Nanostructures et biomolécules : biomédecine et nanotoxicité / Nanostructures and biomolecules: biomedicine and nanotoxicity
logo_tutelle logo_tutelle logo_tutelle 

Du fait de leur taille, les nanoparticules peuvent interagir avec les éléments du vivant, de la cellule à la molécule biologique. Ceci peut être mis à profit en médecine pour cibler des traitements, mais peut aussi présenter des effets indésirables, lors d'une forte exposition.

Les équipes de l'IRAMIS travaillent selon ces deux voies d'importance sociétale majeure, et plus particulièrement sur :

  • Ecotoxicité  et nanoparticules (équipes NIMBE/LIONS et /LEDNA)
  • Matériaux bio-inspirés
  • Nano-médicament
 

Nanostructures and biomolecules: biomedicine and nanotoxicity

Due to their size, nanoparticles interact with the elementary objects of the living, from cells to biological molecules. This can be used in medicine to target treatments, but can also have undesirable effects at high exposure levels.

IRAMIS teams are working along both of these pathways of major societal importance, mainly on :

  • Ecotoxicity and nanoparticles (NIMBE/LIONS and /LEDNA teams)
  • Bio-inspired materials
  • Nano-medicine
 
#2792 - Màj : 12/07/2023
Faits marquants scientifiques

Formuler un substitut sanguin capable de transporter efficacement l’oxygène, sans toxicité biologique ou chimique, et dont la préparation serait peu coûteuse pour de très grandes quantités, est un graal qui remonte au XVIIème siècle [1]. De nombreuses solutions ont été avancées, notamment à base d’hémoglobines, protéines d’origine humaine, animale ou bactérienne qui transportent l’oxygène dans le sang. Aucune piste n’a permis jusqu’à présent de proposer un produit acceptable par les autorités de santé.

Une équipe d'IRAMIS, en collaboration avec deux équipes de l'institut Frédéric Joliot, et avec une jeune start-up : LBP propose une nouvelle voie : Il est montré que la molécule CB5(OH)10 est capable de complexer efficacement dans sa cavité le dioxygène d'une solution physiologique [2]. CB5(OH)10 appartient à la famille des cucurbiturils, en référence à leur forme qui ressemble à celle d'une citrouille. La propriété d'encapsulation du dioxygène par CB5(OH)10 est comparable, en son principe, à celle de l'hémoglobine, principal vecteur de transport du dioxygène dans le sang. La start-up ambitionne de proposer un substitut sanguin entièrement thermostable et synthétique, donc sans aucun risque infectieux.

 

Retour en haut