Univ. Paris-Saclay

Service de Physique de l'Etat Condensé

2 sujets /SPEC/GNE

Dernière mise à jour : 20-05-2019


 

Temps de tunneling électronique et ses fluctuations

SL-DRF-19-0504

Domaine de recherche : Physique mésoscopique
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Groupe Nano-Electronique (GNE)

Saclay

Contact :

Carles ALTIMIRAS

Patrice ROCHE

Date souhaitée pour le début de la thèse : 01-09-2019

Contact :

Carles ALTIMIRAS

CEA - DRF/IRAMIS/SPEC/GNE

01 69 08 55 29

Directeur de thèse :

Patrice ROCHE

CEA - DRF/IRAMIS/SPEC/GNE

0169087216

Page perso : http://iramis.cea.fr/spec/Phocea/Membres/Annuaire/index.php?uid=caltimir

Labo : http://iramis.cea.fr/spec/GNE/

Voir aussi : https://nanoelectronicsgroup.com/

Défiant notre intuition classique, l'effet tunnel a fasciné les physiciens pendant des décennies. Très vite après sa découverte, se posa la question de combien de temps passent les particules qui "tunnellent" sous la barrière classiquement interdite. Malgré son conté intuitif, cette question est mal posée du point de vues des observables quantiques, et n'admet donc pas de réponse unique ce donnant lieu a de multiples définitions correspondantes à différentes expériences de pensée.



Suivant un proposition de Büttiker et collaborateurs [1], nous proposons d'étudier expérimentalement cette question du point de vue d'une observable bien définie: en mesurant le spectre des fluctuations temporelles du nombre des particules se trouvant sous la barrière de potentiel classiquement interdite. L'idée consiste à exploiter des gaz bidimensionnels d'électrons ou des barrières de potentiel sont générées en appliquant un champ électrostatique à des grilles couplées capacitivement. Les même grilles peuvent aussi être utilisées pour collecter les charges miroir qui se développent en réponse aux fluctuations de densité présentes sous la barrière de potentiel et qui sont générées par les électrons qui "tunnellent". Malgré la simplicité conceptuelle, implémenter cette expérience suppose un défi technique, car cela demande de mesurer un petit signal radiofréquence émis par une source de très haute impédance de sortie dans un environnement cryogénique (sub-Kelvin). Afin de répondre à ce défi, nous nous appuierons sur l'expertise du groupe dans le design microondes, ainsi que dans les techniques de mesures RF de très bas bruit dans des environnements cryogéniques, notamment en implémentant des techniques récemment développées pour s'adapter à des hautes impédances [2] nous permettant ainsi de collecter efficacement le signal dans une chaine de détection RF.



Dans un deuxième temps, nous proposons de conduire des expériences similaires dans des conditions expérimentales où l'interaction électron-électron modifie fortement le transport à travers la barrière de potentiel. Notamment, une transition de phase quantique métal/isolant est pilotée par cette interaction lorsqu'un fil 1D présente une impureté, donnant lieu à une dynamique de liquide quantique fortement corrélé [3] (Liquide de Tomonaga-Lutinger). Des études théoriques récentes [4] ont mis en avant que le temps de résidence sous la barrière joue un rôle proéminent dans cette physique, nous souhaitons donc tester ces prédictions pendant la deuxième partie de la thèse.



L'étudiant participera au design microonde des échantillons, à leur fabrication en salle blanche, ainsi qu'à leur mesure en exploitant des techniques de mesure ultra bas bruit dans le proche DC et dans les radiofréquences. Il apprendra aussi les techniques cryogéniques sub-Kelvin en travaillant notamment avec un réfrigérateur à dilution.



Références :

[1] Pedersen, van Langen, and Büttiker, Phys. Rev. B 57, 1838 (1998)

[2] Rolland et al., https://arxiv.org/abs/1810.06217

[3] Anthore et al., Phys. Rev. X 8, 031075 (2018)

[4] Altimiras, Portier and Joyez, Phys. Rev. X 6, 031002 (2016)

Transport quantique de chaleur dans les hétérostructures de Van der Waals à base de graphène

SL-DRF-19-0966

Domaine de recherche : Physique mésoscopique
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Groupe Nano-Electronique (GNE)

Saclay

Contact :

François PARMENTIER

Patrice ROCHE

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

François PARMENTIER

CEA - DRF/IRAMIS/SPEC/GNE

+33169087311

Directeur de thèse :

Patrice ROCHE

CEA - DRF/IRAMIS/SPEC/GNE

0169087216

Labo : http://nanoelectronics.wikidot.com/research

L'objectif de ce projet est d'explorer par des mesures de bruit le transport quantique de chaleur dans les nouveaux états de la matière apparaissant dans le graphène ultra-propre sous fort champ magnétique.



L’obtention d’échantillons de graphène (un cristal bidimensionnel d’atomes de carbone dans un réseau en nid d’abeilles) ultra-propres a récemment permis l’observation de nouveaux états de la matière condensée dans le graphène sous fort champ magnétique. En particulier, de nouveaux états de l’effet Hall quantique ont été observés pour des très faibles densités de porteurs de charge [1], pour lesquelles les interactions et les corrélations électroniques peuvent rendre le graphène totalement isolant, ou faire donner lieu à un régime d’effet Hall quantique de spin. Dans celui-ci, l’intérieur du plan de graphène est isolant, et le courant électrique est transporté uniquement le long des bords, chaque orientation de spin se propageant dans une direction opposée. La nature exacte de ces différents états n’est pas encore complètement connue, du fait notamment qu’il n’est pas possible de sonder les propriétés des régions isolantes par des mesures usuelles de transport électronique.



Nous proposons une nouvelle approche pour sonder ces phases, basée sur la mesure du flux quantique de chaleur transporté par les excitations neutres de ces systèmes, comme les ondes de spin, à très basse température. Notre méthode consistera à connecter le graphène avec des petites électrodes métalliques qui serviront de réservoirs thermiques. La température de chacun de ces réservoirs sera déterminée à l’aide de mesures de bruit ultra-sensibles [2], ce qui donnera accès au flux de chaleur.



La première étape consistera à fabriquer les échantillons de graphène encapsulé dans du nitrure de bore hexagonal [3]. Cette technique, récemment développée au laboratoire, permet d’obtenir des cristaux de graphène ultra-purs, et de relativement grande taille. En parallèle, une plate-forme expérimentale pour effectuer des mesures de bruits ultra-haute sensibilité, à très basse température et forts champs magnétiques, sera mise en place au laboratoire.



[1] Young et al., Nature 505, 528-532 (2014).

[2] Jezouin, Parmentier et al., Science 342, 601 (2013).

[3] Wang et al., Science 342, 614 (2013).

• Physique mésoscopique

 

Retour en haut