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We investigate experimentally within a two-dimensional cell the distribution of the free volume associated either to single
grains or to clusters of grains. Our main result is that the logarithm of the probability to find a free volume per grain vfN in

a cluster of N grains scales as Nαg(vf
N ), with α = 0.75. We interpret this non extensive scaling factor Nα as an evidence

for the onset of long range correlations between the free volumes of individual grains. We also discuss the possible relation
between g(vf

N ) and Edwards entropy.

1 INTRODUCTION
Everyday life and recent experiments suggest that a ther-
modynamical description of granular media might be fea-
sible (Nowak, Knight, Ben-Naim, Jaeger, & Nagel 1998;
Schroter, Goldman, & Swinney 2005). Given that granular
media consist in a large number of grains, there is a strong
motivation for providing a statistical ground to this hypo-
thetic thermodynamical description. However, the station-
ary dynamics of granular media results from the balance
of dissipation and forcing by a non thermal source, so that
it does not leave any known ensemble invariant and little
is known on the typical configurations explored dynami-
cally (Barrat, Kurchan, Loreto, & Sellitto 2000).

Still, it has been argued by Edwards and collabora-
tors (Edwards & Oakeshott 1989; Mehta & Edwards 1989)
that the dynamics is controled by the mechanically stable
–the so-called blocked– configurations and that all such
configurations of a given volume are statistically equiva-
lent provided that the driving involves extensive manipula-
tions, such as shaking, shearing or pouring. This immedi-
ately leads to the definition of a configurational entropy
Sconf(V ), and the associated state variable, the ”com-
pactivity” X−1

conf = ∂Sconf/∂V .
First attempts to test this flat measure assumption have

taken advantage of the analogy between the gentle com-
paction of grains and the aging of glassy systems (Liu
& Nagel 1998; D’Anna & Gremaud 2001). Despite some
clear examples where Edwards’ approach fails (Godrèche
& Luck 2005), explicit checks have been made so far
in mean field models of the glass transition (Monasson
1995), in schematic finite-dimensional models with kinetic
constraints (Barrat, Kurchan, Loreto, & Sellitto 2000), in
spin glass models with non-thermal driving between the
blocked states (Dean & Lefevre 2001) and finally in a few
more realistic models of particle deposition (Brey, Prados,
& Sanchez-Rey 2000) or MD simulations of shear driven
granular media (Makse & Kurchan 2002).

However, clear evidence in real granular media is still
lacking. A steady state, history independent dynamics un-

der vibration has been observed by Nowak et al. (Nowak,
Knight, Ben-Naim, Jaeger, & Nagel 1998), for tapped glass
beads at rather high volume fraction. More recently, a one
to one correspondance between the volume fraction fluctu-
ations and the volume fraction itself have been observed,
so that assuming the validity of the usual thermodynamical
relation < δV 2 >= X2∂ < V > /∂X, a measure of the
compactivity X as a function of the volume fraction has
been derived (Schroter, Goldman, & Swinney 2005).

It would now be of major interest to produce further ex-
perimental evidence of the statistical foundation of such
thermodynamical properties. In the present paper, we re-
port experimental results on the free volume distributions
inside a bidimensional granular medium. We show that the
probability distribution of the free volume per grain inside
a cluster of N grains follows:

P (vf
N ) =

1
Z

e
−Nα

(
v
f
N
X

−s(vf
N )

)
, with

1
X

=
∂s

∂v

∣∣∣
〈v〉

.

2 EXPERIMENTAL SET-UP
The experimental cell (Fig. 1a) consists in a 60cm by 50cm
rectangular glass container with an inside gap of thick-
ness 3.5mm. It contains 5000 nickel plated brass cylindri-
cal spacers of two different sizes in equal number. Both
kind of spacer is 3 mm thick, and their diameters are re-
spectively ds = 4mm and dl = 5mm. In the following ds

has been chosen as the unit length, so that the respective
area of the small and large disks are v0

s = π/4 � 0.78 and
v0
l = π/4(dl/ds)2 � 1.23. The cell is half filled with a sin-

gle layer of such hard disks mixed together, resulting in an
homogenous and disordered bidimensional packing. The
cell is mounted on a horizontal axis and rotated around this
axis in such a way that the grains fall from one side to the
other every half cycle.

The experimental procedure is the following. The cell
starts in a vertical position and is rotated one cycle, at a
constant speed of one cycle per minute. During this cycle,
the grains fall from one side to the other and then back



Figure 1. Experimental set-up and sketch of the modified Voronoi tes-
sellation.

to the initial side. We then stop the engine, wait for a few
seconds to allow the system to reach a mechanically stable
state, and take a picture of the bulk with a CCD camera.
We perform 15 000 of such cycles.

The pictures hence taken display on average 300 grains.
For each picture the centers of the spacers are located and
their Voronoi diagram is computed (Fig 1b), taking into ac-
count the bidispersity of the assembly. We then collect the
area of the cells along with the type, position and index of
the associated grains. Out of these raw data, we extract and
analyze the statistical distribution of the volumes occupied
first by one grain, then by clusters of an increasing number
of neighboring grains.

3 DATA ANALYSIS
3.1 One grain volume distribution
Figure 2 displays the distribution of the Voronoi cell area.
The distribution displays two peaks centered on < vs >=
1.00 (resp. < vl >= 1.49), the averaged area occupied
by the small, (resp. the large) grains computed indepen-
dently. Also indicated on the figure are the minimal values
that a Voronoi cell can possibly take - the closest regular
hexagon- for each type of grain, vmin

s =
√

3/2 � 0.866
and vmin

l =
√

3/2(dl/ds)2 � 1.35. Both peaks present a
well defined exponential tail, which is easily isolated when
considering the distributions of the free volume (vfs,l =
v − vmin

s,l ), for each type of grain as shown on the inset of
figure 2. It shall be noticed that the characteristic free vol-
ume for each type of grain, vf

s
∗

= 0.055 and vf
l

∗
= 0.060

are closer to each other than one would have expected
given the particule size ratio. In other words, the character-
istic free volume accessible to one grain not only depends
on the size of that grain, but also on the neighborhood, most
often composed of grains of both sizes.

Figure 3 displays the distribution of the free volume
without conditioning it by the type of grains. One still ob-
serves the well defined exponential tail, with a character-
istic free volume vf ∗ = 0.058. In the spirit of Edwards’
description, one may assimilate this volume, characteris-
tic of the sample, to a compactivity. This is of course a
rather strong interpretation of the data, since it would be
necessary at least to check that the dependence of the dis-
tributions on this compactivity is indeed fully embedded
in the exponential tail. Still, as an indication, we have
plotted in the inset of figure 3 the quantity ln(ρ(vf )) =
ln(P (vf ))) + vf/vf ∗, the density of states of one grain
surrounded by a free volume vf . It saturates for large free
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Figure 2. Distribution of the Voronoi cells area. Vertical dashed lines :
minimal Voronoi cell area. Vertical dash-dotted lines : conditional aver-
age Voronoi cell area. Inset: distributions of the free volume conditioned
by the grain size; (dark): small grains; (grey): large grains

0 0.2 0.4 0.6 0.8
10

−2

10
−1

10
0

10
1

Vf

P(Vf)

0 0.25 0.5

−5

0

5

Vf

ln(ρ)

Figure 3. Distribution of the free volume including both kinds of grains.
Inset: density of states of one grain surrounded by a free volume vf (see
text for details).

volumes, after a sharp increase for small values.
At this point, it should be noticed that in granular media,

one may not expect the N-body probability distribution for
the volumes of a set of N grains to factorize as a prod-
uct of one-grain distributions, because of possible correla-
tions and degeneracies of the free volume states. In order
to check if one recovers the neat properties of the usual
canonical description for a large enough subsystem of the
grain assembly, we hence turn to the volume distributions
for clusters of neighboring grains.

3.2 Free volume distribution for clusters of neighboring
grains

Now dealing with clusters of grains, the free volume and
the full volume are no longer equivalent, since clusters are
composed of both kinds of grain. Figure 4 (respectively
figure 5) displays the distribution of the volume (resp. the
free volume) per grain inside clusters of N neighboring
grains, vN = N−1ΣN

i=1vi (resp. vf
N = N−1ΣN

i=1v
f
i ).

The distribution of the free volume per grain vfN con-
verges much faster towards a well defined distribution than
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Figure 4. Distribution of the volume per grain inside clusters of N
grains: the larger N, the narrower the distribution
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Figure 5. Distribution of the free volume per grain inside clusters of N
grains: the larger N, the narrower the distribution

that of the volume. Indeed, it is clear from figure 4, in the
case of the volume distributions, as N increases from 1
to 10, that combinatory effects induced by the bidispersity
give rise to series of peaks which complexify the distribu-
tion. For N = 2, one observes three peaks, which are re-
lated to the three two-particles cluster configurations. Sim-
ilarly, for N = 3 –not shown here–, the distribution ex-
hibits four peaks, etc. Such effects are absent in the case
of the free volume distributions (figure 5). Also, describing
the volume distribution imposes to know the minimal value
of the volume per grain, a non trivial quantity for clusters
composed of grains of both sizes, whereas by construction,
the distribution of the free volume readily addresses this is-
sue. Accordingly, we restrict the following analysis to the
free volume distributions.

We propose to describe the distributions of the free vol-
ume per grain inside a cluster of N neighboring grains by
a Gamma law of parameters ηN and XN :

P (vf
N ) =

1
XηN

N Γ(ηN )
(vf

N )ηN−1e−vf
N /XN .

where Γ is the Euler Gamma function. This choice is
motivated by the following considerations. In the hypo-
thetic case where the one-grain free volume distribution

would follow a Gamma law itself of parameter (η1,X1),
if the free volumes inside a cluster were independent vari-
ables, one would have exactly the proposed Gamma law for
the distributions of vf

N , together with the relations (ηN =
Nη1,XN = X1/N). This is a standard property, which
seemingly extends for large enough N in the case where
the one-grain distribution is not a Gamma law (Bertin,
Dauchot, & Droz 2004). Given that in the present case, the
general shape of the one-grain free volume distribution al-
ready shares some of the key property of the gamma-law –
being defined for vf > 0 and exhibiting an exponential de-
pendence for large vf –; given that the distributions seem-
ingly belong to the same functional family irrespectively of
N , it is reasonable to believe that the convergence towards
the gaussian law expected in the limit of very large N will
occur via Gamma laws.

Once chosen the form of the distributions, we compute
their first two moments and obtain ηN and XN , through

the relations < vf
N >= ηNXN and < vf

N

2
> − < vf

N >2=
ηNXN

2. As expected, < vf
N > rapidly evolves towards

a constant (figure 6-top). On the contrary < vf
N

2
> − <

vf
N >2 varies like N−α with α = 0.75 ± 0.0025, in con-

trast with the 1/N dependence expected for independent
variables (figure 6-bottom).
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Figure 6. Dependence on N of the first (top) and second (bottom) mo-
ments of the free volume distributions (◦): computed from the data; (∗):
extracted from the fit of the distributions by a Gamma law; (plain line):
fit of their dependence on N



As a direct consequence of the above analysis, the dis-
tribution of the free volume per grain inside clusters of
N grains is well described by a Gamma law, the param-
eters of which exhibit the following dependences on N :
ηN = ηeffNα and XN = XeffN−α, with η = 3.5 and
X = 0.041. We have also plotted on these figures the de-
pendences extracted from direct fit of the distributions by
the proposed gamma-law; the results are the same.

4 DISCUSSION AND CONCLUSION
Altogether, rewriting the above Gamma law in the limit
of large N , one obtains that the logarithm of the dis-
tribution of the free volume per grain inside clusters
of N grains scales as Nαg(v, ηeff ,Xeff ) with g(v) =
η(ln(v/(ηX)) − v/(ηX) + 1), α � 3/4, ηeff � 7/2 and
Xeff = 0.041. This central result deserve a few comments.

In the case of Poisson Voronoi diagrams in two dimen-
sions –where the centers of the Voronoi cells are randomly
chosen–, it has been shown very recently (Jarai-Szabo &
Neda 2004) that the distribution of the Voronoi cell areas
normalized by the mean area is precisely well described by
a Gamma law of parameter η = 7/2 and X = 1/η. In the
absence of correlations one obtains in the limit of large N ,
that the logarithm of the distribution of the volume per cell
inside clusters of N grains scales as Ng(v, η,X). Let us
now compare our experimental results to this academic sit-
uations of ponctual grains with no hard sphere exclusion,
and no correlations.

First, the observed non extensive factor Nα is presum-
ably the evidence of long range correlations between the
free volumes of individual grains. Indeed, in the presence
of correlations decaying with the distance r as 1/rγ , one
has in two dimensions, for γ < 2, that the second moment
of the average of N centered random variable scales like
N−γ/2. In the present case, we would thus infer the exis-
tence of long range correlations decaying like 1/r3/2.

Second the above analysis has allowed us to define ef-
fective parameters for the probability distribution of the
free volume for one grain. Rather surprisingly ηeff = η:
it seems that the hard sphere exclusion for the grains does
not constraint the value of this parameter.

Finally, one can also write the distribution of the free
volume per grain inside clusters of N grains as:

P (v) =
1
Z

e−Nα( v
X
−s(v)), with s(v) = η(ln

v

ηX
+ 1),

and thereby 1
X = ∂s

∂v

∣∣∣
〈v〉

, an exact result given the Gamma

law distribution and more generally expected from a saddle
point calculation in the large N limit.

Future work will have to check the robustness of the
above results, when varying the type of grains or the dy-
namical protocole. Also, it will be of major interest to be
able to vary the averaged volume fraction of the sample, in
order to investigate the equation of state in the light of the
above statistical description.
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