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Subdiffusion and Cage Effect in a Sheared Granular Material
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We investigate experimentally the diffusion properties of a bidimensional bidisperse dry granular
material under quasistatic cyclic shear. The comparison of these properties with results obtained both in
computer simulations of hard spheres systems and Lennard-Jones liquids and experiments on colloidal
systems near the glass transition demonstrates a strong analogy between the statistical behavior of
granular matter and these systems, despite their intrinsic microscopic differences (thermal vs athermal).
More specifically, we study in detail the cage dynamics responsible for the subdiffusion in the slow
relaxation regime, and obtain the values of relevant time and length scales.
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FIG. 1 (color online). Experimental setup (left: picture; right:
scheme).
Glass forming systems exhibit many intriguing proper-
ties, and their study has generated a large amount of
theoretical as well as experimental work. One of the
main features of their dynamics is what is usually called
the cage effect, which accounts for the different relaxation
mechanisms [1,2]: at short times, any given particle is
trapped in a confined area by its neighbors, which form
the so-called effective cage, leading to a slow dynamics; at
sufficiently long times, the particle has managed to leave
its cage, so that it is able to diffuse through the sample by
successive cage changes, resulting in a faster relaxation.
These mechanisms define the � and � regimes.

Many experiments and simulations have been performed
to study this scenario. In particular, the understanding of
the nature of cages requires microscopic information
which has been essentially obtained in computer simula-
tions of hard spheres systems and Lennard-Jones liquids
(e.g., [3–7]). A suitable way to extract this information in
laboratory experiments consists in using systems under-
going a glass transition composed of sufficiently large
particles so that it is possible to follow them through direct
observation. The main example of this method is the break-
through study of colloidal particles near the glass transition
by confocal microscopy, realized by Weeks et al. [8–10],
who first observed experimentally the cage effect in real
space.

Besides, especially since the crucial experiments of the
Chicago group [11,12], it is widely supposed that dense
granular matter could be considered as an analog of glassy
systems, albeit a rather special one, since it is athermal
[13]. Granular systems also undergo a jamming transition
which shares many properties with the glass transition,
arising the possibility of a unified description [14–16].
Then, granular materials could represent a simple way to
perform accurate measurements and understand the nature
of cages (since grains can be relatively large and then quite
easy to follow through direct imaging [17]) provided one
checks that the analogy noticed at the scale of the sample is
confirmed by a precise study of the diffusion properties at
the grain scale.
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In this Letter, we show that a very simple system such as
a bidimensional bidisperse dry granular material submitted
to a quasistatic cyclic shear indeed behaves the same way
as glassy systems. This similarity is to be understood in the
sense that its diffusion properties evaluated with the same
tools as in numerical studies of glasses [3,4,6] behave
identically. This is a remarkable fact given the fundamental
difference between these thermal or athermal systems.

The experimental setup is as follows (Fig. 1): a bidimen-
sional, bidisperse granular material, composed of about
6 000 metallic cylinders (Ni/brass) of diameter 4 and
5 mm in equal proportions, is sheared quasistatically
(with a shear to confinement ratio [18] I � _�d=

���������
P=�

p
�

10�5) in a horizontal deformable parallelogram of constant
volume (volume fraction � � 0:86). The shear is periodic,
with a shear rate _� � 1:5� s�1 and an amplitude 
max �
�10� [19]. We follow a sample of 500 of the grains with a
charge-coupled device camera which takes a picture of the
material each time the system is back to its initial position
(
 � 0). The unit of time is then one cycle, a whole
experiment lasting 10 000 cycles. The unit of length is
chosen to be the mean particle diameter d. The precision
on the particle center position is 0:01d.

The system is prepared by removing a fraction of the
grains, shaking the remaining sample, putting back all the
grains, and shearing the system during 10 to 20 cycles at
high shear amplitude and rate. This leads to a reproducible
behavior.
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FIG. 2. (a) Some tracers trajectories. (b) Gray: a typical
trajectory; black: 2000 consecutive steps of the same trajectory.
The circle indicates the particle size.
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Figure 2(b) shows a typical trajectory: the particle
spends most of its time confined in a well-defined area
and sometimes escapes during rare and brief events. In the
following, we will refer to this behavior as ‘‘cage effect.’’

In order to precisely define the nature of this motion, we
first study the statistical properties of the displacements
during � time steps: �X��� � X�t� �� � X�t�. The proba-
bility distribution functions of these displacements are
presented in Fig. 3(a), for � � 1, 10, 100, 1000. They are
characteristic of intermittent dynamics, with fat tails com-
pared with the Gaussian case (best fitted by a stretched
exponential), which is usually interpreted as the signature
of the cage effect.

The root mean square displacement ���� �
������������������
h�r2���i

p

presents two regimes (Fig. 3(b)): at short times, the dy-
namics is subdiffusive (logarithmic slope 1=4), which can
be interpreted as the result of the trapping of the particles in
cages during the � relaxation, while it becomes diffusive
(logarithmic slope 1=2) at long times, when particles have
succeeded in escaping from the cages, leading to the �
relaxation. The crossover between the two regimes can
then be considered as a measure of the cage size r
 and
cage lifetime t
 [see Fig. 3(b)]. Here, we find r
 ’ 0:3 and
t
 ’ 300. Note that this value of t
 lies at the end of the
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FIG. 3. (a) pdf of �X���=�X for � � 1 (�), 10 (*), 100 (�),
1000 (+); the solid line is the Gaussian distribution [inset: non-
Gaussian parameter ����] (b) ���� �

������������������
h�r2���i

p
(the error bar

corresponds to a 99% confidence interval); dotted lines show the
slopes 1=4 and 1=2; dashed lines indicate the position of the
crossover which determines r
 and t
 [inset: �X��� and �Y���; no
anisotropy is observable].
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range where the non-Gaussian parameter �, defined as
���� � h�X4i=�3h�X2i2� � 1, is maximum [inset of
Fig. 3(b)]. This can be understood this way: on time scales
much shorter than t
, as time grows, the particles explore
their cage, their statistic being more and more influenced
by cage borders; when time approaches t
, the whole cage
has been explored and the statistic is constructed, so that �
does not change significantly; on time scales longer than t
,
particles diffuse from cage to cage, and their movement is
then less and less influenced by the effect of trapping, so
that � decreases.

Note that the value of r
 is smaller than the one which
could be inferred by direct reading of particles trajectories
[Fig. 2(a)]. Then, we show in Fig. 2(b) that if one plots only
a part of the trajectory, one sees cages of size �0:3, which
superposition finally results in the whole trajectory shown
in gray.

Following Doliwa and Heuer [3,4], we now turn our
attention to the conditional probability P�x12jr01; �� (re-
spectively, P�y12jr01; ��), which represents the probability
distribution of the projection x12 (respectively, y12) of the
motion during a time interval � along (respectively, ortho-
gonaly to) the direction of the motion during the previous
time interval, under the condition that the length of the
motion during the previous interval has the value r01.
Results are shown in Fig. 4. This quantity contains much
information [3]: (i) at a given r01, the distributions are
symmetric around their mean value; (ii) the distributions
are not Gaussian; (iii) the mean value of y12 is 0, while the
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FIG. 4 (color online). (a) and (b) Conditional probabilities (in
color scale or gray scale) P�x12jr01; �� and P�y12jr01; �� (see
text); the white traces are the mean values hx12i and hy12i
(c) hx12i for different values of � (from bottom to top: � �
100; 300; 500) (d) plot of ���� (�) and �est��� (4) [inset: slope
c���].
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mean value of x12 is always negative; (iv) if we focus on the
evolution of hx12i with r01, we observe two regions: for
r01 < 0:3, there is a linear relation between hx12i and r01
(hx12i � c���r01, c���< 0), whereas for r01 > 0:3, hx12i is
a constant. Note that the value of r
 measured using
property (iv), i.e., by the localization of the crossover
between the linear and constant evolutions of hx12i with
r01, is the same as the one extracted from the measurement
of ����.

The slope jc���j decreases with � [Figs. 4(c) and 4(d)],
and is approximately related to the logarithmic slope ����
of ���� by [3,4]: �est��� � 0:5� ln�1� c����= ln4

Figure 4(d) shows both ���� computed directly from
���� and the one computed using this formula. One sees
that the behavior is well reproduced, despite a little offset
which might be due to the approximations made in the
calculation of �est.

To go further in the interpretation of these distributions,
we extract their widths �== and �?. Their evolution with
r01 is shown on Fig. 5(a), for two different values of the
time interval �. First, we note the increase of �== with r01.
This means that large steps are more likely for particles
which moved farther during the previous interval. It is not
the case in a purely diffusive process, since large events are
statistical effects, with an occurrence which is not related
to the length of the previous step, making all the particles
equivalent. Here, since particles which move farther are the
ones which were already making large steps, this shows the
existence of a population of fast particles, which is a
typical feature of glass forming systems, as pointed out,
for example, in [3,6,8]. Second, we see that for short time
intervals �, the increase of �== is larger than the one of �?.
This reflects the anisotropy of the motion, like stringlike
cooperation observed numerically by Donati et al. [7].
Both effects concern movements on short time scales, since
they tend to disappear as we increase the time interval �
[Fig. 5(a)].

At this point, we can give a partial conclusion about the
diffusion properties of the system. The fact that the linear
regime of hx12i�r01� ends at the same value r01 ’ 0:3 for
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FIG. 5. (a) Widths of the distribution of x12 (�==) and y12 (�?)
versus r01 for � � 10 and � � 500 (b) �F2�t��

2, F2�2t�, and
F3�t; t� (see text); at short times, F3�t; t� � �F2�t��2, and at
long times, F3�t; t� � F2�2t�.
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any values of � < t
 indicates that, in this regime, it is
necessary to describe the system as driven by spatial con-
straints. For displacements smaller than r
, the larger a step
the more anticorrelated is the following step, as shown by
the negative values of c���, which reflects the systematic
back dragging effect experienced by the particle in its cage.
For displacements longer than r
, a cage rearrangement has
occurred, so that the anticorrelation does not increase any
more. The constancy of hx12i at this saturation value shows
a memory of the fact that part of the trajectory was made in
a cage. jc���j decreases with �, i.e., cage effect becomes
weaker, which shows that cages relax and adapt to the new
position of the enclosed particles. The fact that the typical
relaxation time is t
 is justified by the need for the particles
forming the cage to escape their own ones in order to adapt
[3]. On time scales longer than t
, these effects disappear,
which is the result of the increasing number of particles
which have undergone a rearrangement.

We now discuss the dynamical heterogeneities by con-
sidering multitime correlation functions. Let us define the
three quantities F2�t� � hcos� ~q � ~r01�i, F2�2t� �
hcos� ~q � ~r02�i, and F3�t; t� � hcos� ~q � ~r12� cos� ~q � ~r01�i,
where the vector ~rij is the displacement observed between
the times i� t and j� t: ~rij � ~r�j� t� � ~r�i� t�. It has
been shown that one can decide wether the dynamic is
heterogeneous or homogeneous by comparing F3�t; t� with
F2�2t� and �F2�t��2, respectively [20,21]. This can be
understood by considering the definitions of homogeneous
and heterogeneous dynamics [20]: in the purely homoge-
neous case, the movements during two subsequent time
intervals along a given direction ~q are not correlated in
length, whereas in the purely heterogeneous case, they are
only correlated in length. Then, in the homogeneous case,
since a cosine is sign independent, both terms of the
product are uncorrelated, so that one can factorize F3�t; t�
and obtain �F2�t��2. In the heterogeneous case, one can
replace cos� ~q � ~r12� cos� ~q � ~r01� by cos� ~q � ~r12 � ~q � ~r01� �
sin� ~q � ~r12� sin� ~q � ~r01�. As in this case the signs are not
correlated, the mean of the second term must be 0, so that
we are left with F2�2t�. Note that for a random walk, both
equalities are fulfilled, so that F2�2t� � �F2�t��2, i.e., the
relaxation is exponential. These functions are presented in
Fig. 5(b), where we have chosen q � 2�=r
. One sees that
at short times (t � 10) the dynamics is mainly homoge-
neous [F3�t; t� � �F2�t��

2], and then slowly evolves toward
an heterogeneous dynamics as time grows.

To better characterize the cooperation in the system, we
use a convenient tool proposed by Hurley et al. [6], based
on relaxation times. For a particle i, the relaxation time
Ti�r� is defined as the time needed by the particle to reach a
given distance r for the first time. The distribution of these
relaxation times is shown in the inset of Fig. 6(a), for r �
0:3. The idea of Hurley et al. is the following: if one defines
Ti;l�r� as the mean relaxation time of the particles con-
tained in a circle of radius l centered on particle i, then the
1-3
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study of the difference between Ti;l�r� and Tav (where Tav is
the mean relaxation time calculated over all the particles)
should give some informations about the typical length L
over which cooperative effects take place. The simplest
quantity to compute is then the second moment (in the
notation of [6]):

m2�l� �
h�Ti;l � Tav�

2i

h�Ti;1 � Tav�2i
:

m2�l� is plotted on Fig. 6, for different values of r. One
clearly sees that the typical length on which m2 decreases
has a maximum around r ’ 0:3. To quantify this, we plot L
(defined as the integral over l ofm2) versus r and obtain the
curve of Fig. 6(b). Two important informations can be
deduced: first, as we already noticed on the curves of
m2�l�, L as a maximum for r ’ 0:3, i.e., the typical cage
size. This means that cage rearrangements are phenomena
which imply more cooperation than the dynamics at other
scales (a complete discussion is given in Ref. [6]). Second,
we obtain a value for this typical length L which is, at its
maximum, L
 ’ 6:5 particle diameters. We then see that
cage rearrangements are highly cooperative phenomena.
This, added to the small value of r
, shows that the picture
of a particle escaping from a static cage formed by its
nearest neighbors is over simplified. Instead, these events
are subtle and complicated rearrangements, involving a
large number of particles. One remaining open question
is the nature of the slow phenomenon to which the cage
dynamics participate, since, contrary to the experiment of
Pouliquen et al. [17] on granular compaction, the present
one is not submitted to gravity and has a constant volume.
This is to be related to the results of Kabla and Debrégeas
[22] in the case of a gently vibrated pile.

The first conclusion of this experimental work is that
scenarios imagined to describe glass forming systems at
the statistical level apply to the peculiar case of dense
granular materials, giving a precise sense to the strong
01570
analogy between these two fields and reinforcing the ap-
plication of theoretical ideas inherited from statistical
physics of glassy systems to granular matter. The second
important result is that the peculiar dynamics observed in
glassy materials still exists in a system to which an agita-
tion far from a thermal noise is provided. We believe that
this reflects a fundamental analogy which is to be related to
the very fundamental properties of disordered systems,
might they be athermal or not. Also, this experiment shows
that a simple granular system as the one described in this
Letter may be an efficient laboratory model to look for the
collective phenomena involved in cage rearrangements,
which are still poorly understood, but of capital interest
in the understanding of jamming and glass transitions.
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