Interaction lumière-matière
logo_tutelle 
Interaction lumière-matière

Zone d'’interaction laser - jet supersonique (A. Gonin, IRAMIS).

La lumière, onde électromagnétique, porteuse d'un champ électrique et magnétique oscillant interagit fortement avec les particules chargées et principalement avec les électrons des atomes, des molécules ou de la matière condensée sous toutes ses formes. Elle intervient ainsi directement dans de nombreux processus physiques et chimiques.

C'est aussi un formidable outil d’investigation de la matière sous toutes ses formes. Les photosciences au sein du LIDYL couvrent un large ensemble d'études mettant en jeu l’interaction lumière-matière en tant que processus fondamental ou comme outil d’analyse.

Avec la possibilité de générer des impulsions laser de très courte durée (dans le domaine attoseconde - 10-18-10-15 s, il devient possible d'interagir avec la matière, à l'échelle de temps caractéristique de la dynamique des électrons dans la matière. Cette possibilité ouvre la voie à de multiples recherches, et plus particulièrement au LIDYL à l'étude (liste non exhaustive) :

  • des processus d’excitation et de relaxation électronique ultra-rapide dans les solides et les matériaux aux électrons fortement corrélés,
  • de la génération d’harmoniques d’ordre élevé de durée ultra-courte dans les cristaux optique non linéaire
  • de la génération de rayonnement laser cohérent de très courte longueur d’onde (jusqu'au domaine X), applicable au développement de nouvelles techniques de microscopie. (collaboration avec la PME Imagine Optic).
  • du couplage direct entre le champ électrique et le spin des électrons, offrant un contrôle ultrarapide des propriétés magnétiques
  • des phénomènes élémentaires topologiques,  en surface et aux interfaces.
  • de réactions photochimiques, y compris dans les macromolécules biologiques (ADN).

Voir plus particulièrement les recherches menées dans les équipes DICO et ATTO du LIDYL.

 
#76 - Màj : 05/01/2024
Faits marquants scientifiques

Les sources d’électrons pulsées représentent une alternative intéressante aux sources de photons X pulsées basées sur des systèmes laser de haute intensité.

Nous décrirons les méthodes actuelles de génération de paquets d’électrons ainsi que les techniques de caractérisation des paquets. Les résolutions temporelles et spatiales ultimes qu’il est possible d’atteindre à ce jour seront discutées. Nous exposerons les résultats obtenus lors de notre dernière campagne de mesure sur le serveur ELYSE de l’Université Paris-Sud en 2014, en collaboration avec une équipe de l’ISMO et la start-up ITEOX. Finalement, quelques applications seront mises en perspective.

L’imagerie par diffraction cohérente est une technique d’imagerie relativement récente permettant d’obtenir des résolutions spatiales de l’ordre de la longueur d’onde car elle se passe de l’emploi d’éléments optiques potentiellement aberrants. Ainsi, nous avons pu démontrer il y a quelques années une résolution spatiale meilleure que 100 nm en utilisant le rayonnement XUV issu de la génération d’harmoniques d’ordre élevé d’un laser infrarouge (HHG). Cependant, dans les schémas usuels, la résolution est limitée par la largeur spectrale de la source. Nous présenterons un schéma holographique d’imagerie sans lentille permettant de profiter à la fois des propriétés spectrales et temporelles de la HHG. Un placement astucieux de la référence holographique permet ainsi soit de réaliser des mesures résolues spatialement et spectralement en une impulsion laser unique, soit de combiner résolutions spatiale nanométrique et temporelle sub-femtoseconde.

Contact : Willem Boutu (LIDYL/Atto)

Avec son énergie considérable, un photon de l’ultraviolet extrême ionise toutes les molécules, indépendamment du détail de leur structure énergétique. Pour cette raison les impulsions lumineuses ultrabrèves dans ce domaine spectral sont sans égal pour sonder les processus photochimiques.  Elles donnent notamment accès à des informations sur la structure d’intermédiaires réactionnels éphémères dont les propriétés spectroscopiques sont hors d’atteinte. Grâce à une collaboration entre le Laboratoire interactions, dynamique et lasers – LIDyL (CEA), le Centre lasers intenses et applications - CELIA (CNRS/CEA/Univ. Bordeaux), le synchrotron SOLEIL, et le Laboratoire collisions, agrégats, réactivité - LCAR (CNRS/Univ. Toulouse 3) nous venons de mettre au point une nouvelle source réalisable en laboratoire et qui délivre des impulsions brillantes, cohérentes, ultrabrèves et de polarisation quasi-circulaires dans l’ultraviolet extrême. Pour cela, nous avons utilisé la génération résonante d’harmoniques d’ordre élevé émises par un gaz soumis à des impulsions laser intenses. Aujourd’hui, de la lumière polarisée circulairement n’est produite dans cette gamme de rayonnement que par quelques grands instruments comme les synchrotrons et, à l’exception notable de quelques lasers à électrons libres, uniquement de manière quasi-continue. Les propriétés de polarisation spécifiques de cette nouvelle source laissent envisager des études pompes sonde de processus ayant lieu dans des molécules chirales, c’est-à-dire les molécules qui ne sont pas leur propre image dans un miroir. Le rôle prépondérant de ces molécules en chimie organique et biologie laisse entrevoir de nombreuses applications.

 

http://www.nature.com/nphoton/journal/v9/n2/full/nphoton.2014.314.html

Pour observer des phénomènes ultrarapides tels que le mouvement des électrons au sein de la matière, les chercheurs ont besoin de sources capables de produire des rayonnements lumineux extrêmement brefs et énergétiques. Si des dispositifs capables d’émettre des impulsions dans le domaine de l’attoseconde (10-18 seconde) existent déjà, de nombreuses équipes s’efforcent de repousser les limites de leur intensité et de leur durée.

 

 

Retour en haut