance, in the case of a
gas, one may choose to include in the description the electrnd their excitation levels, but
not the nucleons. As long as the energy of interaction betvee particles is low enough
not to excite these sub-cutoff internal degrees of freedin@,dynamics is conservative.
Dissipation occurs when there is a flux of energy from theesofthe particles to the scale
of the excluded degrees of freedom.

Figure 2 illustrates the above concepts. In the case of tiseiahal systems (fig. 2a), the
particles inside the system exchange energy with each atftewith the particles outside
of the system. The dynamics both inside and outside theryste&onservative and the
internal degrees of freedom are not excited. In the statjosiate, the fluxes of energy are
described by the usual equilibrium statistical physics] Ead to the equilibration of the
well defined usual temperature. In the case of a a-thermsipditive system surrounded by
a usual thermal environment - for instance a granular sygteanlab (fig. 2b)- the fluxes
of energy are different. The particles inside the systemombt exchange energy during
their interaction but also excite internal degrees of fomedxcluded from the description —
such as the phonons. These degrees of freedom, in turn,rgeleaergy with the thermal
environment (fig. 2c). However there is no transfer of endrgyn the thermal environment
to the particles inside the system because of the scale gah é&5system has to be forced
to be maintained in a stationary state different from the res

With such images in mind, nothing prevents from imagining $ituation where both
the system and its surrounding are composed of large scdielgmsubject to a dissipative
dynamics - for instance a small subsystem of a large grarsyisiem (fig. 2d). In this
case, one recovers a situation similar to that of the useairthl systems, in the sense that
particles inside the system exchange energy with the pegtoutside the system. However,
the dynamics are not conservative anymore. Obtaining ms#ay state requires to force
both the system and its environment. Whether the fluxes afggria such a stationary
situation could be described by a generalised statistiogdips, and thereby a generalised
temperature, remains presently an open question of majmriance.
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Figure 2:Flux of energies in thermal conservative systems vs. arthedissipative sys-
tems. The interactions among the various components arediged by straight segments.
The dots are particles of gas inside the system in red an@leutsdark. The blue circles
are grains. The red grids inside the grains symbolise tleeriat degrees of freedom of the
grains. (a): a gas embedded in a gas environment : the pariidide the system exchange
energy with each other and with the surrounding particlefs. g granular media embedded
in a gas environment : grains interact with each other; thiégba of gas also; the grains do
not receive energy from the gas. But, as shown on (c¢): (zoo(b)dtthe grains dissipate
— flux of energy towards the internal degrees of freedom, amslised by the arrow loop
—, which in turn exchange energy with the gas. (d): a subsystiegrains inside a larger
system of grains. The gas is ignored in the description. That®n is very similar to that
of (a) except for the dissipation which must be taken intmaat



2.2 lllustration in the context of stochastic dynamics

In the following we will describe a class of systems which maynic the above situations
in the context of a stochastic description — using the masfeation formalism.

One crucial goal of a statistical approach for a-thermaidative systems would be to
give a precise definition of thermodynamical intensive paeters and to predict their rela-
tionship with extensive macroscopic variables like enengyolume. Indeed many attempts
have been made to define out of equilibrium temperature [Iibthe context of thermal
glasses, which we will focus on in the next sections, theomodif effective temperature has
been defined recently as the inverse of the slope of the flimtydissipation relation in the
aging regime [19]. This definition was inspired by the dyneahresults obtained within a
class of mean-field spin glass models [18]. A lot of numeriiaulations [58, 6, 63, 9, 16]
and experiments [37, 7, 39, 22, 2, 64] have been conductezbtahte validity of this def-
inition. The situation we want to consider in this sectiorrather different from that of
thermal glasses which are Hamiltonian systems followingmstationary dynamics with
very large relaxation times (first column - second line of fegll). Here we want to focus on
the stationary dynamics of a-thermal particles which fel® non-conservative dynamics
(first line - second column of figure 1).

In order to find a stochastic model that describes in the hesdiple way a given com-
plex Hamiltonian system, without knowing a priori the edarium distribution, one should
at least preserve the symmetries of the original Hamiltosigstem, which are the energy
conservation and the time-reversal symmetry —t. Energy conservation is easily imple-
mented in the stochastic rules by allowing only transitibesween states with the same
energy. On the other side, the time-reversal symmetry itddmailtonian system can be in-
terpreted in a stochastic language as the equality of twosifgptransition rates between the
micro-statesx and3: W(B|a) =W(a|f), a property called micro-canonical detailed bal-
ance or micro-reversibility. In the context of a dissipatilynamics, the energy is not con-
served anymore and one expects the time-reversal symnmethereby micro-reversibility
to break down. In the most general case, there are littlecghtongo any further in the de-
scription. Following [10, 11] we consider here a subclassuith systems for which we
assume that the dynamics still conserves some other quantiet us call it U.

The stochastic evolution is given by the master equation:

T = T WaBIRs(Y - WiBla )Ry )

wherePy (t) is the probability of the micros-tate. In the hamiltonian case, the stationary
regime is given by the uniform distributioRy = 1/Q(E), whereQ(E) =5, 0(Eq —E) is
the number of states of energy E. When micro-reversibifitiprioken, the microcanonical
stationary distribution is a priori not uniform anymorgy = f4/Z,(U), where f, is the
statistical weight of the configuration andZ,(U) = 5, fa6(Uqs —U) can be called a
microcanonical partition function. Indeed, the consaorabfU was chosen so as to mimic
a microcanonical situation. Yet, one sees that the absehogcoo-reversibility already
yields an important difference, the non uniformity of that&tnary distribution.

In order to define a temperature in this context, one can tigikow a procedure similar
to that of the equilibrium statistical physics. For an eipuillm system in the microcanon-
ical ensemble, temperature is introduced in the followiraymConsidering a large system
. with fixed energy, one introduces a patrtition into two submys.; and.¥, with en-
ergyE, (¢ = 1,2). These two subsystems can mutually exchange energyntheanstraint
is that the total energ¥ror is fixed, and that the energy of interaction is small so that
Eror = E1 + E2. The key quantity is then the numb@r, (E;) of accessible states with
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energyE, in the subsyster”;. Assuming that the subsystems do not interact except by
exchanging energy, the number of states of the sys#rmompatible with the partition
(Ex, E2) of the energy is equal 8 o, (E1)Q ., (E2). SinceE; + E; is fixed, the most proba-
ble valueE; is found from the maximum, with respect g, of Q o, (E1)Q ., (Etor — E1).
Maximising this product with respect &, one finds the usual result:

0|nQyil _0|nQy72

= 2
0By IE; 0E, I|E-E; @
Defining the microcanonical temperatufeof subsystent by the relation
1 aln QN[
= = : 3
Tg 0Eg E; ( )

one sees from Eqg. (2) thai = T, i.e. that the temperatures are equal in both subsystems
(throughout the lecture, the Boltzmann constignis set to unity). In addition, it can be
shown that the common valde does not depend on the partition chosen; as a reBu#,
said to characterise the full systeffi.

Very interestingly, this microcanonical definition of teempture can be generalised in
a rather straightforward way to the more general case thatomsider. Yet, it should be
noticed first that microscopic configurations compatibléhwhe given value of the con-
served quantityJ are not equiprobable, so th@t., is no longer relevant to the problem.
But starting again from a partition into two subsystemis= {a,} (¢ = 1,2) as above, one
can determine the most probable valijefrom the maximum of the conditional probability
P(U1|Uror) that subsysteny; hasU = U; given that the total conserved quantitydgor.
The conditional distributiof?(U1|Utor) is given by:

P(Uq|Utor) = Z Pa (UtoT) & (Ug, —U1)
acy

1
= -— fy,0(Uy —U o(U,, —U
ZUror) aezy a0 (Ug —Uror) 8 (Ug, —U1)

1
- m aezy fa 0 (Ug, —U2) 8 (Ug, —U1) (4)

Now assuming — this is a major assumption — that the statjodestribution factorizes
(i.e. fg(Ur+Uz) = fg,(U1) fa,(Uz2), one obtains tha®(U1|Utor) may be written in a com-
pact form as:

Zu(U1) Zu(Uror —Uy) 5)

Z,(Uror)

This result generalises in a nice way the equilibrium disttion. Indeed at equilibrium
P(E1|E) = Q(E1) Q(E — E1)/Q(E) andZ, (V) turns precisely int@(E). Finally the most
probable valu¢); satisfies

P(U1|Utor) =

aln P(Ul‘UTOT)
—— = =0 6
oU, Ui (6)
which yields
dlnz,;  dInz, )
oU; lu; 90U, luror-us

So in close analogy with the equilibrium approach, one cdime@n intensive parametgér

for subsystem?; through
1 JdInZ,

Y, U,

(8)

Ug
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Then Eg. (7) implies that; = Y,. It can be shown [11] that can be computed from the
global quantityZ, (U ) instead oz, (U) or Z,,(Uy), and is thus independent of the partition
chosen. This intensive parameter associated to the catigenof the global quantity
characterises the statistical state of the whole system.

Up to now, we have considered only the ‘microcanonical’ (geaeralised sense) distri-
butionPy(U). Yet, it would be interesting to introduce also the analagofithe canonical
distribution. To do so, one must compute the distribuffag(a) associated to a small (but
still macroscopic) subsystemican = {a} of a large isolatetisystem. = {(a,a’)}. The
configurations corresponding to the reservair'} have to be integrated out and one finds
under the same assumption of factorizability,: = fo for the following distribution:

1

Pcan(a) = ; m f(aﬂ/) 5(Ua +Uqy — U) (9)
1
= mfa ;fazé(Ua +Uy —U) (10)

The above summation is nothing but the microcanonical tiartfunction of the reservoir
Z,,(U —Uq), which can be expanded to first order as:

1
In Z"l (U—-Uq) = InZL(U) - VUO’ (11)
assuming thdtl, < U, which is true as long a%:anis much smaller thary’. The derivative
of InZ;,(U) has been identified with /¥ using Eg. (8). Introducing this last result into

Eq. (9), one finally finds

1 Ug
Pcan(a) == m fa eXp<— 7) (12)

whereZcan(Y) = Z,,(U)/Z,(U) —note thatJ is the conserved quantity of the global system
which includes the reservoir and théais the associated intensive parameter imposed to the
subsystem%can.

At this stage, it is worth making a break and to summarise tbwe results. Basi-
cally, it has been shown that for a stochastic dynamics, s not conserve energy but
conserves another extensive quantity, and which does eitheatisfy micro-reversibility :

e one looses the property of uniformity for the probabilitystdbution in the micro-
canonical ensemble;

¢ ifthe microcanonical distribution factorizes, one cali défine an intensive parameter
associated with the conserved quantity;

e this intensive parameter equilibrates between subsystems

e One can compute a canonical distribution, which is diffefemm but similar to the
Gibbs distribution

The last point calls for a special remark. Because of thefeation of the distribution
in the non-uniform measure and the Gibbs weight, the theymaaical algebra remains
valid. First, one can show that the dynamical entropy defased

(1) = =3 Py() n 2B =5 (13)

lisolated here means thatis conserved inside the large system
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is a non-decreasing function of time, which is maximal in $ketionary state with the cor-
responding valu&U ) given by:

1
S(U):—ZPO,(U)InZu(U):InZ“(U) (14)
Second, it is straightforward that
. 0InZcan
) = "oy (15)
un —u" = (—1)”&””;7;Can for n>1, (16)

wherey = Y~1. Finally a generalised free eneryY) is also naturally introduced through
F(Y)==YINZean=(U) =Y S (17)

To conclude this part we shall say that the above formal gyalehich looks encour-
aging for further developments, has its drawback : givenviry strong similarity at the
thermodynamical level with usual thermal equilibrium, itlwe experimentally difficult to
distinguish between the two statistics. We will come bacthie point in section 4.2.

3 Glassy behaviour of granular media

In this part of the lecture we will review a selection of expental results, which underline
the similarity between granular media close to the jammnagdition and super-cooled
liquids close to the glass transition. It is assumed thatehaeer is familiar with the glass
transition. He might otherwise refer to the other chaptéth® present textbook.

3.1 Experimental evidence of the analogy at the macroscopic
level

The first set of experimental results concentrates on egakeaof the analogy at the macro-
scopic level. Generically, one considers a three dimeasisample of grains under com-
paction. We have tried to classify these results accordirige following scheme:

e Relaxation towards a stationary state
e Fluctuations and critical slowing down
e Aging and Memory effects

Accordingly we will browse across the results obtained ffgcent groups to illustrate these
behaviours. For simplicity we will refer to these experintgeby their localisation. Yet, let
us first present the various experimental set-up and pristo©dviously, we can not provide
here with all the details of these experiments, which carobad in the original papers.

Figure 3(a) displays the device used in Chicago by Knight.gdd]. Monodisperse,
2mm diameter glass beads are confined irB8dmm diameter 1m long Pyrex tube mounted
on a vibration exciter. The beads are maintained under vaciithey are prepared in a low
density initial stage of packing fractio®®y = 0.577. No convection was observed. The
vibration is composed of well separated taps of ampli@dEhe acceleration profile of one
tap is shown in the insetl’ = aw?/g is the control parameter. The column density was
measured with capacitors.
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Figure 3: Experimental devices. (a): Compaction under vibration large aspect ratio
column. Knight et al. [44] (Chicago); (b): Compaction undération in a small aspect
ratio cell. Philippe et al. [59, 60] (Rennes); (c): Compactunder cyclic shear. Nicolas et
al. [56] (Marseille); (d): Compaction in a fluidized bed. &iter et al. [62] (Austin); (e):
Vibration. D’Anna et al. [21, 22] (lausanne).
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Figure 3(b) shows a picture of the set-up used in Rennes bippthiand Bideau [59,
60]. A glass cylinder of diameter 10cm, filled with 1mm diaareglass beads up to 10cm
height, is shaken at regular intervals by an electromagmediter delivering independent
vertical taps of amplituda. The experiments start from a reproducible loose pac#igeg-
0.583. Boundary effects are restricted but convection ismviese " = aw?/g is again the
control parameter. The average volume fraction in the Buik estimated by measuring the
absorption of g-ray beam through the packing.

Figure 3(c) presents a different mode of compaction used anskllle by Nicolas et
al. [56]. A parallelipipedic box (1&cm high, 79cm wide and 1@cm deep) full of 3mm
diameter glass beads is submitted to a horizontal shearghrtihe periodic motion of two
parallel walls. The granular packing is confined on the to@lsgctangular plate mounted
on a vertical rail. The volume fraction during the compattfwocess is recorded via the
vertical position of the top plate. The mean initial volurmaction of the packing iy =
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0.592. The lateral plates are oscillating quasi-staticallyween angles=6, 8 being the
control parameter. The volume fraction is recorded in théicad position.

Figure 3(d) illustrates the set-up and protocol used in iaust Schroter et al. [62]. In
an original way, the compaction is conducted in a fluidized tmade of a square bore glass
tube (24.1mm 24.1mm) filled with about@x 10° glass beads of 258 13um diameter.
The beads are fluidized with pulses of temperature-conttale-ionised water. Flow pulses
are generated by a computer-controlled syringe pump sadtitatg a flow pulse the bed
expands until its height reaches a stable value. After eaghgdlise, the bed settles into a
stable time-independent configuration, whose volumeitmags determined by measuring
the bed heighh with two CCD cameras at a 9@ngle.

Finally figure 3(d) displays the apparatus used in LausagrigAnna et al. [21, 22] for
studying the jamming transition in weakly perturbed granuhedia. The granular material,
glass beads of diameter= 1.1+ 0 : 05mm is contained in a metallic bucket of 150mm
height and 94mm diameter, filled to a height of 130mm. Theesyst subjected to taps,
the control parameter beirg the peak acceleration of the container, normalised bydhe a
celeration of gravityg. The granular noise is measured with the help of a torsioitiatse,
the rotating probe of which is immersed in the granular niater

Apart from these experiments, we will also discuss the testitained by Kabla and De-
bregeas [43] in Paris. In their experiment glass beads afelier 4%:m, contained in a glass
cell (30mm 10mm 2mm), fully saturated with pure water, are very gently vibrateithva
piezoelectric actuator on which the cell is rigidly mountéithe mean packing fraction is
obtained by measuring the position of the upper surface efpite with a CCD camera.
One tap consists in a train of square wave vibrations. Theasgopic dynamics induced
by these gentle taps is probed by multi-speckle diffusiveenspectroscopy (MSDWS).

3.1.1 Relaxation towards a stationary state

The very first evidence of a "glassy” behaviour in dense dearmedia under compaction is
the very slow relaxation towards a stationary state with haefined volume fraction. Fig-
ure 4 presents the various compaction curves obtained iexgheriments described above.
Apart from the experiment in Austin (fig. 4(c)), which is vesgecific and to which we will
come back in more details in section 4.2.1, the number ofisapkbvays counted on a log-
arithmic scale. For both the experiments in Chicago (fig))4ad Marseille (fig. 4(b), it
is not even clear that a stationary state is reached witlémtination of the experiment. In
the case of the experiment in Rennes(fig. 4(d), a statiortatg & obtained, but for large
vibration amplitudes only.
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Figure 4: Compaction experiments. (a): Chicago, packing densigs a function of the
logarithm of the number of tap for various amplitude of viiwa ranging froml = 1.4 to
5.4 (inset is the same plot in linear scale); (b): Marseillenpaction curves fof = 5.4°
for two different runs. Insert: semi-logarithmic scale): (Austin, the volume fraction
of the sedimented bed for different flow rat@s (d): Rennes, temporal evolution of the
mean volume fraction for different tapping intensitiesgiang from ™ = 0.96 to 50; (e):
Rennes, collapse of the compaction curves obtained withallles ofl” between 101 and
6.0. X = (Pss— D(t))/(Pss— D(0)) is plotted as a function ai = (t/1)B. The solid line
is the exponential function expected in the case of a stedtelxponential law; (f): Rennes,
two estimations of the relaxation tinteas functions of the inverse of the tapping intensity
r.
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To be more precise, various fits have been proposed to desheabe experimental data.
Both Chicago and Marseille experimental data are best fityetthie heuristic expression :
D, —D(t) 1
®,—®(0) 1+BIn(1+1L)’

(18)

whereas Rennes compaction curves are better describedieyched exponential:

o — B

o a0 = (i) ] a9
where®,,, B, T and®(0) are free parameters depending onlyforThe latter behaviour, in-
troduced by Kohlrausch [47],Williams and Watts [38], oftlenoted the KWW law, is com-
monly observed in the relaxation of thermal glasses, thetcted exponential seemingly
indicating the superposition of several relaxation tim&lso, in the case of Rennes exper-
iment, the relaxation time dependence is reminiscent of @hehius lawr = expg([o/I),
for an activated process (fig. 4f). There has been a lot ofidison about the validity of one
or the other fit. As a matter of fact, both are plausible in thietext of glassy dynamics. The
Arrhenius dependence of the relaxation time is reminisoéstrong glasses, whereas one
interprets the logarithm dependence as the signature afjddrglass behaviour. Indeed, as
emphasised by Boutreux and de Gennes [13], a Vogel-Fuldpariience of the relaxation
time would lead to a logarithmic relaxation of the density.

3.1.2 Fluctuations of density around the steady state

In statistical mechanics the study of fluctuations can bd tsénvestigate the microscopic
states that are accessible to a system maintained at a fingetature. In granular media,
density fluctuations in the steady state are related to tferelit volume configurations
accessible to the grains subject to an external vibratiomyi come back in section 4.1 to
the formal analogy proposed by Edwards to relate the rolgeplay vibrations in a-thermal
systems, such as granular media, and the role of tempeiattlermal systems. For the
moment let us come back to some experimental results obthyn&lowak et al. [57] in the

Chicago experimental set up.
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Figure 5: Density fluctuations around the steady state in Chicagorawpat (a): How
to reach a reversible steady state branch; The sample iarpaein a low density initial
configuration and then the acceleration amplitude is fiostisiincreased — solid symbols —
and then decreased — open symbols. — The upper branch isibb¥esee square symbols.
(b): Power spectrum of the density fluctuations; (c): Reiaxafrequency as a function of
the vibration amplitude.
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We saw in the above section that for small valuek,dfis difficult, if not experimentally
impossible, to reach a steady-state by merely applying fecwuftly large number of taps
of identical intensity. Nowak et al. showed that, in thisesasis possible to reach a steady
state by annealing the system 5(a). Experimentally, theevadl™ is slowly raised from 0 to
a value beyond* ~ 3, above which subsequent increases as well as decredsas ansuf-
ficiently slow ratedl" /dt lead to reversible, steady-state behaviour. i rapidly reduced to
0 then the system falls out of the steady state branch. Aloageversible branch, the den-
sity is monotonically related to the acceleration.[Ais increased both the magnitude of the
fluctuations around the steady state and the amount of hégfuéncy noise increase. Fig-
ure 5(b) displays the power spectrum of the density fluanats(w), where the frequency
w is measured in units of inverse taps. Three characteristionres emerge: (i) a white
noise regimeS(w) ~ w° below a low-frequency cornen , (i) an intermediate-frequency
regime with nontrivial power-law behaviour, and (iii) a it roll-off §(w) ~ w2 above a
high frequency cornekyy . As shown on figure 5(c), bottw and wy increase a§ is in-
creased. Over the relatively small available rangE,dhe variation oty is consistent with
an activated process behavious; = anexp(—o/IN). Approximating to the first order in
I" the bi-univoque relatiopp(I") characterising the steady state branch, one sees that this
mechanically activated law turns into a Vogel-Fuscher ddpace in density, compatible
with the observed logarithmic relaxation, as emphasisdtdrprevious section. Note that
according to this last remark, the distinction betweenngtrand fragile glasses is not really
relevant in the case of a transition controlled by density.

3.1.3 Towards the jammed state

The above results were obtained for large enough exterhaitations. We will now turn to
the behaviour of granular media when the external drivingdsiced. Typically one expects
a transition close t6 = 1 since below this value, the grains are not allowed to liffiafim
the bottom of the container.
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Figure 6:The transition at weak amplitude of vibration (a): 'Asymiitb(after 10000 taps)
density as a function of the vibration amplitude in Chicagpegiment (the two curves cor-
respond to two experimental determinations). (b): Arrberdependance of the relaxation
time as a function of the vibration amplitude in Rennes expent. Inset: variation of the
final volume fraction in the cases where a steady state islcteached.

This is indeed the case as illustrated on figure 6. In the @biexperiment (fig. 6a),
one sees that the densification after 10000 taps significemttleases foF > 1.5. Note that
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this is not a well defined threshold, since it depends on tinebu of taps, as well as on the
details of the experiments. Figure 6(b) shows better eviglari the transition, where one
clearly observes a sharp increase of the relaxation timeswhcreasing below one. The
slope variation in the log-lin plot, which indicates a junmathe 'energy barrier’ of the me-
chanically activated process suggested by the Arrhenius, inds a natural interpretation
in the difference of energy landscape seen by a grain, whittlifes off or not!

Let us now turn to the Lausanne experiment by D’Anna et al],[@here a critical
slowing down, qualitatively analogous to super-coolingdads the glass transition has been
observed. The noise in figure 7(a) exhibits &34 spectrum, characteristic of a diffusive
process, even fobamma< 1. This is already a clear indication that a weakly perturbed
granular medium can display a diffusive behaviour well tetbe fluidization limit.
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Figure 7: Towards the jammed state in lausanne experiment (a): Loguénecy power
spectrum of the torsion oscillator deflection for varioueisities of the taps € [0.025 3.6]
(b): Critical slowing down. The power spectrum level at 1 ldhtained from continuous
vibration measurements. Some points (circles) are olutdirmem tapping spectra. The
dotted line is obtained according to a Vogel-Fuscher Fig. is the perturbation intensity
where the configuration diffusivity, extrapolates to zefo. is the fluidization threshold.
Inset, the same data as in the main panel in a semilogaritpioic

By the Wiener-Khintchine theorem, for & 12 noise, the value of the noise at a given fre-
quency is proportional to the diffusion coefficient. Herftgure 7 displays the characteristic
diffusion coefficient as a function of the vibration amptiufor very small amplitude. One
observes df ; ~ 1 the signature of the vibration-induced fluidization. Setdhe diffusion
coefficient approaches zero critically, that is, the ingemsise level diverges. This critical
approach to zero can be described by a modified Vogel-FusaimeAexpB(I" —IMo)P] with
Mo =0.005 andp = —0.4.

All the above results clearly enforce the analogy betweemgthnular behaviour and the
physics of glass-forming liquids that super-cool.

3.1.4 Aging and Memory effects

Now that the analogy between thermal glasses and denselayramedia has experimental
grounds, it is tempting to look for specific behaviours ofsgkes such as aging and memory
effects in granular media close to the jamming transition.

Aging was indeed experimentally observed by Kabla and Rpdae [43] in Paris using
multi-speckle diffusive wave spectroscopy (MSDWS) to grdbe micron-scale dynamics
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of a water saturated granular pile submitted to discretdeytamps. The pile is first prepared
in a reproducible way at low volume fraction, then submittedhigh amplitude taps until
it reaches a prescribed packing fraction. Only then the s of contacts is probed by
submitting the cell to very gentle taps. Figure 8(a) displthe compaction curves during
the full procedure. One recognises typical compactioneudwing the first stage. In con-
trast, the low intensity vibrations do not induce significamther evolution of the packing
fraction except for initially very loose packs. To quantifye internal dynamics, one mea-
sures the intensity correlation of speckle images — pradilogethe multiple scattering of
photons through the sample —, taken between taps, as adomdtihe number of tagsthat
separate them. This function generally depends on thertotaber of small amplitude taps
tw that have been performed. Accordingly one computes thetitwes correlation function
O(tw,t):

<t + 1)1 (tw) >spi— < 1(tw) >5p

t,t) = , 20
g( W ) < I(tw)z >spk| — < I(tw) >§ka ( )

wherel is the speckle intensity; > denotes the average over several speckles.
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Figure 8:Aging is a gently vibrated granular media in Paris experitfaji The packing
fraction for four experimental runs. Each run consists ofsd fitep in which high amplitude
taps allow rapid compaction of the sample, followed by a saga of gentle vibrations,
during which the internal dynamics is probed. The arrowsciatg the change in tapping
intensity. (b): Two-time relaxation curves for differenaiting time.

Figure 8(b) shows three correlation functions obtainedh wie same sandpile at different
values oft,. These functions, well fitted by stretched exponentialsarty demonstrate an
increase of the relaxation time with). This dynamical arrest is the signature of the aging
behaviour as exhibited in various glassy systems.

As for memory effects, they were observed both in Chicagodsgdrand et al. [42] and
in Marseille by Nicolas et al. [56]. In the case of Chicage granular sample is densified
during a set of three experiments up to the same volumedra®, but with three different
accelerations$ o, "1, andl,. After @ is achieved at timé), the system is tapped with the
same intensity o for all three experiments. As seen in figure 9, the evolutiont £> ty
strongly depends on the history, which is the simplest fofmemory effect. In the case of
Marseille, a periodic shear with inclination andeis first imposed to a random packing,
and at a given time, the shear amplitude is suddenly charmgeddther valué), and later
switched back td;. As can be seen, increasing the shear angle produces a aipid f
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volume fraction, followed by a slow and continuous incredd&en shear angle is decreased
back, a rapid increase of the packing fraction occurs, kaferovering the slower one. This
is another evidence of memory effect in the packing in thessehat points A and B in
figure correspond to packings having the same volume fractiith different responses to
the same shear amplitude.
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Figure 9: Memory effect in granular media under compaction. (a): @hicexperiment,
time evolution of packing fraction for a system which was gatted tqoy = 0.613 at time

to using three different acceleration; = 1.8(e),I'o = 4.2(A), andly = 6.3(¢). After
the densitypy was achieved, the system was vibrated at accelerftjon(b): Marseille
experiment, example of angle variation during the compagpirocess. The insert shows a
close-up of the first jump.

Altogether, we have seen in this section that the jammingsitian of granular me-
dia shares strong similarities — exceedingly slow relaxatcritical slowing down, aging,
memory effects — with the glass transition of super-coolgdidls. These similarities are
not trivial given the very distinct microscopic processeslerlying the dynamics in both
systems: in glassy liquids, relaxation occurs by thermatiiivated rearrangements of the
structure. In granular materials, the thermal environneimeffective and relaxation results
from the local yielding of contacts triggered by externafyplied vibrations.

3.2 Recent experimental results at the grain scale

In this section, we will report recent experimental resultbich deal with the microscopic
behaviour of granular materials under cyclic shear. Théagfdthese experiments is to find a
microscopic ground for the analogy evidenced in the presgrction. The first experiment
was conducted in Marseille by Pouliquen et al. [61] in theicewalready presented. The
second experiment was conducted in Saclay by Marty et gl.d&d Dauchot et al. [23] in
a similar device, but significantly different in several ests. We will first summarise the
results obtained in Marseille before describing in moraitkethose, more recent and more
complete, obtained in Saclay.

3.2.1 Fluctuating motion during compaction

In Marseilles experiment, the goal was to provide a link letwthe macroscopic dynamics
and the microscopic structure of the packing during comgadiy analysing the individ-
ual motion of the grain. Accordingly the particles are treatiduring compaction using an
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index matching method. The first experiments are performedcanstant shear angle. An
example of the particle motion is presented in figure 10, Mibere the plot represents the
successive positions of the particles measured after daedr sycle. At first sight parti-
cles go down as expected for a macroscopic compaction — easvtitution of the volume
fraction in figure 10.1(b)—. On top of this mean vertical désggment, one observes fluc-
tuating motion characterised by ball-like regions as shimthe close-up of figure 10.1(c),
revealing a caging process. The random motion of the pastisltrapped for a while before
escaping and being trapped again in another cage.
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Figure 10:Fluctuating particle motion in Marseille experiment. (Qompaction forf =
5.4°; (a) Volume fraction as a function of the number of cycled.BEkamples of trajectories
during 15 000 steps. The disks give the beads size and iedicatinitial position of the
tracers; (c) Examples of cages (trajectories plotted foetslots between 2500 and 5000
steps). (2): (a) Volume fraction as a function of cycles wlevaries stepwise (see text);
(b) Corresponding trajectory of one particle. Changes lawaorrespond to changeséh

(c) Displacement field measured in the cell wigechanges from 1@° to 1.4°

In order to further investigate the link with compaction peximents are performed where
the shear amplitude is discontinuously decreased. Thesmwnding volume fraction vari-
ation is plotted in figure 10.2(a). As expected from the rsgpesented in the previous sec-
tion, successive increasing steps in volume fraction asemied. The typical microscopic
behaviour of a particle during this experiment is presemefigure 10.2(b). The volume
explored by the particle during its random motion succedgishrinks when the shear am-
plitude decreases because the mean particle displacememtades. However, each time
the shear angle changes, the other particles below thead&tl® experience the same de-
crease in their exploration volume. The result is a net dosvdwnotion observed when
the angle changes. The observed volume fraction variatios tesults from the change in
the volume randomly explored by the particles. This becoohesr in figure 10.2(c) when
looking at the displacement of all the particles during adeudchange of shear amplitude.
In conclusion a simple scenario can be proposed for the catibpgprocess and its memory
effect. The slow dynamics of compaction observed in expeminat a constant amplitude is
to be attributed to the changes of cages. These changesesersible and push the system
towards more and more compact configurations. On the cgntree rapid change of vol-
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ume fraction observed when changing the amplitude is simgdfted to the change of the
cage size, without important structural changes. Thisamplwhy this variation of volume

is reversible and can be recovered by coming back to thequeamplitude of excitation.

The existence of these two processes which affect diffgréime¢ packing volume fraction

explains that memory effects can be observed.

At this stage, it becomes obvious that a detailed statlssitaly of the particles dis-
placements should bring a lot of information. What are ttapprty of diffusion? The cage
changes certainly involve complex cooperative procesdew. are the correlations involved
in such process? In Marseille experiment, the dynamicstistationary and particles ex-
perience only a few cage changes before being trapped infihal location. Also, it was
impossible to follow all particles in their 3D motion.

3.2.2 Cages and diffusion properties without compaction

Answering the above guestions in a steady state situatdliowing all the grains, was the
goal of the experimental set up built in Saclay. A prototypéhe experimental set-up (fig-
ure 11a), allowed Marty and Dauchot to investigate expamtaily the diffusion properties
of a bi-dimensional bi disperse dry granular material urgieasi-static cyclic shear. More
specifically, they studied in detail the cage dynamics rasitde for the sub-diffusion in the
slow relaxation regime, and obtained the values of the aglietrme and length scales. In a
second version of the set-up (figure 11c), which allows tlmfokll the grains in a selected
area of interest, measurements of multi-point correldfimetions are produced. The inter-
mediate scattering function and its self-part, displaystayver than exponential relaxation,
suggest dynamic heterogeneity. Further analyses of foat porrelation functions reveal
that the grain relaxations are strongly correlated andapaheterogeneous, especially at
the time scale of the collective rearrangements. Finallyyraamical correlation length is
extracted from spatio-temporal pattern of mobility. Thegemt section is devoted to the
first set of results, the dynamical heterogeneities beisgrilzed in the next section

(@) (b) ()

Figure 11:Experimental set-up; (a) Prototype used for the measureafehe diffusion
properties (b) Scheme of the shear cell; (¢) Final set-up fmefollowing all grains and
measuring the spatio-temporal correlations.

The first experimental setup is as follows: a bi-dimensiphatlisperse granular mate-
rial, composed of about 6 000 metallic cylinders of diamdtand 5 mm in equal propor-
tions, is sheared quasi-statically in a horizontal defdriegarallelogram of constant vol-
ume (volume fractiond ~ 0.86). The shear is periodic, with a shear amplitédgy = 10°.
The authors follow a sample of 500 of the grains with a CCD adaméhich takes a picture
of the system each time it comes back to its initial posit{n= 0°). The unit of time is
then one cycle, a whole experiment lasting 10 000 cycles.uhiteof length is chosen to be
the mean particle diameter d. The system is prepared by tiaavraction of the grains,
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shaking the remaining sample, putting back all the graind,shearing the system during
10 to 20 cycles at high shear amplitude and rate. Figure 1@shgical trajectories with
well identified cages.
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Figure 12:Evidence of cages. (a) Some tracers trajectories. (b) Gragpical trajectory;
black: 2000 consecutive steps of the same trajectory. Thie éndicates the particle size.
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Figure 13: Diffusion properties (a) pdf of the displacemen®sX(7)/ox for T =
1(e),10(%x),100(0),1000+); the solid line is the Gaussian distribution [inset: non-
Gaussian parameter(1)]; (b) o(1) = /< Ar(1) >; dotted lines show the slopeg4
and 1/2; dashed lines indicate the position of the cross@ret™) [insetox (1) andoy (T);

no anisotropy is observed].

The probability distributiorP(AX (1)) of the displacements of one particle during a time
stept displayed on figure 13(a) for = 1,10,100 1000, exhibit fat tails compared to the
Gaussian case, and thereby confirms the intermittent balraef the dynamics. The non-
Gaussian parameter defined dy= (< AX* > /3 < AX? >2) — 1 (inset of figure) is indeed
different from zero and is maximum, with a plateau, forz 100. For larger times, the
distribution progressively recovers gaussianity. The noean square displacement presents
two regimes (figure 13b): at short times, the dynamics isdifibsive (logarithmic slope
1/4), while it becomes diffusive (logarithmic slopg2) at long times. These results confirm
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and precise the image of particles trapped in cages, whereatlpe size* = 0.3d and the
cage lifetimet* = 300 are given by the the crossover between the two regimes.

Itis of interest to compare these results with those obthirydVeeks and Weitz [69] in a
colloidal suspension of hard spheres, thattlsesmalsystem. This system undergoes a glass
transition for a packing fractio®y = 0.58. Typical trajectories shown on figure 14(left)
and obtained via confocal microscopy fdr= 0.52 exhibit caged motion, with sudden
cage rearrangements. The typical cage size is here alsot@ifraf the particle diameter.
As shown on figure 14(right-a), the motion is diffusive atywshort times, then becomes
sub-diffusive at intermediate time scales, and finally vecs a diffusive behaviour at large
time scales. The sole difference with the granular systethediffusive motion at very
short times, a signature of the thermal activation inducgdhle solvent of the colloidal
suspension. Finally, the non-gaussian parameter (figumggh#b) also exhibits a peak
which becomes sharper whénapproache®y. The type of plateau that has been observed
in Saclay typically occurs fo = 0.52, that is at a relative distance to transition of 10%.
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Figure 14: Evidence of cages. Left: one layer of particles through adfdimensional
sample of the colloidal suspension, with arrows indicatimgdirection of motion for parti-
cles with displacements. Lighter colours indicate pagialith larger displacements. Inset:
120 min. trajectory of one particle from this sample. Righ): Mean square displacements.
(b) Non-Gaussian parameter.

Let us now report the kind of analysis that can be conductéeétter characterise the dy-
namics. A very convenient tool introduced by Doliwa and Hd@6, 27], is the conditional
probability P(x12|ro1) (resp. P(yi2|ro1)) of the projectionx;s (resp. yi2) of the displace-
ment during a given time intervalalong (resp. orthogonally to) the direction of the motion
during a previous time interval of the same duratigreonditioned by the lengthy; of the
motion during the previous time interval.

These quantities are displayed on figure 15. A first obsemvas that the mean value of
V12 is zero, while the mean value @i, is always negative. More precisely, for a given
time interval T, < X;» > decreases linearly withy; for ro; < r*, then saturates at a con-
stant negative value. The decrease is stronger for anaaltl disappears far > t*. On the
contrary, the saturation always occurg@t= r*, a strong indication that the dynamics is
controlled by the cage size. Altogether for displacementaller thanr*, the larger a step
the more anti-correlated is the following step, which reiecsystematic back dragging ef-
fect experienced by the particle trapped in its cage. Faaliements larger thari, a cage
rearrangement has occurred, and so the anti-correlaties dlat increase any more. Yet,
the constancy ok x;, > at this saturation value reveals some memory of the factpiuat
of the trajectory was made in a cage. At largehese effects become weaker, an indication
that cages relax and adapt to the new positions of the entlmsticles. One can even go
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Figure 15: Temporal correlations. (a) and (b) conditional probaiBiit(in colour scale)
P(x12|ro1 and P(y12|ro1; the white traces are the mean valuesq, > and < yj2 >; (C)
< Xp2 > for different values ofr (from bottom to top:t = 100; 300;500) (d) Widths of the
distribution ofx;2(a/,) andyi2(0 ) versusro; for T = 10 andr = 500.

o

further in the interpretation of these distributions byragting their widthsy,, ando ;. The
increase ofo,, with ro; reveals that large steps are more likely for particles whicved
farther during the previous time interval. This is an intiima of the existence of a popula-
tion of fast particles, atypical feature of glass formingtsyns, as pointed out, for example,
in [41, 26, 68]. Second, we see that for short time intertaksjncrease of, is larger than
the one ofo, . This reflects some anisotropy in the motion, as observeldrstring-like
cooperation observed numerically by Donati et al. [28]. Beffects concern movements
on short time scales, since they tend to disappear as thértiereal 7 is increased.

Let us now turn to the investigation of some spatial corietest We choose to illustrate
an other technique introduced by Hurley and Harrowell [h&ked on relaxation times. For
a particlei, the relaxation timdj(r) is defined as the time needed by the particle to reach a
given distance for the first time. The distribution of these relaxation tgrie shown in the
inset of figure 16(a), for = r*.

Defining T ,(r) as the mean relaxation time of the particles contained imcéecdf radius

¢ centred on particlé, then the dependance d@rof the fluctuations off; ,(r) should pro-
vide some information about the typical lengtlover which cooperative effects take place.
A well normalised quantity to compute i82(r) = {(Ti, — Tiavwg)?)) / {(Tia — Tiavg)?)),
whereT, 5y is the mean relaxation time averaged over all partiaie®(r) is plotted versus

¢ for differentr on figure 16(a)m2,(r) naturally decreases withbut is not monotonic with

r. To quantify this, one can plat (defined as the integral of2 over? ) versusr and obtain
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Figure 16:Spatial heterogeneities (a) Second monmes(t) of the relaxation time distri-
bution, for different values of the cutoff distanci®.1(e),0.3(x),0.5(+)]; the dependence
of these curves on is not monotonic (inset: relaxation time distribution for= 0.3) (b)
characteristic length; it has a maximunb* for r =r*,

the curve of figure 16(b)L reaches a maximum of 7 particle diametersifet r* which
means that cage rearrangements are phenomena which impdyaooperation than the
dynamics at other scales and that about a hundred partiglésvalved in such rearrange-
ments. One then sees that cage rearrangements are higlplgratiee phenomena. This,
added to the small value of shows that the picture of a particle escaping from a statie ca
formed by its nearest neighbours is over simplified.

Apart from precising the dynamics of the specific granulateyn presented here, this
section also aimed at illustrating what can be done to ckeniae temporal and spatial
correlations in systems in which one does not have accesgetmotion of all particles.
In the same spirit, it is also possible to investigate sonaiapcorrelations and discuss
the existence of dynamical heterogeneities by consideninlji-time correlation functions.
However the analysis hardly leads to definitive conclusam$would lead us to discussions
which are out of the realm of the present lecture. The readleris/interested can refer to
the original work by Heuer et al. [40] and its application be tpresent system of interest
by Marty et al. [54]. To obtain further evidences of the splatiorrelations, and a better
characterisation of the dynamical heterogeneities, omencalonger avoid to follow all
particles. The next section will present the kind of analyginducted in Saclay in the case
of granular media, taking benefit of the bi-dimensional getmynof the set-up.

3.2.3 Spatial correlations and dynamical heterogeneities

The above sections 3.2.1 and 3.2.2 provided a “microscamafirmation of the similar-
ity between glass and jamming transitions. The typicaktigjries of grains display the
so-called cage effect and are remarkably similar to the ohesrved in experiments on col-
loidal suspension [68] and in molecular dynamics simufetiof glass-formers [45, 46]. As
for glass-formers, and contrary to standard critical shmgadown, this slow glassy dynamics
does not seem related to a growistgtic local order. For glass-formers it has been shown
numerically [3, 41, 50, 8, 70] and experimentally [30] thastead thelynamicsbecomes
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strongly heterogeneous awlgnamical correlationsuild up when approaching the glass
transition. Recent theoretical works [1] and the end of tlewipus section suggest that this
also happens close to the jamming transition.

The aim of the present section is to present the analysiseo$ltiw dynamics close to
jamming measuring multi-point correlation functions akas been done for super-cooled
liquids [45, 46, 34, 29]. First, we shall focus on two poinbdtions, in particular the inter-
mediate scattering function and its self-part, whose stdhan exponential relaxation sug-
gests dynamical heterogeneity. Then we shall turn to foumtmorrelation functions. They
have been introduced for glass-formers to properly meaburamical correlations [34, 29]
and indeed reveal that the dynamics is strongly correlateidneterogeneous. Finally, we
shall focus on spatio-temporal pattern of mobility, out dfigh we extract a direct measure-
ment of a dynamical length-scale.

The second Saclay experimental setup 11(c) contains ar@rdiional, bi-disperse gran-
ular material, composed of about 8.000 metallic cylindémdimmeter 5 and 6 mm in equal
proportions, which is again sheared quasi-statically imaizontal deformable parallelo-
gram. The shear is periodic, with an amplituig.x = +5°. The volume accessible to the
grains is maintained constant and the the volume fractiah 4s0.84. In this set up, it is
possible to follow 2818 grains (located in the center of theick to avoid boundary effects)
with a High Resolution Digital Camera which takes a pictuaetetime the system is back
to its initial position@ = 0. These conditions are very similar to those of the pro®igpd
by repeating the same analysis the cage radius is foundrto-b€.2 and the cage lifetime
t* = 300.

The intermediate scattering function and its self part areroonly used in the literature
when describing the structure and the dynamics of a liquid glass. We still recall here
some useful algebra which will allow us to introduce a moneggeal quantity — the density
overlap — and give us the opportunity to introduce our notesti The very first quantity of
interest is the instantaneous density field.

pn) =Y 8(r—ri(t)) (21)
|
wherer;(t) is the position of thé" particle at timet. One has that

(p(rit)y =p=cst and /drf)(r,t):N hence p= g (22)

Here and in the following, the hatted quantities denote the awerage observable. In the
experiment the average) means a time average over 300 steps separated by 10 cycles
each, taking care that on such time scales the processestiwaary. One then introduces

a generalised density correlation function by considering

Wa(t) = Wh4(t)) = %/drdr’(éﬁ(r,t)wa(r—r’)6[)(r’,0)>, (23)

wheredp = p — p andw,(r —r’) is some kernel with a space scal¢o be precised later.
Replacingp by its definition (21), one obtains after a small calculation

Wy(t) = %/drdr’zw(r—rj(t))wa(r—r’)(S(r’—ri(O)))—ﬁ/drwa(r) (24)
]

_ % <<%wa(rj(t) —1(0)— < Wy >V> (25)

where< . >y is the mean value of the kernel function over the sample veluithe self
part of this correlation function is given by consideringyoane particle, hence the same
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formula replacing(t) by ri(t) and summing over one particle only. When considering the
self part of such a correlation function, one obtains infation about the single particle
relaxation. When dealing with the non self correlation, gaéns information about the
structural relaxation. Usingxp(ik.r) for wy(r), where the space scades given by 2t/k,
W, (t) is nothing but the intermediate scattering functiofk,t). Whenwa,(r) is some over-
lap function decreasing from onerir= 0 to zero for increasing, Ws(t) is called the density
overlap correlation function, further not&(a,t), as introduced by Franz and Parisi [34]
and largely used by Donati et al. [29]. Practically, in thédieing computationsd(r) is
approximated by a Gaussian of widtf80

The self part of the intermediate scattering functiafk,t), where the subscrifgthere
and in the following is for "self part”, is plotted on the ledf figure 17(a) as a function
of time for different values ok ranging from 1 to 29. Contrary to glass-formers there is
no visible plateau in this correlation function althougbrir trajectories it was possible to
identify a clear cage effect as seen in the previous sectigrussible explanation is that the
difference between the time-scales for the relaxatiordn$ine cage and the escape from
the cage is not large enough to give rise to a clear plateacexor very smalk the
decrease ofs(k,t) is slower than exponential in time. A good fit is provided byratshed
exponential: exp-(t/1(k))P®]. We plot on the right of figure 17 (k) (top) andB(k)
(bottom) as a function of. At smallk the relaxation time scales &s? and the exponent
B(K) is one. As expected, the grains perform a Brownian motioraagel length and time
scales and thereforg(k,t) ~ exp(—Dk?t) for smallk and larget [D is the self-diffusion
coefficient of the grains]. Increasirigthe stretched exponent decreases and is of the order
of 0.7 for k of the order of 21, corresponding to the inter-grain distance, and even |darer
higher values ok. A very similar behaviour has been found in numerical sirtioifes of
glass-formers [45, 46]. Also the decreaser @) steepens sharply for larde This might
be related to the sub-diffusive behaviour observed in tegipus section : at short time the
displacement distribution is roughly Gaussian with a vareavarying as'/2 (nott like for
standard diffusion). Hence, it would be natural that atddeghe relaxation time went as
k=*. An overall very similar behaviour for the intermediate tseang functionF (k,t) (not
plotted here) is obtained.

(a) (b)

Figure 17:Time correlations (a)Fs(k,t) as a function of time for different values of the
wave-vectork = 1,3,...,29. The black lines represent fits of the form pxft/1(k))P™];
on the right: (k) (top) andB(k) (bottom) as a function ok. (b): Qa(t) as a function of
time fora=0.05,0.1,...,0.5.
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Dynamical heterogeneity is one of the possible explanatiothe non-exponential re-
laxation ofFs(k,t) (and ofF (k,t)): the relaxation becomes slower than exponential because
there is a wide spatial distribution of time-scales [30]wdwer this is not the only possible
scenario [20, 30]. In the following we want to go one stepHartand show direct “smoking
gun” evidences of dynamical correlations. The proper wayrteeil these correlations is
through the fluctuations of the correlations [34]. The ide¢éhiat the temporal correlation
is itself the order parameter of the transition. Accordingfis fluctuations should unveil
correlations exactly as fluctuations of the magnetisatioreil magnetic correlations close
to a ferromagnetic transition. These fluctuations are dbaraed by four points correlation
functions generically defined as:

~

XM = N((Wat)— Mat)?) (26)

whereW, can be the intermediate scattering function, the densigylap, or their self part.
It happens that the complex exponential kernel used to rarghe intermediate scattering
function -historically justified by the light scatteringm@riments- induces artificial fluctua-
tions which prevent from properly computing the correspogos. From that point of view,
the density overlap is much more convenient. Figure 17@&pldysQ(a,t), where the over-
lap functionw;,(r) has been chosen as a non-normalised Gaussign) = exp(—r?/2a?).
The evolution 0fQ3(t) is a measure of how long it takes for the systems to de-coeréfam
its density profile at timé = 0. One can verify that the behaviour @Qfa,t) is very similar
to that ofFs(k,t), as for glass-formers [34, 50].

100 ikt 107 ik

(b)

Figure 18: Four-points correlations (aofs(t) as a function of time for values & =
1,3,...,29. Inset: Log-Log plot foik = 7,9,11,13. (b);(f(t) as a function of time for
values ofa=0.05,0.1,...,0.5. Inset: Log-Log plot fola = 0.1,0.15,0.2,0.25.

Figure 18(a) displayxfs(t) fork=1,3,...,29. It has the form found for glass-formers [3,
50, 8, 70, 67]: it is of the order of one at small and large tirzued displays a peak at a time
somewhat larger than the cage lifetime. The Iarg§§(lt) is obtained fok = 9 correspond-
ing to a length of the order of the cage size. The behavioumatlsand large times is in
a sense expected since in these Iim(ifé(t) can be related to static correlation functions,
which, as discussed previously, do not show any long randero®’lternatively the peak
is a clear signature of dynamic heterogeneity and showstlieatlynamics is maximally
correlated on time-scales of the order of the relaxatior tifarough estimation of the cor-
responding dynamical correlation length is obtained bwyiifiging the peak ofxfs(t), of

the order of 100, to a correlated améhzet, leading to a lengtlEhe: O 6 in agreement with
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the estimate of the previous section. Very similar resuisfaund forxf (t) as shown in
figure 18 fora= 0.05,0.1,...,0.5. Itis interesting to note that, as found for glass-formers
in [50], the main contribution to(f (t) comes from the fluctuations of the self-part@f
Indeed we checked that for small and intermediates(t) ~ x=(t) and only fora > 0.25
one starts to see a difference. The growtb(ﬁf(t) (resp. xf(t)) before the peak seems to
follow a power law with an exponent which dependskdresp.a) and varies between 1 and
2/3. As discussed in [67] the form gff* and x2 provides interesting information on the
mechanism behind dynamical heterogeneity. Such power &vaours with exponents
between 1 and /3 suggest that the dynamic correlations cannot be inducéutlependent
defects or free volume diffusion [67].

It would now be very interesting to have some insight on thaiaporigin of the fluctua-
tions evidenced by the computationof(t). One way to understand how these fluctuations
relate to spatial heterogeneities of the dynamics is togose, sayQ(a,t) in local con-
tributions: NQ(a,t) = p [ drda(r,t) wheredi(r,t) = 1/p [ dr'dp(r,t)\Wa(r —r')dp(r’, 0).

50

a0 10 40 50 &0 o] 10 i 30 40 50 60 70

(€) (d)

Figure 19:Grey-scale plot ofjag(r,t), att = 154,435 11132526 from top to bottom in a
grey-scale § = 0.15). Black regions correspond to lower valuesigf The displacements
of the particles during the interval of tinteare plotted in yellow. The yellow dots are
particles that have been lost during tracking.

Using this last expression one finds th&(t) = p [ drG@(r,t) whereg (r,t) = ([Ga(r,t) —
(Ga(r,t))][6a(0,t) — (Ga(0,1))]). This last expression states tbaff(t) is nothing but the
mean value over the sample of the spatial correlations artenigcal temporal correlation.
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It clearly shows that a large valuepf(t) has to be related to long range spatial correlations
of Gf(r,t), which is the spatio-temporal representation of the losmidoral correlations.

Figure 19 presents a grey-scale plot of the self-patr,t) = 5; 8(r —r; (0))wa(ri(t) —
ri(0)) fort = 1544351113 2526 anda = 0.15. By definitiongag(r,t) measures in a coarse
grained way the local mobility: if the particle that was do®r att = 0 moved away
more thana in the time intervak thengag(r,t) ~ 0. The yellow lines in figure 19 are the
particle displacements in the time intervallhe four chosen time intervals correspond from
top to bottom to short-times, relaxation times, moderatg) lbmes, long-times. At short-
times € = 154) only few particles have moved and from figure 19 it appdlaat they do
so in a string-like fashion. On larger times= 435 1113) the relaxed regions are ramified
and finally, at very long timet(= 2526) the overall majority of the particles has moved
substantially but there remain few (rather large) regioosyet relaxed. These findings,
similar to the ones found in simulation of super-coolediliigu3, 50] and experiments on
colloidal suspensions [69] suggest that the mobility isaaiged in clusters, which are the
direct visual evidence of the dynamical heterogeneities.

pf(én) ' ' ' In G,(rt=438)

(a) (b)

Figure 20: (a): Self part of the Van Hove correlation function after alag integration
att = 438; the continuous line is the pdf obtained assuming a Gauskstribution. (b):
INn(G4(r,438)) as a function of; the straight line is a linear fit.

To further quantify the heterogeneities, we estimate hogelés the mobility difference
between fast and slow grains. Figure 20(a) displays thepsetfof the Van-Hove corre-
lation function, i.e. the probability distribution of theains displacements amplitudes for
t = 438 (corresponding to the maximum x)f(t)). It clearly demonstrates the excess of
fast and slow grains compared to the distribution obtainedmassuming a Gaussian pro-
cess (in continuous line). The fast grains are roughly fineetfaster than the slow ones.
Furthermore, we obtaif4(r,438) by computing the radial autocorrelation af(7,t), and
averaging over ten realizations. Figure 20(b) shows @gt,438) decays exponentially
over a characteristic dynamical length= 7, in agreement with the value obtained from the
peak ofx /.

3.3 Partial Conclusion

In this second part of the lecture, we have seen that the@naliserved at the macroscopic
level between dense granular media close to the jammingiti@mand super-cooled liquids
close to the glass transition has indeed microscopic gmubespite the difference in the
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driving mechanisms — a mechanical instead of a thermalrfgrei the diffusion properties
of a single particle and the collective relaxation of theteysshare very strong similarities
including the existence of a dynamical length increasintpatransition.

At the root of these very strong similarities is the physitature of the transition. In the
case of thermal systems close to the glass transition, thendigs is dominated by the com-
plex shape of the multidimensional potential energy laagec The thermal activation being
weaker and weaker, the system spend more and more time irstabla states. Eventually
the system does not equilibrate on experimental time sealdsfalls out of equilibrium.
In the case of the dense granular systems under gentle gotbia grains rearrange among
mechanically stable configurations which are the equitaléthe meta-stable states. When
the external forcing is decreased, or when the density is&sed, the grains rearrangements
become more and more difficult to produce. In both casesglh&ation evolves towards a
global structural relaxation involving collective behawis and characterised by dynamical
heterogeneities.

As a matter of fact, the analogy is so strong that the glassitian can be seen as a
specific case of jamming transition as suggested by Liu argeN&2]. The interest of
such a unifying view is double. First, as we shall see in teepart of the present lecture,
theories developed in the field of glasses have inspiredsisiiag development in the field of
granular media. Second, as we saw in this part, granularanoadi be seen reciprocally as a
very convenient experimental system for studying the nsioopic features of the structural
relaxation close to the glassy state.

4 Looking for a statistical description

As just stated, one of the key ingredients of the non-tripte@énomenology observed in both
granular media and thermal glasses is the large number obsaiopic meta-stable states,
among which the system hops during its slow dynamical eiaiuin the context of glassy
systems, Stillinger et al. [65, 66], introduced the conadphherent structures, namely the
potential local minima. Following the ideas of Goldstei®]Xhe phase space trajectory of
the system can be described as successive steps amongehtgbdiasins. The entropy is
then claimed to be separable into one vibrational part atawy for the vibrational modes
around the minima and one configurational part accountinthtBonumerous inherent struc-
tures. In the thermodynamical analogy proposed by Edw&8] fhat we will discuss in
the following, the mechanically stable states of a granpéaking are given a similar role
to that of the inherent states and called "blocked states”.

The natural question that immediately arises is that of thiglht of these configurations
in a given experiment and how they encode the specificity @dynamics. Various forms
of the fluctuation-dissipation relation have been gensgdlito out of equilibrium situations
of thermal systems by Cugliandolo, Kurchan and collabosafb8, 19]. Such generalisa-
tions lead to the definition of an effective temperature figr lbng-time behaviour of glassy
systems. The existence of such an effective temperatuigestgyfor these systems some
kind of ergodicity’ in the dynamics among the meta-stalildes. Extending these ideas to
the case of granular media as suggested by Kurchan [48, 49prgide some validity to
Edwards’ assumption that all blocked configurations in ttrarjped state are equiprobable
leading to the so called "Edwards’ ensemble”.

However the situation is far from being clear. Let us recathe of the remarks made by
Bouchaud [12] in his lecture in Les Houches, to motivate #s¢ part of the present lecture:

e Despite phenomenological analogies between temperatutegentle tapping, one
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should keep in mind that tapping is a long-wavelength etioita whereas tempera-
ture is thought to give rise to very short wavelength exicitat Accordingly detailed
balance and activated process ideas might need to be rdecathi

e The choice of the microscopic variables is already not alsioAlso, dealing with
continuous variables such as the contact forces for instamme has to assume the
uniformity of the a priori measure on the forces as done orctmnical variables
(position and momentum) when building the microcanonicedeenble for particles.
However, in the latter case, the procedure is justified byLiloaville theorem re-
sulting from the Hamiltonian dynamics. In the case of granuhedia no physical
prescription has been proposed yet.

In this part, we will present Edwards’ proposal, discuss lamd whether they can be
tested experimentally and finally produce some recenttsesalfree volume statistics inside
a bi-dimensional granular packing.

4.1 Edwards’ proposal

In the statistical physics of Hamiltonian systems [51, 2%, microscopic configuratiorg
are described by the canonical variables prescribed byitheville’s theorem, the momenta
and positions#’(p;, q;) of all particles. In the case of an isolated system with tetergy
E, one obtains as a stationary state of the Liouville’s eguath uniform equilibrium prob-
ability density over the micro-states of enengy Accordingly for a system defined by its
HamiltonianH (pi, g):

P(6(P.0) = 70 (R.a)~E) with Q(E) = [ []dndas(H(p.a)~E)

(27)
The entropy at equilibrium and the temperature are themgiekowing the construction
presented in section 2.2 by:

SE)=- Z P(#)In(P(¢)) =InQ(E) and B = % = dlndi%(E) (28)

Behind this very elegant formalism stand a few but essepii@berties of Hamiltonian sys-
tems. We have already mentioned the prescription for theogpiate microscopic variables
(pi,qi), by the Liouville’s theorem, which derives itself from thenonical structure of the
equations of Hamilton. One must also consider the symnsestieh as the time reversal
and the time translational invariances, the latter givisg to the conservation of energy.
Finally, assuming that the uniform distribution is the tdistribution of the system is given
by the ergodic hypothesis.

Consider now a granular media close to the jammed state. WaE$’ description [33,
31, 32], it is first assumed that the voluréis the key macroscopic quantity governing
the behaviour of the system. Then, it is assumed that thist&tatis completely dominated
by the "blocked configurations”, which are claimed to all bakie same statistical weight.
Hence the probability of a configuratic#fi in a system of fixed volum¥ is:

P(€) = —O(€)5(V(€)=V) with Q)= / d€0(€)5(V —V). (29

where©(%’) is a constraint to restrict the configurations to the "blatkéates”. An analo-
gous entropy and the corresponding analogue of the tenojperatamed the "compactivity”
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are then given by

SV)=— Z P(€)In(P(¢)) =InQ(V) and % = dlndi(\)/(\/)' (30)

Given the very strong properties of the Hamiltonian systerhieh support the equilib-
rium statistical description, Edwards’ proposal looks &t fsight a rather crude analogy and
at least calls for a few comments.

e Let us discuss first the choice of the volume. It is a naturéresive macroscopic
guantity and it clearly plays a crucial role in the rearrangats of the grains among
jammed configurations. However, it should be shown that ¢bisserved by the dy-
namics, a key ingredient for the above construction agititesd in the first part of this
lecture. The total volume accessible to the grains can bd,fsxech as in the shear
experiment conducted in Saclay. Assuming then some tilfripe space accessible
to the grains in a given experiment, the grains rearrangtsream be described by a
redistribution of the volume among the grains. In this setisere is indeed a local
conservation of the volume. Even if the total volume is nagdixas in most tapping
experiments, on can check that the system is large enougtstoeesufficiently small
fluctuations of its volume. In such a case, provided that théeng rearrangements do
not cascade to the free surface of the packing, the systerserae as a reservoir of
volume for a sub-system, which then has to be described inahenical formalism.
Yet, one sees that one important hypothesis is to have erloaghredistribution of
the volume.

e The choice of the microscopic variables, as already meatipis extremely ambigu-
ous. There is no general prescription neither for the mihiisiof relevant physical
guantities, nor for the choice of the appropriate varialitedescribe them. Ignor-
ing physical quantities will falsify the computation of tensity of states. Having
no prescription for the correct choice of variables induaesrreducible ambiguity
since the uniform measure for continuous variables is nosexwed under a change
of variables.

e Time reversal symmetry and the ergodic hypothesis areariaciassuming a uniform
distribution among the accessible configurations. Givenekistence of dissipation
and the very slow compaction of granular media under geapping there is little
chance to observe time reversal symmetry in the general Easthermore, even for
a stationary dynamics, checking the existence of micrershility in a real system,
is out of reach of experimental investigations.

Altogether Edwards’ description is a challenging propotted implementation of which
is far from being obvious and which calls for experimentad anmerical validations. De-
spite some clear examples where Edwards approach fails J86pus checks have been
made so far in mean field models of the glass transition [85¢chematic finite-dimensional
models with kinetic constraints [4, 5], in spin glass modeith a-thermal driving between
the blocked states [24] and finally in a few more realistic gisaf particle deposition [14]
or MD simulations of shear driven granular media [53]. Remigy these studies is out of
the scope of this lecture. It should be stated however thaioist of these works, the accent
is put on the validation of the uniform measure over the bdocktates. A given model be-
ing chosen, its dynamics is computed at constant volumeckBbb states are identified and
dynamical averages of macroscopic quantities are compdthéverages over the blocked
states assuming equal weights. The issue of the properechbicariables to describe a
granular media is not considered. Finally most of these tsagke Monte-Carlo algorithm
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to generate the dynamics so that implicitly, the dynamiagisiniscent of an Hamiltonian
kind of dynamics. In the last section, we will discuss what ba tested experimentally in
Edwards’ proposal and present recent results obtainedsimlittection.

4.2 Experimental test of Edwards’ proposal?
4.2.1 Volume fluctuations

Formula (29) gives the probability of a given configuratidrvolumeV, according to Ed-
wards’ proposal. In order to investigate its validity, lat assume that the probability dis-
tribution over the blocked configurationsrist uniform, but given by a density(%’). For-
mula (29) then turns into:

H(€)O(€)B(V(€)—V) with Zu(V)= / dE1(€)0(€)3(V (€) V)

(31)
As for usual thermodynamics, it is uneasy to study an isdlagstem since the experimen-
tally measurable quantities of interest are then fixed frobmdutside. The usual way to
proceed is to consider a subsystem, free to exchange volutheweservoir, that is a sys-
tem in the canonical situation. We have seen in the first dfattis lecture, section 2.2,
equation (12), thatprovided that both §¢") and ©(%") factorize for any partition of the
systemthe canonical probability distribution can be written :
1 1 9InZy(V)

= 7.X) f(€)0(%)exp—(V(¢)/X) with <= av (32)

()

whereV* is the most probable value of the volume of the reservoir.

This probability distribution is still out of reach of experental and even numerical
investigations, since it requires to sample all microsc@oinfigurations. However, as seen
in section 2.2, equation (15), the usual thermodynamicaakiges remain valid, so that the
fluctuations of the volume can be related to the average wlyn

2 2 20(V)
(Vo) —(V)c=X X (33)
Inverting this relation, one can in principle extract frohetsimultaneous measure ®f)
and(V2) the dependance of the compactivity on the volUfi&). This is precisely what has
been done by Schroter et al. [62] in the Austin experimesgidup presented on figure( 3d)
and that we will now discuss in more detalils.

In their work Schroter et al. [62] use a periodic train of flpulses in a fluidized bed. A
column of glass beads in water is expanded by an upward swéamter until it reaches a
homogeneously fluidized state, and then the flow is switcliled be fluidized bed forms a
sediment of volume fractio®, which depends in a reproducible way on the flow rate of the
pulse. This forcing results in a history independent stesidie where the volume exhibits
Gaussian fluctuations around its average value. The higidgpendence is demonstrated
by ramping up and down in flow rate ; both the averaged voluraetiin ®,,4 and the
standard deviatiows depend only on the flow rate of the last flow pulse, not the exarli
history of the bed.

As shown on figure 21(a) the variation of, with @, is well fitted by a parabola
with a minimum for some specific value of the averaged volunaetion. Relating this
minimum of the fluctuations to a maximum in the number of statally independent spatial
regions at the moment of solidification, the authors sugtesfollowing explanation. For
smaller volume fraction, the sample is more fragile andllogarrangements induce large
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reorganisations. For larger volume fraction, the free n@becomes smaller, the system is
more jammed and any local rearrangement requires a larggar@sation of the packing.
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Figure 21:Fluctuations and compactivity in Austin experiment (a)lWwoe fluctuations
as a function of the mean volume. (b): Compactivity as a fonabdf the mean volume.

Using the relation (33), the authors derive the followinkatien

2
Ap [® d(p("’> -t (34)

m Jogrepe U_¢ X(®)

where it has been assumed in the spirit of Edwards’ propbsalX(®g p) =  and that
@rp is obtained in the limit of very large flow rate. Note that irethresent lecturd,
the equivalent of the Boltzmann constant, has been fixed éo drhis relation leads to
the dependance of the compactivilyon the averaged volume fractiaby,g displayed on
figure 21(b).

The above results are the very first experimental measutsnoéithe so-called com-
pactivity. Unfortunately, in the absence of a theoretigaldiction for the dependence of the
compactivity on the volume, they do not check Edwards’ psgphdn anyway. As a matter
of fact, for any system, in any situation, it is always polkestio first measure the averaged
value and the fluctuations of any given macroscopic obstrkabthendefine Xassuming
a thermodynamical relation such as (33) and obxgivi).

4.2.2 Free volume distributions

To go one step further, one might think of investigating thik grobability distribution of
the volume, not only at the scale of the packing but for sulesys of increasing sizes. From
the canonical probability distribution (equation 32), eaadily computes the probability of
observing a volum¥ in a subsystem dfl grains:

PL) = [ RSBV () W) = S5 Xp-Wa/X, )
Apart from the exponential weight, most of the informatidsoat the system lies in the
pre-factor dependance &fy. Hence, one crucial step to go further is to precise what are
the variables which describe the microscopic configuratidgiven the role played by the
volume, it could be natural to consider the volumgsssociated to each grain through some
tiling of the space, as suggested by Edwards. However, iear that the choice of such
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a set of variables is not sufficient since it does not includeforces at the contacts. As a
consequence one will have to include a density of gtéve, w-, ...,wy) in the description
and the microcanonical partition function will read:

Zu(Vi) /|‘|dwp W) f (W) O(W) 35 Wi — V). (36)
|
One already sees that without a theoretical prescriptiorihfe density of statep, a
formidable task to achieve, there is little chance to testrteasuref (w;). Let us take
an example to make this last point more precise. Consides@msyfor whichf(w;) =
|‘|iwi'7_1 [10, 11] and for whichp(Awy, AWy, ..., AWy ) = AYNp (W, Wa, ..., wy ). Then intro-
ducing the adimensionalized volumesdefined byw; = wV/N = w vy, One obtains:

Zu(V) = (V/N)N LV /NN (v /NN /ﬂdmp BEa-N. @)
and thereby
AN B
PC(VN):#X))V,EIHU)N L exp—Nvy /X. (38)

This last expression shows clearly that the details of therananonical measure (here the
value ofn) cannot be distinguished from the specific properties ofithsity of state (here
the value ofy). In particular the uniform measufg = 1) does not emerge as a special case.

However, the microscopic physics of the system remaing &rhtbedded in the micro-
canonical partition function and therefore, it is still otérest to investigate its shape and
in particular to evaluate its dependence on the system 3iais. task has been conducted
by Da-Cruz et al. [17] in the case of a bi-dimensional packiii@pe experimental set up
(Fig. 22a) consists in a rectangular glass container whictiains 5000 nickel plated brass
cylindrical spacers of two different diametets= 4mm andd, = 5mm in equal number.
In the following ds has been chosen as the unit length. The cell is half filled avigingle
layer of such hard disks mixed together, resulting in an hggneous and disordered bi-
dimensional packing. The cell is mounted on a horizontad arid rotated around this axis
in such a way that the grains fall from one side to the othenekalf cycle. The experi-
mental procedure is the following. The cell starts in a waitposition and is rotated one
cycle, at a constant speed of one cycle per minute. Durirggcygle, the grains fall from
one side to the other and then back to the initial side. Théneng stopped, the system
allowed to reach a mechanically stable state, and a picfuteedoulk is taken. 15 000 of
such cycles are performed. The pictures hence taken displawerage 300 grains. For
each picture the centers of the spacers are located andreinoi diagram is computed
(Fig 22h), taking into account the bidispersity of the adslgmOne then collects the area
of the cells along with the type, position and index of theoaiged grains. Out of these
raw data, the statistical distribution of the free volumesupied first by one grain, then by
clusters of an increasing number of neighbouring grainesiracted and analysed.

Figure 22(b) displays the distribution of the Voronoi cedas. The distribution displays
two peaks centered onvs >=1.00 (resp.< vi >= 1.49), the averaged area occupied by the
small, (resp. the large) grains computed independentlso Aldicated on the figure are the
minimal values that a Voronoi cell can possibly take - thesekt regular hexagon- for each
type of grainv'" = \/3/2 ~ 0.866 andv"" = \/3/2(d, /ds)2 ~ 1.35. Both peaks present a
well defined exponential tail, which is easny isolated witensidering the distributions of
the free vqume\A(;I = v—v'gjli”), for each type of grain as shown on the inset of figure 22(b).
Note that these exponential tails and the associated dbesdic free volumes should not

34



() o)

Figure 22: (a) Experimental set-up and sketch of the modified Voronsse#ation; (b)
Distribution of the Voronoi cells area. Vertical dasheceBn minimal Voronoi cell area.
Vertical dash-dotted lines : conditional average Vororadi area. Inset: distributions of the
free volume conditioned by the grain size; (dark): smallnga(grey): large grains

be interpreted as a signature of the Gibbs weight, and ther@lsome kind of validation of
Edwards’ hypothesis as sometime suggested in the literaAtrleast one should consider
larger subsystems.

Accordingly, let us turn to the free volume distributions fdusters of neighbouring
grains. Figure 23(a) disPIays the distribution of the frekumne per grain inside clusters of
N neighbouring grainsyy = N—lziN:lvif. The authors choose to describe the distributions
of the free volume per grain inside a clusterMfeighbouring grains by a Gamma law
of parameters)y and Xy as suggested by the the shape of the distributions, the dgamp
discussed here above and the expected convergence tolvamgsussian law :

fy_ ; fyIN—1g—v /X

P(w) = XINT (1) (Vn) € . (39)
whererl is the Euler Gamma function. Once chosen the form of theibligions, one com-
putes their first two moments and obtajg and Xy, through the relations: VL >=NNXN
and < v,i,z > - < v,(, >2= nnXn2. As expected< v,(, > rapidly evolves towards a con-
stant (figure 23(b)-top). On the contraﬁ/v{,2 >—< v,f\I >2 varies likeN~ with a =
0.7540.0025, in contrast with the/N dependence expected for independent variables (fig-
ure 23(b)-bottom). Altogether, the distribution of thedfrelume per grain inside clusters of
N grains is well described by a Gamma law, the parameters aftwdxhibit the following
dependences dd : NNy = NetNT andXy = Xe¢fN~9, with n = 3.5 andX = 0.041.

Altogether, rewriting the above Gamma law in the limit ofgaN, one obtains that the
logarithm of the distribution of the free volume per graisige clusters oN grains scales
asNg(v,Nett, Xetf) With g(v) = n(In(v/(nX)) —v/(nX)+1), a ~ 3/4, Nett =~ 7/2 and
Xeff = 0.041. Finally, one can also write the distribution of the fre@ume per grain inside
clusters ofN grains as:

1 alv .
P(V) — me_l\l (Y_S(V))’ with S(V) =n In(V), (40)

and therebyg% = g—j , an exact result given the Gamma law distribution and moneigdly
\

expected from a saddle point calculation in the laxpiémit.
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Figure 23: Free volume statistics. (a): distributions of the free woduper grain inside
clusters of N grains; the larger N, the narrower the distiiiou (b): dependence dN of
the first (top) and second (bottom) moments of the free voldisigibutions ¢): computed
from the data; £): extracted from the fit of the distributions by a Gamma laglaip line):
fit of their dependence oN

This central result deserve a few comments : First, the gbdaron extensive factdt”
is presumably the evidence of long range correlations batlee free volumes of individual
grains. Indeed, in the presence of correlations decayitiythve distance as 1/rY, one has
in two dimensions, foy < 2, that the second moment of the averag®l aientered random
variable scales lik&l~¥/2. In the present case, we would thus infer the existence @f lon
range correlations decaying like/'rf/2. If the existence of such long range correlations
is confirmed, then the thermodynamical description willdéw take them into account in
order to define properly the extensive and the associateddive parameters. For instance,
the use of the relation (33) as done by Schroter et al. lesitietdefinition of a compactivity,
which depends on the system size! Also, the existence oflsaghrange correlations may
invalid the hypothesis of a local conservation of the volu®econd the above analysis has
allowed to define two effective parameters which charaszetine probability distribution
of the free volume for one grain. How do they relate to Edwatdsmpactivity? Do they
equilibrate between subsystems put into contact? Islipstdsible to define a thermometer
in the most general sense? Many questions remain open.

To conclude this part, testing Edwards hypothesis appedrs extremely challenging.
Whereas much of the focus is usually put on the uniformityiagsion for the probability
distribution of the blocked states, we have seen here thatictice it is hard to distinguish
it from another factorizable distribution, until one hasudl fnicroscopic description of
the systems and its dynamics. Conversely, a lot can be kkdram the investigation of
the probability distributions of various macroscopic ahies. It is of major interest to
understand how many intensive parameters are necessagdokk these distributions and
whether they equilibrate between subsystems in contaentifgling these parameters would
be a major step in the thermodynamical description of geargystems.
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5 Conclusion and perspectives

In this lecture we have tried to discuss both theoreticahsdand experimental results on
the thermodynamics of granular media and its statisticaliigds. After having precised the
concepts of thermal vs. a-thermal systems, we have revidveegkperimental evidences of
the strong similarities between the granular media cloieetgamming transition and super-
cooled liquids close to the glass transition, at both therpsopic and the microscopic
scale. Finally, we have discussed in details Edwards’ palfor a statistical description of
jammed granular media and illustrated the kind of experalestudy, which are conducted
in this spirit.

As recalled in the introduction, the understanding of glanmedia and a-thermal sys-
tems in general is far from being completed. Many of the idegmsed here will change;
many experimental results will find new interpretationst ug still stress one more time,
what we believe are the main messages of this lecture in #eept state of knowledge.

In the first part, it was shown that the definition of a tempa&ebr an equivalent is ac-
tually not related to the scale of the particles, but to thsterce of an extensive conserved
quantity. In the second part, it has been observed that &zedfia unified description for the
glass and the jamming transition has indeed strong evidegicthe scale of the individual
particles. Finally, we saw that from an experimental pointiew, testing the uniformity of
the measure over the blocked configurations is a chimerd,aufull microscopic descrip-
tion of the system is provided. However, in the meantime ilogKor relevant extensive
and intensive thermodynamical parameters is a key stepcfoedng a thermodynamical
description of non-hamiltonian systems. In this matter &eehstressed that one must be
careful with potential long range correlations and assediaon-extensivity.

Finally, let us suggest some further developments in thd.fiel the first part, we have
seen how to define a thermodynamical equivalent of the temyrer for stationary non-
hamiltonian dynamics with a conserved quantity. Kurchamgraposed to extend the defi-
nition of the effective temperature obtained in the glaggyme for thermal glasses, to the
case of a-thermal systems [48]. It would be of great intarestlate both approaches. One
way for instance would be to study glassy regimes in a modifegdion of the model in-
troduced by Bertin et al [10]. Given the strength of the samiles between granular media
close to the jamming transition and the super-cooled ligjaldse to the glass transition, and
given the rather easy access to the details of the partiglesntics in the case of the granu-
lar media, it would be of great benefit to further investigdie mechanisms underlying the
development of the dynamical heterogeneities. Finallyemithe possibility of extracting
intensive parameters from the free volume distributiosédim a granular packing, it is now
a priority to test whether some of these parameters eqaiiiivetween subsystems.
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