Physique et vivant / Physics and life
logo_tutelle logo_tutelle 

Une thématique largement partagée par les équipes SBM et DICO du LIDYL porte sur l'étude de macromolécules biologiques, et en lien avec leur environnement, et plus particulièrement :

  • Les molécules biologiques, comme l'ADN, ainsi que certains polymères bioinspirés sont des molécules flexibles existant sous plusieurs conformations. Leur étude en phase gazeuse, en absence d'environnement, permet notamment d'identifier les conformations les plus stables et de caractériser les interactions qui les stabilisent (laisons hydrogène).
  • L'ingénierie moléculaire, où les études d'interactions coopératives de molécules en solution trouvent une suite directe dans l'étude des protéines et des différents modes d'assemblage de molécules d'intérêt biologique,
  • les travaux sur la radiolyse et les interactions rayonnement-molécule, se transposent directement à des molécules aussi complexe que l'ADN

L'utilisation de techniques et de savoir faire du physicien ou du chimiste, se révèle fructueuse pour l'étude d'objets biologiques. Les méthodes d'études par photoionisation ou fluorescence dans une large gamme de longueur d'onde (de l'infra-rouge à l'UV lointain) et l'analyse par spectroscopie résolue en temps (excitation par impulsions laser ultra-courte) ou spectrométrie de masse, sont largement utilisées pour l'étude de molécules biologiques modèles.

 


←  Paires d’ions : objets omniprésents dans la nature, depuis l’eau de mer, les aérosols, jusqu’aux organismes vivants. (Eric Gloaguen, LIDYL)

 

 


A topic widely shared by LIDYL's SBM and DICO teams concerns the study of biological macromolecules, and in particular :

  • Biological molecules, like DNA, and some bioinspired polymers are flexible molecules existing in several conformations. Studying them in the gas phase, in the absence of the environment, makes it possible to identify the most stable conformations and characterize the interactions that stabilize them (hydrogen bonds).
  • Molecular engineering, where studies of cooperative interactions between molecules in solution find a direct follow-up in the study of proteins and the different ways in which molecules of biological interest are assembled,
  • Works on radiolysis and radiation-molecule interactions can be directly transposed to the study of molecules as complex as DNA.

The use of physicists' and chemists' techniques and know-how is proving fruitful in the study of biological objects. Methods such as photoionization or fluorescence studies over a wide range of wavelengths (from infrared to far UV) and analysis by time-resolved spectroscopy (excitation by ultra-short laser pulses) or mass spectrometry are widely used to investigate model biological molecules.

 
#74 - Màj : 05/01/2024
Domaines Techniques
The specificity of the group is the use of high-performing time-resolved spectroscopy. DNA and its constituents are fragile systems so particular care is taken with regards to excitation energy and sample handling. Time-resolved fluorescence (fluorescence decays, fluorescence anisotropy decays and time-resolved fluorescence spectra) can be recorded from 100 fs to 100 ns using a combination of two detection techniques; fluorescence upconversion and time-correlated single photon counting.
Dynamique des molécules biologiques  / Time-resolved techniques for dynamic studies of biological molecules
Faits marquants scientifiques

Les études sur l'influence de rayonnements de toutes natures sur la matière biologique ont des enjeux à la fois pour la protection de la santé et pour les moyens thérapeutiques qu'elles peuvent offrir. Radiobiologie (effets de particules ionisantes) et photobiologie (effets de la lumière) contribuent chacun dans leur domaine.

Par une expérience originale combinant faisceaux d'électrons et de lumière une collaboration de l'Université Paris-Saclay, impliquant le LIDYL et le NIMBE, associée à la start up ITeox, montre que les effets des deux types de faisceau présente des similarités, en particulier dans la formation d’états excités de l'ADN, et des différences dans la nature des états excités formés qu'il faudra  explorer.

Les télomères*, régions de l’ADN situées sur les extrémités des chromosomes, jouent un rôle important dans la division cellulaire, la cancérogénèse et le vieillissement. Leur fonction biologique peut être perturbée par des dommages oxydatifs, que l' on pensait uniquement provoqués par l’interaction de l’ADN avec d’autres molécules (issues du métabolisme ou reliées à la pollution et la prise des médicaments) agissant comme oxydants.

Dans le cadre du projet ANR OPHID coordonnée par le LIDYL, et d’une Chaire d’Alembert (IDEX – Univ. Paris-Saclay) attribuée à R. Improta (accueilli au LIDYL), il est montré que la lumière ultraviolette de basse énergie, absorbée directement par de l’ADN télomérique, génère des radicaux conduisant à des dommages oxydatifs [1].


*Télomère : région hautement répétitive, donc a priori non codante, d'ADN présente à l'extrémité des chromosomes.

Après absorption dans l’UV, les biomolécules sont dotées de mécanismes de désactivation des états excités assurant leur photostabilité. Ces processus (ultra)rapides offrent en effet un moyen efficace de dissiper l’énergie sous forme de vibration, évitant ainsi les dommages structurels qui peuvent affecter la fonction biologique. Afin de déterminer et d’analyser les phénomènes physiques élémentaires qui contrôlent la durée de vie des états excités et d’établir le lien dynamique électronique-structure, nous avons développé une approche duale théorie-expérience combinant Chimie quantique et Spectroscopies laser. Le défi théorique de cette approche est double : i) identifier, dans ces systèmes complexes, les mouvements critiques favorisant la relaxation électronique et ii) décrire simultanément d’une façon équilibrée et précise des états électroniques multiples de nature très différente. Pour répondre à ce défi, une stratégie calculatoire multi-étapes et multi-niveaux innovante a été développée. L’application de cette stratégie couplée aux expériences rend alors possible une attribution précise des processus photophysiques de conversion de l’énergie dans les biomolécules.  La compréhension de ces processus de conversion de l’énergie est d’une importance fondamentale et présente un champ d’application potentiel englobant non seulement la biologie mais aussi la photochimie ou bien encore la science des matériaux.

Les mélanines sont une large classe de biopolymères responsables de la pigmentation chez l’homme. Les mélanines les plus courantes sont l'eumélanine et la phéomélanine, toutes les deux censées protéger les cellules de la peau à l'irradiation UVB, réduisant ainsi le risque de cancer de la peau.

Afin d'obtenir une meilleure compréhension des processus photo-induits impliqués, nous avons entrepris, en collaboration avec une équipe suédoise, une étude par spectroscopie de fluorescence femtoseconde des constituants de l'eumélanine en solution. Ce sont des oligomères de différentes tailles (dimères, trimères, …) formées par la molécule 5,6-dihydroxyindole-2-carboxylic acid (DHICA). Ces expériences ont mis en évidence un mécanisme très complexe impliquant divers processus de transfert de proton intra- et inter-moléculaires.

Les mouvements du groupement carbonyle du chromophore de la Photoactive Yellow Protein (PYP) ont été suivis pour la première fois par spectroscopie de dichroïsme circulaire (CD) femtoseconde, dans la gamme spectrale du proche ultraviolet. L’analyse quantitative des signaux CD montre qu’après l’absorption d’un photon, le groupement carbonyle du chromophore de PYP effectue un mouvement de rotation unidirectionnel ultra-rapide (<<0.8 ps), d’un angle de 17-53°. Pour le sous-ensemble de protéines qui n'entre pas dans le photocycle, l’analyse des signaux montre que le groupement carbonyle revient à sa position initiale pour former un état fondamental non-réactif de conformation trans qui restaure l'état fondamental initial en 3 ps.

Le transport et la distribution de médicaments dans l’organisme sont des mécanismes complexes régis par de nombreux processus différents. Un rôle important est joué par les protéines de transport, responsables de la fixation et la libération des médicaments. Améliorer la compréhension des facteurs qui contrôlent la structure et la dynamique de complexes médicament-protéine est aujourd’hui devenu un enjeu majeur.

Nous rapportons ici une étude récente [1] de l'interaction entre le flurbiprofène (FBP), un médicament anti-inflammatoire non-stéroïdien chiral, et l'albumine sérique humaine (HSA).

HSA est la protéine de transport la plus abondante dans le sang. Elle contient un tryptophane (Trp), acide aminé qui absorbe et émet dans l'UV comme le FBP. Ce tryptophane peut également interagir avec FBP après la photo-excitation via transfert d’énergie ou d’électron.

Compte tenu de la complexité du système FBP-HSA, deux dyades modèles (dénommées (S,S) et (R,S)), formées par le (S)- ou le (R)-FBP et le (S)-TrpMe (l’ester méthylique) liés de manière covalente, ont été synthétisées pour l'étude des processus primaires impliqués dans l'interaction FBP-Trp.

Pour étudier la dynamique de cette interaction, nous avons utilisé une combinaison de deux techniques de fluorescence résolue en temps; la génération de somme des fréquences, avec une résolution temporelle de ~100 femtosecondes, et le comptage du photon unique, avec une résolution temporelle de ~25 ps. En particulier, l’évolution temporelle de la fluorescence aux temps courts informe sur les interactions hors équilibre qui se produisent entre le médicament photo-excité et la protéine, ce qui peut apporter des informations précieuses sur la dynamique structurelle de l'ensemble.

Des mesures de spectroscopie stationnaire sur les dyades ont mis en évidence une inhibition important de fluorescence (> 90%) et que la faible émission résiduelle est due au résidu TrpMe. Cela a été pris comme une indication d’un transfert d'énergie FBP -> TrpMe. Une nouvelle bande, déplacée vers le rouge, (centré à 450 nm), a également été observée et attribuée à une émission de type « exciplex ».

Nos mesures de fluorescence résolue en temps (Figure 1) montrent que les déclins de fluorescence des dyades sont beaucoup plus rapides que ceux de du FBP ou TrpMe seuls, à la fois à 310 nm (maximum de fluorescence du FBP) et 340 nm (maximum de fluorescence du Trp). Ces résultats sont conformes à une inhibition dynamique très rapide de la fluorescence. Nous avons également pu mettre en évidence une stéréo-sélectivité importante; l‘émission de la dyade (R,S) décline plus rapide que celle de la dyade (S,S). Il est important de noter qu'aucune montée de la fluorescence à 340 nm (TrpMe) n’a pu être observée, ce qui ne permet pas de valider l'idée d’un transfert d'énergie.

De nombreux systèmes moléculaires complexes absorbent la lumière dans l’UV, certains d’extrême importance pour la biologie, comme les bases de l’ADN ou les protéines. Les états excités peuplés par l’absorption UV bénéficient de mécanismes de désactivation d’importance majeure pour la photostabilité de ces espèces. Ces processus, souvent ultrarapides,  offrent un moyen rapide et efficace de dissiper l’excitation électronique sous forme de vibra tion, évitant ainsi les réactions photochimiques. L’absorption des protéines dans le domaine des proches UV est principalement due à la présence de systèmes aromatiques provenant des acides aminés phénylalanine, tyrosine et tryptophane.

La photophysique de ces chromophores UV dépend généralement de leur environnement proche, et donc de la conformation locale de la protéine. Une connaissance des phénomènes photophysiques mis en jeu lors de la relaxation électronique peut être approfondie à travers l’étude en phase gazeuse de petits peptides modèles mimant des fragments de protéines.  Une collaboration entre l’équipe SBM du Laboratoire Francis Perrin (CEA –CNRS URA2453), une équipe théorique de l’Institut Ruđer Bošković (Zagreb, Croatie - Projet HC-COGITO) et deux expérimentateurs du CLUPS (Paris Sud, Orsay) a permis de caractériser les états excités des conformères stables d’un peptide modèle et d’établir la nature des mécanismes de relaxation non radiative.1

Les irradiations aux rayons ultra-violets A (UVA) sont connues pour être à l'origine de cancers de la peau. En considérant une molécule d'ADN modèle, les chercheurs du Laboratoire Francis Perrin (CNRS/CEA-IRAMIS, à Saclay) en collaboration avec un laboratoire du CEA-INAC, à Grenoble, ont exploré la façon dont les UVA agissent directement sur cette molécule complexe. Il est montré que l’interaction entre UVA et l'ADN modèle étudié résulte d’un comportement collectif des bases de la double hélice d’ADN. Mécanisme qui peut conduire à des lésions chimiques, pouvant être une cause de mutations cancérigènes.

 

Par comparaison avec des données expérimentales, spécifiquement obtenues dans ce but à l'IRAMIS/SPAM, il est possible de sélectionner la meilleure méthode ab initio, permettant de fixer les paramètres de modèles dits de "champ de force", pour reproduire fidèlement la structure d'assemblées d'atomes aussi complexe que celles constituant les protéines (macromolécule constituée d'acides aminés) ou les peptides (petits polymères d'acides aminés, n<50).

V. Brenner, F. Piuzzi, I. Dimicoli, B. Tardivel, and M. Mons SPAM/LFP

Un des grands mystères du monde vivant est qu'il n'est pas symétrique. Les molécules chimiques ou biologiques, comme les acides aminés, peuvent a priori exister sous deux formes asymétriques. Comme nos deux mains, ces deux formes ne sont pas superposables mais sont le reflet l’une de l’autre dans un miroir. De telles molécules, pour lesquelles on distingue une espèce "droite" et "gauche", sont dites "chirales"[1]. Dans les organismes vivants, les protéines sont cependant exclusivement constituées d’acides aminés de type "gauche". Cette sélection d'une seule des deux symétries est une des grandes énigmes scientifiques, à laquelle physiciens, chimistes et biologistes tentent de répondre.

Les protéines sont des chaînes extrêmement longues d'acides aminés. Chaque acide aminé s'ajoute par formation d'une liaison peptidique (CONH) et libération d’une molécule d’eau, laissant un résidu prolongeant la chaîne. Présentes dans les cellules, les protéines ainsi formées se replient et leur fonction dépend de leur conformation et pas uniquement de leur séquence. D'où l'importance de l'étude des mécanismes fondamentaux du repliement des protéines.

En étudiant le repliement de peptides simples formés de deux acides aminés par des approches couplant expérience et théorie, des chercheurs du Service des Photons, Atomes et Molécules du CEA-Saclay éclairent le problème de la chiralité de la vie d'un jour nouveau.
Le simple enchaînement des acides aminés (ou résidus) constitue la structure primaire d'une protéine. Le nombre de possibilités de repliements est très grand. Et pourtant chaque protéine se replie selon un ordre préétabli par sa séquence en suivant des niveaux successifs d'organisation, à commencer par les structures secondaires. Pour bien modéliser et comprendre la structure des protéines, il est donc important d'avoir une bonne description des interactions permettant le repliement en structures secondaires.

[1] Du grec chiros, qui signifie la main, racine des mots chirurgien, chiromancie, chiropraticien…
D. Markovitsi, T. Gustavsson, E. Lazzarotto, S. Marguet, D. Onidas, F. Talbot

Laboratoire Francis Perrin, CEA/ DSM/DRECAM/SPAM-CNRS URA 2453 F-91191 Gif-sur-Yvette, France

Tous les médecins nous mettent en garde contre les expositions sans protection au soleil pouvant provoquer coups de soleil, mais aussi à long terme, cancers de la peau. En effet, l'énergie apportée par la lumière déclenche des réactions chimiques, qui sont susceptibles d'entraîner une altération de la chaîne d'ADN, suffisante pour modifier le code génétique. Au-delà de l'identification des réactions pouvant se produire, de leur localisation et de leurs conséquences, il est tout aussi important de comprendre les mécanismes mis en jeu.

W. Chin, M. Mons, F. Piuzzi, J. P. Dognon, I. Dimicoli, B. Tardivel

SPAM / Lab. Francis Perrin (URA CEA-CNRS 2453), CEA Saclay, 91191 Gif-sur-Yvette Cedex, France

Les protéines, molécules indispensables à la vie des organismes vivants, sont des polymères synthétisés à partir de l’ADN des cellules. Leur fonction dépend de leur constitution mais aussi de leur structure. Ces molécules sont constituées de longues chaînes linéaires d'acides aminés (typiquement une centaine) ; c’est ce qu’on appelle la structure primaire des protéines. Si l’on réalise que 20 types différents d’acides aminés existent dans le vivant et que chacun d’eux peut présenter plusieurs structures différentes, on conçoit que cette stratégie ait donné lieu à une très grande diversité de structures et de fonctions. L’un des points clés contrôlant la structure des protéines est le processus de repliement conduisant le polymère linéaire à adopter une structure tridimensionnelle. La première phase du repliement conduit à la formation de structures-type, appelées structures secondaires, concernant un nombre restreint d’acides aminés de 2 à quelques dizaines, dont les plus connues sont les feuillets β ou les hélices α. Le repliement se poursuit ensuite par l’agencement relatif des structures secondaires entre elles.

 

Retour en haut