CEA
CNRS
Univ. Paris-Saclay

Service de Physique de l'Etat Condensé


N. Martin, I. Mirebeau, C. Franz, G. Chaboussant, L. N. Fomicheva, and A. V. Tsvyashchenko

We study the helimagnetic ground state of the MnGe cubic alloy using small-angle neutron scattering and a high-resolution method, the so-called MIEZE spectroscopy. Upon cooling below the Néel temperature TN = 170(5) K, we observe the proliferation of long-wavelength gapless spin fluctuations, concomitant with a continuous evolution of the helical correlation length. These fluctuations disappear at Tcom = 32(5) K when the helical period becomes commensurate with the lattice. We propose to describe this intermediate phase as a soliton lattice, promoting nonlinear collective modes, or phasons, over a large temperature interval. We discuss the possible relevance of our results to the previously observed magnetotransport anomalies.

https://doi.org/10.1103/PhysRevB.99.100402

Marguerite Léang, Didier Lairez, Fabrice Cousin, Frédérique Giorgiutti-Dauphiné, Ludovic Pauchard, Lay-Theng Lee

During evaporative drying of a colloidal dispersion, the structural behavior at the air-dispersion interface is of particular relevance to the understanding of the consolidation mechanism and the final structural and mechanical properties of the porous media. The drying-interface constitutes the region of initial drying-stress that, when accumulated over a critical thickness, leads to crack formation. This work presents an experimental study of top-down drying of colloidal silica dispersions with three different sizes (radius 5, 8 and 13 nm). Using specular neutron reflectivity, we focus on the structural evolution at the free drying-front of the dispersion with a macroscopic drying surface, and demonstrate the existence of a thick concentrated surface layer induced by heterogeneous evaporation. The reflectivity profile contains a strong structure peak due to scattering from particles in the interfacial region, from which the interparticle distance is deduced. A notable advantage of these measurements is the direct extraction of the corresponding dispersion concentration from the critical total reflection edge, providing a straightforward access to a structure-concentration relation during the drying process. The bulk reservoir of this experimental configuration renders it possible to verify the evaporation-diffusion balance to construct the surface layer and also to check reversibility of particle ordering. We follow the structural evolution of this surface layer from a sol to a soft wet-gel that is the precursor of a fragile skin, and the onset of significant particle aggregation that precedes formation of the wet-crust. Separate complementary measurements on the structural evolution in the bulk dispersion are also carried out by small angle neutron scattering, where the particle concentration is also extracted directly from the experimental curves. The two sets of data reveal similar structural evolution with concentration at the interface and in the bulk, and an increase in the degree of ordering with particle size.

https://pubs.acs.org/doi/pdfplus/10.1021/acs.langmuir.8b03772

M. Deutsch, W. Peng, P. Foury-Leylekian, V. Balédent, S. Chattopadhyay, M. T. Fernandez-Diaz, T. C. Hansen, A. Forget, D. Colson, M. Greenblatt, M.-B. Lepetit, S. Petit, and I. Mirebeau

The magnetic structure of TbMn2O5 and DyMn2O5 multiferroics has been studied by high-pressure neutron diffraction in a large pressure range up to 6.6 GPa. In both cases, we observe a pressure-induced commensurate magnetic phase with propagation vector ( 1/2 0 1/2 ), growing with pressure at the expense of the ambient pressure phases. Being previously observed in YMn2O5 and PrMn2O5, this phase is most likely a generic feature of the RMn2O5 multiferroic family. A simple model is proposed to explain qualitatively the emergence of this pressure-induced phase. Differences between TbMn2O5 and DyMn2O5 behaviors at ambient and low pressures provide clues on the interaction scheme.

DOI : http://dx.doi.org/10.1103/PhysRevB.98.024408

Dans un article publié le 28 décembre 2018 dans PNAS [1], le groupe d’Hugues Chaté (IRAMIS/SPEC), en collaboration avec celui de Hepeng Zhang à l’Université Jiao Tong de Shanghai, a réussi à modéliser quantitativement la structure et la dynamique des défauts topologiques d’un cristal liquide actif fait de bactéries. Ce résultat constitue une étape importante dans l’évolution de la physique de la matière active en une discipline mature, notamment en vue des nombreuses applications attendues de ces systèmes.

 

La convection thermique est à l'origine des écoulements turbulents au sein des atmosphères planétaires, des océans, des étoiles et des planètes. En astrophysique, un des objectifs est de déterminer les lois régissant le transport convectif de chaleur, afin de les inclure dans les modèles d'évolution stellaire.

En utilisant un forçage radiatif, les chercheurs du SPEC/SPHYNX sont parvenus à reproduire en laboratoire un régime de convection turbulente similaire à celui observé dans les milieux stellaires. Cette expérience constitue la première confirmation expérimentale d'idées théoriques datant de plus de 60 ans et doit contribuer à déterminer a priori les lois régissant la convection turbulente, afin de développer de meilleurs modèles astrophysiques prédictifs.

 

 

We report on the self-assembly behavior of poly(2-methyl-2-oxazoline)–block–poly(2-octyl-2-oxazoline) comprising different terminal perfluoroalkyl fragments in aqueous solutions. As reported previously [Kaberov et al. (2017)] such polyphiles can form a plethora of nanostructures depending of the composition and on the way of preparation. Here we report, for the first time, detailed information on the internal structure of the nanoparticles resulting from the self-assembly of these copolymers. Small-angle neutron and X-ray scattering (SANS/SAXS) experiments unambiguously prove the existence of polymersomes, wormlike micelles and their aggregates in aqueous solution. It is shown that increasing content of fluorine in the poly(2-oxazoline) copolymers results in a morphological transition from bilayered or multi-layered vesicles to wormlike micelles for solutions prepared by direct dissolution.

In contrast, nanoparticles prepared by dialysis of a polymer solution in a non-selective organic solvent against water are characterized by SAXS method. The internal structure of the nanoparticles could be assessed by fitting of the scattering data, revealing complex core-double shell architecture of spherical symmetry. Additionally, long range ordering is identified for all studied nanoparticles due to the crystallization of the poly(2-octyl-2-oxazoline) segments inside the nanoparticles.

DOI : https://doi.org/10.1016/j.eurpolymj.2018.01.007

Magnetic skyrmions are topologically stable, vortex-like objects surrounded by chiral boundaries that separate a region of reversed magnetization from the surrounding magnetized material. They are closely related to nanoscopic chiral magnetic domain walls, which could be used as memory and logic elements for conventional and neuromorphic computing applications that go beyond Moore’s law. Of particular interest is ‘racetrack memory’, which is composed of vertical magnetic nanowires, each accommodating of the order of 100 domain walls, and that shows promise as a solid state, non-volatile memory with exceptional capacity and performance. Its performance is derived from the very high speeds (up to one kilometre per second) at which chiral domain walls can be moved with nanosecond current pulses in synthetic antiferromagnet racetracks. Because skyrmions are essentially composed of a pair of chiral domain walls closed in on themselves, but are, in principle, more stable to perturbations than the component domain walls themselves, they are attractive for use in spintronic applications, notably racetrack memory. Stabilization of skyrmions has generally been achieved in systems with broken inversion symmetry, in which the asymmetric Dzyaloshinskii–Moriya interaction modifies the uniform magnetic state to a swirling state. Depending on the crystal symmetry, two distinct types of skyrmions have been observed experimentally, namely, Bloch and Néel skyrmions. Here we present the experimental manifestation of another type of skyrmion—the magnetic antiskyrmion—in acentric tetragonal Heusler compounds with D2d crystal symmetry. Antiskyrmions are characterized by boundary walls that have alternating Bloch and Néel type as one traces around the boundary. A spiral magnetic ground-state, which propagates in the tetragonal basal plane, is transformed into an antiskyrmion lattice state under magnetic fields applied along the tetragonal axis over a wide range of temperatures. Direct imaging by Lorentz transmission electron microscopy shows field-stabilized antiskyrmion lattices and isolated antiskyrmions from 100 kelvin to well beyond room temperature, and zero-field metastable antiskyrmions at low temperatures. These results enlarge the family of magnetic skyrmions and pave the way to the engineering of complex bespoke designed skyrmionic structures.

D. Bounoua, R. Saint-Martin, S. Petit, P. Berthet, F. Damay, Y. Sidis, F. Bourdarot, and L. Pinsard-Gaudart, Phys. Rev. B 95, 224429

The low energy magnetic excitations spectra of the pristine and doped quasi-one-dimensional spin chains cuprates SrCuO2 have been investigated by inelastic neutron scattering. The momentum-integrated magnetic dynamical structure factor yields a constant integrated intensity with regard to energy in the pure compound, while it shows a strong decay, at low energies, in the compounds doped with nonmagnetic impurities, namely, SrCu0.99M0.01O2 (with M=Zn or Mg) and Sr0.99La0.01CuO2 (Cu+ carrying S=0 created within the chains). These results evidence the opening of a spin pseudogap in the two-spinon continuum of SrCuO2 upon doping, stemming from disruptions of the spin chains by quantum impurities.

Dans une expérience de laboratoire, les chercheurs de l’Iramis/SPEC ont observé qu'un écoulement très turbulent pouvait présenter une dynamique chaotique entre plusieurs régimes d'écoulements métastables. Une collaboration SPEC-LSCE propose aujourd'hui un jeu de trois équations déterministes "simples", rendues stochastiques par l'ajout d'un terme aléatoire, qui permet de décrire un tel écoulement au comportement intermittent.

Les simulations, basées sur ce modèle permettent effectivement de décrire le comportement chaotique observé entre plusieurs états métastables, effet que l’on pourrait qualifier de "super-effet papillon". Un bon point de départ pour mieux décrire des phénomènes atmosphériques complexes, comme par exemple la circulation atmosphérique globale !

 

Les verres forment l’essentiel de nos matériaux du quotidien, et prennent une place croissante dans les technologies modernes (fibres optiques, etc…). Pourtant leur mécanisme de formation reste une énigme : certaines théories décrivent les verres  comme de simples liquides hyper visqueux ; d’autres en revanche affirment que ce  sont de vrais solides, avec un ordre thermodynamique sous-jacent très subtil appelé "ordre amorphe", auquel correspond une minimisation locale de l'énergie.

Notre collaboration entre quatre laboratoires vient de montrer que l’on peut trancher cette controverse par des mesures de susceptibilités électriques non linéaires du 3ème et du 5ème ordre [1]. En réalisant ces expériences, qui sont une première du genre, on montre qu'un ordre amorphe existe bien dans les verres. La transition entre l'état liquide et l'état vitreux correspond à une nouvelle classe d’universalité de phénomènes critiques, où les domaines amorphes qui s'ordonnent sont compacts.

Les comportements d'imitation constituent la clé de voute de très nombreux phénomènes collectifs observés dans les groupes animaux. Pour comprendre le rôle de ces comportements et leurs conséquences à l’échelle d’un groupe, des chercheurs du CNRS, du CEA, des Universités d’Aberdeen, de Nice et de Toulouse ont analysé les déplacements collectifs de troupeaux de moutons en pâturage. Ces derniers alternent des phases de dispersion lentes avec des phases de regroupement très rapides au cours desquelles les moutons imitent le comportement de leurs voisins. Ces travaux, publiés dans PNAS, montrent que ces regroupements sont similaires à des phénomènes d’avalanches intermittentes sans échelle caractéristique d’amplitude. Ils montrent également que l’intensité avec laquelle les moutons s’imitent joue un rôle clé dans la capacité d’un troupeau à maximiser la surface de pâturage explorée tout en minimisant le temps nécessaire pour se regrouper.

La turbulence dans un fluide est un phénomène familier, qui se caractérise par la présence de tourbillons de toutes tailles et un comportement désordonné et imprédictible. Losrqu’on augmente le nombre de Reynolds (Re), grandeur sans dimension donnée par le rapport entre forces d'inertie et forces visqueuses, on distingue différents régimes d'écoulement, depuis l'écoulement laminaire, puis chaotique jusqu'à l'état pleinement turbulent, dans lequel on observe une cascade d’énergie des grandes échelles d’injection à l’échelle de dissipation (cascade de Kolmogorov).

De nouvelles expériences modèles d'études de la turbulence, réalisées par l'équipe SPHYNX de l'IRAMIS/SPEC, ont permis de mettre en évidence de façon inattendue un comportement chaotique dans le régime de turbulence développée (i.e. à très grand nombre de Reynolds),. Ce résultat inattendu, conduit à nous interroger sur l'origine des situations d'intermittence que l'on observe en météorologie, dans les océans ou les turbines industrielles.

 

Collaboration entre l'IRAMIS/SPEC du CEA et le Centre de Recherches sur la Cognition Animale (UMR 5169, UPS - CNRS)

 

En collaboration avec des biologistes et physiciens du Centre de Recherches sur la Cognition Animale de Toulouse, l'équipe de Hugues Chaté (IRAMIS/SPEC/SPHYNX) a construit puis étudié un modèle permettant de simuler numériquement la dynamique collective d'un banc de poissons. Contrairement aux nombreux autres modèles proposés dans la littérature pour l’étude des mouvements collectifs d’espèces grégaires (souvent intéressants pour le théoricien mais peu réalistes), ce modèle a été élaboré après avoir longuement analysé le comportement de poissons en bassin et ainsi identifié la nature des interactions entre individus. Il prédit l’existence de différentes phases dynamiques collectives (de type « essaim », « banc » ou « vortex »), en accord avec les observations expérimentales. Les résultats montrent que le passage d’une phase à une autre est déterminé par la vitesse des poissons et leur tendance à rester proches les uns des autres (interaction attractive) en pointant dans une même direction (interaction d’alignement).

Une fracture sous l'effet d'une contrainte peut se propager de façon continue ou intermittente, et il est technologiquement très utile de pouvoir prédire dans quel régime se produira la propagation d'une éventuelle fissure. Par une approche statistique, une description globale des deux régimes a pu être obtenue, ainsi que le diagramme de phase précisant leurs conditions d'apparition. De plus, l'étude montre que les deux régimes sont de nature profondément différente : le régime intermittent présente des fluctuations à toutes les échelles de temps, ce qui rend la dynamique de fissuration imprévisible, quelle que soit l’horizon choisi.

 

La possibilité d’utiliser la chaleur issue de processus industriels comme source d’énergie d’appoint en complément de l’énergie d’origine fossile est une alternative  de plus en plus envisagée. La  récupération de cette énergie thermique peut être obtenue par voie thermoélectrique (effet Seebeck). Ainsi, quand on applique un gradient de température ΔT à un solide conducteur, les électrons en contact avec la partie chaude acquièrent une énergie cinétique et diffusent vers la région froide, ce qui crée un champ électrique E=-∇V = SeT.  Le coefficient Se est le coefficient Seebeck et caractérise  la conversion de la chaleur en énergie électrique. Plus précisément, le rendement de la conversion, défini comme le rapport entre la puissance électrique obtenue et la puissance thermique injectée dans le système, est une fraction η =ηC .f(ZT), du rendement de Carnot ηC , où  f(ZT) est une fonction monotone croissante du paramètre adimensionnel ZT, appelé « facteur de mérite »:

ZT = T Se2 (σ/k)

σ est la conductivité électrique du matériau, k sa conductivité thermique et T la température moyenne.

Le rendement de conversion thermoélectrique h rejoint le rendement de Carnot hC quand le facteur de mérite ZT tend vers l’infini.  La recherche de matériaux adaptés pour la conversion thermoélectrique est donc vouée à l’étude de matériaux présentant des facteurs de mérite élevés. Actuellement, certains semi-conducteurs à faible gap et fortement dopés donnent des facteurs de mérite de l’ordre de 1. Un facteur de mérite de 3 donnerait un rendement acceptable de 0.33 ηC . La recherche de facteurs de mérite plus élevés s’oriente de plus en plus vers des matériaux nanostructurés pour lesquels de faibles valeurs  de la conductivité thermique ont été obtenues tout en conservant des valeurs élevées de la conductivité électrique (voir l’équation ci-dessus). Les matériaux nanostructurés bien que possédant des propriétés intéressantes présentent toutefois des coûts de fabrication élevés et ne sont utilisés aujourd’hui qu’au stade du laboratoire.

Une autre voie de recherche qui consiste à utiliser les électrolytes comme porteurs de charge à la place des électrons ou des trous dans les matériaux solides est encore peu explorée. Le coefficient Seebeck étant directement relié à l’entropie transportée par les ions, on s’attend à des valeurs élevées de Se dans des électrolytes contenant des macro-ions. Les systèmes thermiques pour la conversion thermoélectrique basée sur les électrolytes sont appelés cellules thermogalvaniques.

En 2011, nous avons mesuré des valeurs élevées du coefficient Seebeck, de l’ordre de 7 mV/K dans des électrolytes contenants de gros ions tetra-alkylammoium en solution dans des alcanes [1] à comparer aux matériaux solides qui ont un coefficient Seebeck de quelques centaines de mV/K. Malheureusement, ces mélanges ioniques présentent de faibles valeurs de la conductivité électrique ionique ce qui pénalise fortement le facteur de mérite. L’utilisation des  liquides ioniques purs ou en solution permet d’obtenir des valeurs élevées de la conductivité électrique proche de celle mesurée dans les solides conducteurs.

L’obtention d’un courant électrique à partir d’une cellule thermoélectrique peut s’obtenir via une réaction d’oxydo-réduction aux électrodes. Abraham et al. [2] ont mesuré récemment le pouvoir thermoélectrique dans différents liquides ioniques avec le couple redox I-/I3-.  Ils ont montré que le liquide ionique pouvait avoir une influence sur le changement d’entropie de la réaction redox.

Nous avons étudié en détail les propriétés thermoélectriques du liquide ionique 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM+BF4-) en solution dans de l’acétonitrile (AN) en fonction de la concentration du liquide ionique CIL. Ce mélange binaire ionique possède une conductivité électrique parmi les plus élevées de l’ordre de 70 mS cm-1 à une concentration CIL=2.5 M. Afin d’obtenir un transfert réversible d’électrons aux électrodes de platine ou de carbone vitreux  le couple redox organique thiolate/disulfide (McMT-/BMT) a été ajouté au mélange binaire ionique. Ce couple redox a été aussi proposé comme une alternative au couple I-/I3- utilisé dans les cellules solaires à colorants.

Le montage expérimental que nous avons utilisé pour mesurer l’effet thermoélectrique est montré dans la Figure 1.

contact: F. Ladieu

 

Lorsqu’il est trempé sous sa température de transition vitreuse Tg, un verre se met à vieillir : ses propriétés se mettent à dépendre de son âge ta, c’est-à-dire du temps écoulé depuis le franchissement de Tg. Comme les verres forment une très vaste catégorie (verres à vitres, polymères, colloïdes, bouteilles en plastiques…), ce phénomène de vieillissement concerne a priori un grand nombre de nos matériaux « du quotidien ». En dépit de son ubiquité, le vieillissement est pourtant fort mal compris, en particulier du fait d’absence de consensus sur ce qui se produit microscopiquement lors du vieillissement. Nous avons réussi à montrer [1], pour la première fois, que le vieillissement s’accompagne d’un accroissement du nombre de molécules dont les mouvements sont corrélés : ceci permet de mieux caractériser par quels aspects le verre, en dessous de Tg, est un solide, et par quels aspects il reste néanmoins un liquide.


 

Il est bien difficile de comprendre pourquoi, lorsqu’ils sont refroidis, certains liquides « ratent » la cristallisation à la température prévue Tm et restent dans un état de liquide surfondu. En poursuivant le refroidissement, cet état liquide voit sa viscosité (ou son temps τα de relaxation moléculaire) augmenter vertigineusement, c’est-à-dire plus vite qu’une loi d’Arrhénius. Ceci suggère que des corrélations entre molécules existent à des échelles de plus en plus vastes lorsqu’on diminue la température T. Pourtant aucun changement de structure ne peut se lire dans les spectres de diffusion des neutrons ou des rayons X qui restent globalement inchangés entre Tm et Tg, où Tg est la température de transition vitreuse définie par τα=100s.

Au cours des 15 dernières années, on a peu à peu compris que le moyen le plus simple de percevoir les corrélations vitreuses était de les rechercher dans les mouvements des molécules (et non pas dans leurs positions ou leurs orientations) : il est apparu plausible que la relaxation dans un liquide surfondu se fasse par paquets de Ncorr molécules dont les mouvements sont corrélés les uns aux autres. Un peu comme dans un métro bondé à l’heure de pointe, où les mouvements individuels sont impossibles et où seuls les mouvements de groupes d’individus sont permis (comme celui permettant de sortir du wagon en arrivant à destination !). Cependant, en mettant des ordres de grandeur raisonnables sur cette idée, on estime que Ncorr peut valoir 100 à Tg, ce qui correspond à une longueur typique de quelques nanomètres, extrêmement difficile à filmer ! Par ailleurs, ces corrélations étant d’un type nouveau, elles ne sont pas reliées à la fonction de corrélation usuelle à deux points et, en utilisant le théorème de Fluctuation Dissipation, elles ne sont donc pas reliées non plus à la fonction de réponse linéaire χlin usuelle (définie plus bas). On était donc devant une double difficulté (pratique et théorique) pour détecter et étudier les corrélations vitreuses.

Fort heureusement, un travail théorique de J.-P. Bouchaud et G. Biroli a établi que la susceptibilité non linéaire (macroscopique !) χ3 était directement proportionnelle à Ncorr. Plus précisément si l’on applique un champ (électrique) au liquide de fréquence f, sa réponse (polarisation) s’écrit P = χlinE+ χ3E3, et selon la prédiction précitée χ3(f,T) ~ Ncorr(T)*H(f/fα(T)) où fα(T)=1/τα(T) et où  la fonction H a une forme en cloche décrite sur le bas de la figure 1. La fonction H ne dépendant pas de la température T, même si elle n’est pas analytiquement connue pour un liquide donné, on peut, en mesurant χ3 à différentes fréquences et températures, avoir accès à l’évolution relative de Ncorr avec T : c’est ce que nous avons fait dans les références [2-3] à l’équilibre (T>Tg), ce qui a permis de montrer que, au-dessus de Tg, Ncorr augmente significativement dans le Glycérol lorsqu’on diminue T vers Tg. Ceci pourrait être l’origine microscopique du comportement super-Arrhénien de τα.

Nous sommes parvenus à pousser ces mesures de χ3 jusque dans le régime vieillissant, où après une trempe en Température de T>Tg à T<Tg les propriétés évoluent en fonction de l'âge ta introduit plus haut. La quantité qui domine le vieillissement est τα, qui augmente avec l'âge ta. Ceci produit un décalage des spectres de χlin et de χ3 vers les basses fréquences avec l’âge, décalage qui s’arrête au bout du temps teq où le système atteint son équilibre et où le vieillissement est terminé. En mesurant à fréquence f fixée, on enregistre  donc une diminution de χlin et de χ3 lorsque l’âge augmente (flèche verte vers le bas). Toute l’astuce consiste à comparer finement le vieillissement de χlin et de χ3 : comme χlin ne dépend pas de Ncorr –contrairement à χ3- cette différence donne directement le vieillissement de Ncorr. C’est ainsi que nous avons obtenu les données de la figure 2, dans laquelle on a : δ =Ncorr(ta)/Ncorr(eq). On voit donc que Ncorr augmente avec l’âge du système, avant d’atteindre sa valeur d’équilibre. Le fait que δ ne dépende pas de la fréquence de mesure (différentes couleurs sur la figure) est un test important de la cohérence de notre approche.

La turbulence d'un liquide conducteur permet l'émergence spontanée d'un champ magnétique par effet dynamo. Nous présentons la première mise en évidence expérimentale d’un champ magnétique spatialement localisé, engendré par cet effet dynamo.

Ce résultat a été obtenu dans l’expérience VKS (Von Karman Sodium), dans laquelle du sodium fondu est agité par 2 turbines. L'effet est observé lorsque celles-ci tournent à des vitesses de rotation légèrement différentes au-delà d’un seuil critique. Cette localisation forte du champ magnétique, déjà observée dans les dynamos astrophysiques, est en bon accord avec la prédiction d’un modèle couplant des modes magnétiques dipolaire et quadripolaire.  

 

Yutaka Sumino 1, Ken H. Nagai2, Yuji Shitaka3, Dan Tanaka4, Kenichi Yoshikawa5, Hugues Chaté6 and Kazuhiro Oiwa3,7

(french version English version)

L'émergence d'un ordre au sein d'une assemblée d'objets en interaction est toujours fascinante à étudier. L'observateur est alors face à de nombreuses questions sur l'origine profonde de cet ordre et les conditions de son apparition. Il est ainsi observé l'apparition de mouvements collectifs à deux dimensions de filaments polymériques déplacés par des moteurs moléculaires. Par une étude statistique du phénomène, il a été possible de remonter aux interactions élémentaires à l'échelle moléculaire responsables de cette organisation. Ce résultat, publié dans la revue Nature, montre que, dans le cas présent d'objets biologiques, des interactions locales simples peuvent être à l'origine de phénomènes émergeants complexes.

 

Les matériaux fragiles comme le verre se cassent par propagation de fissures. Pour prévoir leur comportement à la rupture il faut notamment connaître l'énergie mécanique dépensée et la vitesse d'avancée de la fissure et comprendre les facteurs dont elles dépendent. Jusqu’à présent un consensus s'était établi pour une vitesse limite de l'ordre de la vitesse des ondes acoustiques de surface dans le matériau (vitesse de Rayleigh). Des chercheurs des laboratoires SVI (CNRS- St Gobain) et LTDS-Lyon associés au CNRS, et de l'IRAMIS/SPCSI du CEA, viennent de démontrer que cette vitesse limite est en fait 4 fois plus faible ! Les ruptures plus rapides sont possibles du fait de la rencontre de multiples micro-fissures prenant naissance au niveau des défauts du matériau. Ce résultat est l'objet d'un article publié dans PNAS.

 

P.P. Cortet, E. Herbert, A. Chiffaudel, F. Daviaud, B. Dubrulle, V. Padilla

 

Contact: F. Daviaud

 

En étudiant la réponse d’un écoulement pleinement turbulent à une brisure de symétrie de son forçage, sur une gamme de nombre de Reynolds, Re, allant de 150 à 106,  nous avons récemment mis en évidence pour Re = 40 000 une transition de phase analogue à la transition para-ferromagnétique. De plus, cette transition est associée à un maximum de l'amplitude des fluctuations de la symétrie de l'écoulement et correspond à des brisures intermittentes et spontanées  de symétrie entre différents états métastables.

 

Les transitions de phase sont un phénomène omniprésent dans les systèmes physiques et sont généralement associées à des brisures de symétries. La symétrie gouverne également la transition vers la turbulence: lorsque le nombre de Reynolds augmente, une succession de bifurcations brise les diverses symétries de l'écoulement laminaire. À grand nombre Reynolds, il est couramment admis que toutes les symétries brisées sont statistiquement restaurées et l’on peut se demander si cet écoulement turbulent ne peut pas être lui-même le siège de bifurcations entre différents états moyens, qui pourraient être interprétées en termes de transition de phase.

(french version English version)

Les chercheurs du Groupe Instabilités et Turbulence de l'IRAMIS-SPEC ont montré expérimentalement que la transition de blocage de matériaux granulaires amorphes, qui se traduit par l'apparition d'une rigidité globale, se manifeste par la croissance d'une longueur de corrélation présentant un caractère critique.

(figure de titre : Champ de déplacement au voisinage d'un intrus tiré dans un milieu granulaire dense)

 

                 

fig_0001

Illustration 1: Schéma de l'expérience. Une particule intruse est tirée à force constante parmi les autres grains.

 

Illustration 2: Diagramme d'état, dans lequel deux transitions apparaissent : la transition de fluidification (courbe) et la transition de Jamming (vertical)

 

Vous avez un grain? Ils en ont des milliers ! Dans cette expérience du Groupe Instabilités et Turbulences, une assemblée amorphe de grains en 2D est compressée dans une cellule sous vibration horizontale (voir illustration 1) jusqu'à atteindre les états les plus denses possible : une transition apparaît alors, dite transition de blocage (Jamming) [1,2], donnant une rigidité globale au matériau par percolation dynamique des chaines de force.

Les caractéristiques fines de cette transition ont été étudiées au cours de la thèse de Raphaël Candelier au moyen d'une particule « intrus » tirée à force constante dans le milieu. Un diagramme de phase a été dressé, qui met en évidence la présence d'une ligne de fluidification, au dessus de la quelle l'intrus avance sans s'arrêter (comme dans un liquide visqueux) et en dessous de laquelle l'intrus adopte un mouvement intermittent, l'intensité des fluctuations se renforçant au voisinage de la transition de Jamming.

Sous la ligne de fluidification, la réponse à cette perturbation fortement non-linéaire présente une intermittence spatio-temporelle illustrée dans une vidéo :  Voir la vidéo

Les images brutes des grains sont représentées dans la partie inférieure, tandis que la partie supérieure montre ces grains après traitement d'image, la couleur codant leur vitesse instantanée. Il apparaît clairement dans cette configuration - très proche de la transition - que le matériau « hésite » entre un état très rigide et un état très fluide. Les réorganisations à longue protée que l'on peut apercevoir dénotent le caractère critique de cette transition qui a été mis en évidence quantitativement par une analyse du type « crackling noise » révélant des lois d'échelles.

Cette phénoménologie, explorée ici expérimentalement par un procédé original, est décrite dans deux publications récentes [3,4].

 

J. Scheibert, C. Guerra, F. Célarié, D. Dalmas and D. Bonamy

Du point de vue de leur comportement à la rupture, les matériaux sont traditionnellement regroupés en trois grandes classes :

  • (i) les matériaux ductiles qui, comme les métaux, se déforment de manière plastique avant leur rupture
  • (ii) les matériaux quasi-fragiles, tels que les roches ou les bétons, où la fracture débute par un endommagement sous forme de microfissures, dont la coalescence amène à la rupture brutale.
  • (iii) les matériaux fragiles, verres polymériques ou verres d'oxyde..., qui se déforment de manière parfaitement élastique avant la fracture, qui se produit par rupture successives des liaisons atomiques en pointe de fissure.

Les expériences réalisées à l'IRAMIS-SPCSI montrent qu'un même matériau peut, en fonction de la vitesse de fissuration, appartenir à deux de ces catégories : il est observé que le Plexiglas®, archétype des matériaux fragiles, s'endommage au delà d'une vitesse limite bien définie, par nucléation de microfissures, comme les matériaux quasi-fragiles.


F .Onufrieva , P. Pfeuty, Laboratoire Léon Brillouin

L’appariement supraconducteur et les anomalies électroniques induites par le mode collectif de spin dans les cuprates supraconducteurs à haute Tc

Découverte en 1986, la supraconductivité à haute température critique reste aujourd'hui une des grandes énigmes de la physique du solide et des matériaux. Plusieurs modèles théoriques s'affrontent, régulièrement confrontés aux résultats expérimentaux. Parmi les théories possibles, celles faisant intervenir le magnétisme dans le couplage des électrons pour former les paires supraconductrices sont aujourd'hui souvent retenues (au lieu du couplage entre électrons et phonons pour les supraconducteurs conventionnels relevant de la théorie BCS - J. Bardeen, L. Cooper et R. Schrieffer). En particulier, les excitations magnétiques sous la forme d'ondes de fluctuations de spin, observées expérimentalement dans certains supraconducteurs (cuprates supraconducteurs à haute Tc : YBa2Cu3O6+x, mais aussi les nouveaux supraconducteurs non conventionnels à base de fer et d'arsenic, Tc~40 K), pourraient être retenues, comme le montre la théorie développé ci-dessous.

S. Petit, F. Moussa, M. Hennion et S. Pailhès (DRECAM/LLB CEA-Saclay)
L. Pinsard-Godard, Laboratoire de Chimie du Solide, Paris XI
A. Ivanov, ILL, BP 156 F-38042 Grenoble

Les multi-ferroïques sont des matériaux qui possèdent la particularité rare d’avoir un état fondamental à la fois magnétique et ferro-électrique [1]. Qui plus est, magnétisme et ferro-électricité y entretiennent des liens étroits : un tel matériau, comme par exemple l’oxyde de manganèse [2] YMnO3, peut ainsi voir son aimantation modifiée par l’action d’un champ électrique, ou sa polarisation électrique par l’action d’un champ magnétique (effet magnétoélectrique). Cette particularité est un problème complexe de physique de la matière condensée ; elle représente également un enjeu important pour les applications, et par exemple pour les "technologies pour l'information et la santé" développées au CEA (développement de nouveaux concepts de mémorisation de l'information ou d'électronique de spin).

Les recherches menées ces dernières années sur ces matériaux tendent à montrer que le couplage entre magnétisme et ferro-électricité s’effectue par le biais d’importantes déformations du réseau cristallin. On sait par exemple que dans le cas du composé YMnO3, la transition (TN = 72K) vers la phase magnétique (et donc multi-ferroïque) est le siège d’effets magnétostrictifs traduisant un fort couplage entre déplacements atomiques, ferro-électricité et moments magnétiques.
Collaboration VKS (CEA-CNRS-ENS Lyon et Paris), contact CEA : Francois Daviaud

La Terre a subi au cours des âges géologiques plusieurs renversements erratiques de son champ magnétique. Celui du soleil se renverse quant à lui périodiquement selon son cycle d’activité de 22 ans. Ces dynamiques magnétiques, encore assez mystérieuses, jouent un rôle dans l’exposition de notre planète aux rayons cosmiques. La collaboration VKS1 (CEA2, CNRS3,4, Ecole normale supérieure de Lyon3, Ecole normale supérieure-Paris4) a observé pour la première fois en laboratoire des renversements d’un champ magnétique dans un écoulement très turbulent de sodium liquide. Ces expériences devraient permettre de mieux comprendre la dynamique des champs magnétiques cosmiques. Ce résultat est publié dans Europhysics Letters, volume 77, de mars 2007.

Le champ magnétique de la Terre est créé par des mouvements très désordonnés qui agitent le noyau de fer liquide se trouvant en son centre : c’est l’effet « dynamo ». Une de ses caractéristiques les plus étonnantes, révélée par les études paléomagnétiques, est  l’inversion aléatoire des pôles magnétiques. Ceux-ci restent proches des pôles géographiques et s’échangent entre nord et sud, environ tous les 100 000 ans, bien que des périodes plus longues sans renversement se soient produites. Les renversements durent quant à eux en moyenne quelques milliers d’années.

M.-A. Dubois1, L. H. Emmons2, L. Cournac3, P. Chatelet4, N. C. A. Pitman5, V. Vilca5, & L.-F. del Aguila6

1CEA Saclay, DSM/DRECAM/Service de Physique de l ’Etat Condensé, L ’Orme des Merisiers, 91191 Gif sur Yvette, France
2Department of Zoology NHB 390 MRC 108, Smithsonian Institution, P.O.Box 37012,Washington, DC 20013-7012 USA
3CEA Cadarache, DSV/DEVM/Laboratoire d ’Ecophysiologie de la Photosynthèse, 13108 Saint Paul Lez Durance Cedex, France
4CNRS/URA 1183,Muséum National d ’Histoire Naturelle,
4 avenue du Petit Château,91800 Brunoy, France
5Asociación para la Conservación de la Cuenca Amazonía,
Calle Cuzco 499, Puerto Maldonado, Madre de Dios, Perú
6Fundación Amigos de la Naturaleza, Santa Cruz de la Sierra, Bolivia

A. Chiffaudel, F. Daviaud, B. Dubrulle, C. Gasquet, R. Monchaux, V. Padilla, avec la participation de L. Marié et F. Ravelet, DSM/DRECAM/SPEC
Collaboration VKS : CEA - ENS Lyon - ENS Paris -

C’est sur le principe de la dynamo que repose la production d’une grande partie du courant électrique que nous consommons. Un courant électrique est créé dans une boucle conductrice se déplaçant dans un champ magnétique : c'est l’effet dynamo. Il y a conversion d'énergie mécanique en énergie électromagnétique. Inversement, un courant dans une boucle conductrice produit un champ magnétique. Un courant produit un champ, un champ produit un courant, mais sans champ et sans courant initiaux, l'effet dynamo peut-il s'amorcer et se stabiliser ? (une fluctuation de courant induisant une fluctuation de champ qui amplifie le courant etc…).

La plupart des objets astrophysiques (planètes, étoiles, galaxies..) possèdent un champ magnétique. Larmor propose en 1919 que ces champs magnétiques – en particulier celui du soleil – soient engendrés spontanément par l'effet dynamo à partir du mouvement d’un fluide conducteur (dynamo fluide). Les équations qui régissent ce phénomène sont connues (équations de Maxwell et loi d’Ohm, équations de Navier-Stokes) et, dans le cas d’écoulements simples et constants, les calculs analytiques montrent la réalité de l'effet. Mais qu'en est-il en présence de turbulence ?

Jean-Jacques Benattar, Michael Nedyalkov et Fuk Kay Lee (DRECAM/SPEC)

Le développement de matériaux et de composants nanostructurés connaît aujourd'hui un essor considérable en raison de leurs propriétés particulières (nouvelles propriétés physiques ou chimiques, miniaturisation, stockage de l'information). Cependant la réalisation de ces nanostructures n'est pas une affaire simple, la première difficulté étant de manipuler la matière à l'échelle atomique. Pour ceci, on tire souvent parti de l'organisation spontanée de la matière comme lors de simples dépôts. Mais la réalisation d'architectures atomiques, même élémentaires, reste le plus souvent un défi et il faut beaucoup d'ingéniosité pour imaginer de nouvelles voies, simples et efficaces, qui permettront d'atteindre ce stade ultime de la miniaturisation. Il est ici proposé d'utiliser toutes les potentialités d'organisation de la matière dans la couche extrêmement fine constituant la paroi d'une bulle de savon.

Nous avons tous observé les reflets changeants des irisations des bulles de savon qui traduisent les variations d'épaisseur du film. Après drainage de la totalité de l'eau, cette paroi forme un film libre bi-moléculaire de tensioactifs, appelé aussi film noir car son épaisseur moléculaire ne lui permet plus de réfléchir la lumière. Ces systèmes sont bien définis et très organisés. Au delà des premières études de leurs propriétés macroscopiques, les découvertes récentes montrent le fort potentiel d’auto-organisation des molécules tensioactives qui permet la construction d’assemblages aux propriétés variées.

 

Retour en haut