Thématiques NFMQ : magnétisme, transitions de phase - Etudes par diffusion de neutrons
logo_tutelle logo_tutelle logo_tutelle 
Thématiques NFMQ : magnétisme, transitions de phase - Etudes par diffusion de neutrons

Left: Topology of the triple-twist arrangement in a 12x12x12 unit-cell cluster containing ~7000 spins. Right: SANS color map for Mn0.85Fe0.15Si measured at 1.5 K. The scattering intensity ring is characteristic for partial order. See "Observation of a magnetic "blue phase" in an itinerant magnet".

Le magnétisme est un domaine d’intérêt majeur, car combiné à l’électronique, il a modifié en profondeur notre vie quotidienne : sous forme de capteurs, d’actionneurs, de dispositifs nomades (téléphones, tablettes, ordinateurs portables), de matériaux aux capacités de stockage accrues pour l'enregistrement magnétique de toutes nos données informatiques., etc... A terme, calculs et ordinateurs quantiques révolutionneront peut-être encore nos sociétés.

Sur un plan plus fondamental, le magnétisme est un terrain de prédilection pour revisiter, voire aller au-delà des paradigmes de la physique de la matière condensée, la théorie de Landau des transitions de phase, et la théorie des liquides de Fermi. La théorie des transitions de phase est pourtant un concept d’une redoutable efficacité, d’une portée très générale en physique, créant des ponts avec la théorie des champs, la cosmologie, etc. Avec la notion de brisure spontanée de symétrie, la théorie des transitions de phase s’est avéré un outil puissant pour trier, classer et comprendre des modèles complexes. De la même manière, la théorie des liquides de Fermi est une théorie efficace permettant de traiter le rôle des interactions entre fermions. Ce modèle permet de décrire les propriétés de métaux quasiment comme celles d’un gaz d’électrons sans interaction, mais où les vrais électrons sont remplacés par des quasi-particules (électrons habillés par les corrélations). Toutefois, la physique d’aujourd’hui tente d’aller au-delà de ces concepts.

 

De nouvelles questions sont ainsi apparues, et avec elles les notions de confinement, les notions d’excitations caractérisées par des nombres quantiques fractionnaires, la notion de transition de phase topologiques. De la même manière, dans certains matériaux, des anomalies sont observées remettant en cause notre compréhension des liquides de Fermi, notamment les nouveaux supraconducteurs ou les systèmes dits "Kondo". Ces observations mettent en exergue le rôle des interactions coulombiennes entre électrons, que l’on nomme sous le terme général de "corrélations", lesquelles ouvrent la voie vers de nouveaux concepts.

La diffusion des neutrons joue un rôle central dans la compréhension des propriétés magnétiques. Sensible aussi au volume (et non pas seulement aux surfaces), aux moments magnétiques ainsi qu’à leur corrélations statiques et dynamiques, la diffusion des neutrons constitue une sonde expérimentale de premier plan pour étudier le magnétisme et par voie de conséquence, pour explorer cette nouvelle physique. Elle permet, par exemple, de déterminer les structures magnétiques complexes avec une précision inégalée, de caractériser et modéliser les interactions magnétiques grâce à la diffusion inélastique des neutrons, ou de sonder les propriétés magnétiques des systèmes moléculaires et nanométriques. Ces capacités d’investigations sont uniques et constituent un atout majeur de la diffusion des neutrons (l’information magnétique est du même ordre de grandeur que l’information structurale pour les neutrons alors qu’elle est au moins 10.000 fois plus faible pour les rayons X).

1993_1h.jpg

 
#3151 - Màj : 21/12/2023
Faits marquants scientifiques

Universality of q=1/2 orbital magnetism in the pseudogap phase of the high-Tc superconductor YBa2Cu3O6+x
Dalila Bounoua, Yvan Sidis, Martin Boehm, Paul Steffens, Toshinao Loew, Lin Shan Guo, Jun Qian, Xin Yao, and Philippe Bourges, Phys. Rev. B 108 (2023) 214408.

Several decades of debate have centered around the nature of the enigmatic pseudogap state in high-temperature superconducting copper oxides. Recently, we reported polarized neutron diffraction measurements that suggested the existence of a magnetic texture bound to the pseudogap phase [Bounoua et al. Commun. Phys. 5, 268 (2022)]. Such a magnetic texture is likely to involve the spontaneous appearance of loop currents within the CuO2 unit cells, which give birth to complex correlated patterns. In the underdoped YBa2Cu3O6.6, the magnetic structure factor of such an orbital magnetic texture gives rise to two distinct magnetic responses at q=0 and q=1/2. As this pattern alters the lattice translation invariance, such a state of matter could contribute to an instability of the Fermi surface. Here, we report polarized neutron scattering measurements on a nearly optimally doped high-quality single crystal of YBa2Cu3O6.9 that exhibits the same q=1/2 magnetism and a weakly overdoped YBa2Cu3O7 sample where this signal is no longer sizable. The in-plane and out-of-plane magnetic neutron scattering intensities in YBa2Cu3O6.9 (at q=1/2) and YBa2Cu3O6.85 (at q=0), reported previously, display the same temperature-dependent hallmarks. The magnitudes of both q=0 and q=1/2 magnetic signals further exhibit the same trends upon doping in YBa2Cu3O6+x, confirming that they are likely intertwined.

https://doi.org/10.1103/PhysRevB.108.214408

Y. Li1, V. Balédent2, G. Yu3, N. Barišić1, K. Hradil3, R.A. Mole3, Y. Sidis2, P. Steffens4, X. Zhao1, P. Bourges2, M. Greven1

1 Department of Physics, Stanford University, Stanford, California 94305, USA
2 Laboratoire Léon Brillouin (LLB), CEA-CNRS, CEA Saclay, 91191 Gif-sur-Yvette, France
3 Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM-II), TU München, D-85747 Garching,   Germany
4 Institut Laue Langevin (ILL), 38042 Grenoble CEDEX 9, France

Pour les physiciens de la matière condensée, comprendre l’origine de la supraconductivité à haute température critique (Tc), telle qu'elle est observée dans les oxydes de cuivre, demeure un défi majeur en ce début de XXIème siècle. Diverses hypothèses sont proposées et testées, mais après avoir montré l’émergence d’un ordre magnétique dans la phase dite de "pseudo-gap" (phase électronique adjacente à la phase supraconductrice), les dernières expériences, réalisées par des chercheurs de l'IRAMIS/LLB par diffusion de neutrons polarisés, révèlent le spectre des excitations magnétiques associé à cet ordre. Ce résultat conforte l'hypothèse d'une origine magnétique au couplage entre électrons à l'origine de la supraconductivité à haut Tc.



 

Retour en haut