Service de Physique de l'Etat Condensé

1 sujet /SPEC/GNE

Dernière mise à jour : 19-04-2018


 

Transport quantique de chaleur dans les hétérostructures de Van der Waals à base de graphène

SL-DRF-18-0412

Domaine de recherche : Physique mésoscopique
Laboratoire d'accueil :

Service de Physique de l'Etat Condensé (SPEC)

Groupe Nano-Electronique (GNE)

Saclay

Contact :

François PARMENTIER

Patrice ROCHE

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

François PARMENTIER

CEA - DRF/IRAMIS/SPEC/GNE

+33169087311

Directeur de thèse :

Patrice ROCHE

CEA - DRF/IRAMIS/SPEC/GNE

0169087216

Labo : http://nanoelectronics.wikidot.com/research

L'objectif de ce projet est d'explorer par des mesures de bruit le transport quantique de chaleur dans les nouveaux états de la matière apparaissant dans le graphène ultra-propre sous fort champ magnétique.



L’obtention d’échantillons de graphène (un cristal bidimensionnel d’atomes de carbone dans un réseau en nid d’abeilles) ultra-propres a récemment permis l’observation de nouveaux états de la matière condensée dans le graphène sous fort champ magnétique. En particulier, de nouveaux états de l’effet Hall quantique ont été observés pour des très faibles densités de porteurs de charge [1], pour lesquelles les interactions et les corrélations électroniques peuvent rendre le graphène totalement isolant, ou faire donner lieu à un régime d’effet Hall quantique de spin. Dans celui-ci, l’intérieur du plan de graphène est isolant, et le courant électrique est transporté uniquement le long des bords, chaque orientation de spin se propageant dans une direction opposée. La nature exacte de ces différents états n’est pas encore complètement connue, du fait notamment qu’il n’est pas possible de sonder les propriétés des régions isolantes par des mesures usuelles de transport électronique.



Nous proposons une nouvelle approche pour sonder ces phases, basée sur la mesure du flux quantique de chaleur transporté par les excitations neutres de ces systèmes, comme les ondes de spin, à très basse température. Notre méthode consistera à connecter le graphène avec des petites électrodes métalliques qui serviront de réservoirs thermiques. La température de chacun de ces réservoirs sera déterminée à l’aide de mesures de bruit ultra-sensibles [2], ce qui donnera accès au flux de chaleur.



La première étape consistera à fabriquer les échantillons de graphène encapsulé dans du nitrure de bore hexagonal [3]. Cette technique, récemment développée au laboratoire, permet d’obtenir des cristaux de graphène ultra-purs, et de relativement grande taille. En parallèle, une plate-forme expérimentale pour effectuer des mesures de bruits ultra-haute sensibilité, à très basse température et forts champs magnétiques, sera mise en place au laboratoire.



[1] Young et al., Nature 505, 528-532 (2014).

[2] Jezouin, Parmentier et al., Science 342, 601 (2013).

[3] Wang et al., Science 342, 614 (2013).

• Physique mésoscopique

 

Retour en haut