Statistical physics in mechanics
Fracture, fracture surfaces, surface dynamics, plastic flows in amorphous media & granular materials
logo_tutelle logo_tutelle 
Statistical physics in mechanics

Progression of a stress corrosion crack in pure silica. The mean crack velocity measured at the optical scale was 30 pm/s

Understanding the relations between materials microstructure and their mechanical properties is of outmost importance in  geophysics and for industrial design. Concerning material failure, the competition between stress enhancement in the vicinity of cracks and disorder in the material microstructure makes it rather complex to predict. However, the tools of out-of-equilibrium statistical physics provide the proper framework to describe crack growth. As for material failure, one seek to relate the rheology of plastic flows in disordered materials like e.g. oxyde glasses and granular matter to the microscopic constituents  behaviour through a statistical description.

 
#817 - Màj : 24/04/2007
Faits marquants scientifiques

Les séismes majeurs sont imprévisibles et pourtant l'analyse statistique des évènements précurseurs et des répliques au choc principal suivent des lois statistiques aujourd'hui bien établies, mais dont l'origine reste encore très mal comprise.

En physique statistique, les mêmes lois peuvent s'appliquer à des systèmes en apparence très différents. Il suffit généralement qu'ils présentent une dimensionnalité et certaines propriétés de symétrie identiques. Il est ainsi tentant de rapprocher les études sismologiques de celles concernant la fracture des matériaux.

Des chercheurs des laboratoires de l’IRAMIS/SPEC/SPHYNX du CEA Saclay et du LTDS-Lyon, associés au CNRS, ont étudié les événements acoustiques émis lors de la propagation d’une fissure unique au sein d'un matériau hétérogène fragile, sollicité en tension. Comme cela a été observé pour un endommagement en compression, ils mettent alors en évidence que l'organisation statistique de ces évènements suit des lois d'échelles similaires à celles observées dans l'étude des séismes. Le système modèle étudié de l'avancée d'une fracture unique étant par nature plus simple et bien défini, il a été possible de comprendre dans ce cas l’origine de ces lois statistiques. Ceci ouvre de nouvelles pistes pour interpréter les lois d'échelles et leur utilisation en sismologie ou pour le suivi de l'endommagement des matériaux.

Les matériaux fragiles comme le verre se cassent par propagation de fissures. Pour prévoir leur comportement à la rupture il faut notamment connaître l'énergie mécanique dépensée et la vitesse d'avancée de la fissure et comprendre les facteurs dont elles dépendent. Jusqu’à présent un consensus s'était établi pour une vitesse limite de l'ordre de la vitesse des ondes acoustiques de surface dans le matériau (vitesse de Rayleigh). Des chercheurs des laboratoires SVI (CNRS- St Gobain) et LTDS-Lyon associés au CNRS, et de l'IRAMIS/SPCSI du CEA, viennent de démontrer que cette vitesse limite est en fait 4 fois plus faible ! Les ruptures plus rapides sont possibles du fait de la rencontre de multiples micro-fissures prenant naissance au niveau des défauts du matériau. Ce résultat est l'objet d'un article publié dans PNAS.

 

P.P. Cortet, E. Herbert, A. Chiffaudel, F. Daviaud, B. Dubrulle, V. Padilla

 

Contact: F. Daviaud

 

En étudiant la réponse d’un écoulement pleinement turbulent à une brisure de symétrie de son forçage, sur une gamme de nombre de Reynolds, Re, allant de 150 à 106,  nous avons récemment mis en évidence pour Re = 40 000 une transition de phase analogue à la transition para-ferromagnétique. De plus, cette transition est associée à un maximum de l'amplitude des fluctuations de la symétrie de l'écoulement et correspond à des brisures intermittentes et spontanées  de symétrie entre différents états métastables.

 

Les transitions de phase sont un phénomène omniprésent dans les systèmes physiques et sont généralement associées à des brisures de symétries. La symétrie gouverne également la transition vers la turbulence: lorsque le nombre de Reynolds augmente, une succession de bifurcations brise les diverses symétries de l'écoulement laminaire. À grand nombre Reynolds, il est couramment admis que toutes les symétries brisées sont statistiquement restaurées et l’on peut se demander si cet écoulement turbulent ne peut pas être lui-même le siège de bifurcations entre différents états moyens, qui pourraient être interprétées en termes de transition de phase.

D. Bonamy and L. Ponson (SPCSI), D. Santucci (Fysik Institutt Oslo)

Fracture is a phenomenon of everyday life: it is observable at all scales of condensed matter, from the atomic scale (in nanostructures) to the scale of our planet marked by fractures in the continental plates. But, can we find a unifying model to describe the phenomenon?

The dynamics of fracture is complex. In an ideal elastic material, perfectly homogenous, the situation remains relatively simple by means of the Elastic Linear Mechanics: the crack front is a smooth line, crossing the material with a predictable trajectory and at a regular speed that is function of the solicitation in tension. Taking into account the inhomogeneities inherent in any material (microstructure heterogeneities, point defects, temperature…) the crack no more propagate continuously but by apparently unpredictable leaps, which imposes a statistical treatment of the problem.

D. Bonamy et L. Ponson (SPCSI), D. Santucci (Fysik Institutt Oslo)

La fracture est un phénomène de la vie courante : on le rencontre à toutes les échelles de la matière condensée, depuis l'échelle atomique (dans les nanostructures) jusqu'à l'échelle de notre planète marquée par les failles dans les plaques continentales. Mais peut-on trouver un  modèle unificateur pour décrire le phénomène ?

La dynamique de la propagation d'une fracture est complexe. Dans un matériau élastique idéal, parfaitement homogène, la situation reste relativement simple, aisément modélisable à l'aide de la Mécanique Linéaire Elastique de la Rupture : le front de fissure forme une ligne continue, qui se propage dans le matériau suivant une trajectoire prédictible et à vitesse régulière, d’autant plus élevée que la sollicitation en tension est importante. Dès que l'on prend en compte l'inhomogénéité inhérente à tout matériau (hétérogénéité de microstructure, défauts ponctuels, effet de la température…) la fissure ne progresse plus continument mais par sauts apparemment imprédictibles, ce qui impose un traitement statistique du problème.

 

Retour en haut