Electronique quantique et technologies quantiques
logo_tutelle logo_tutelle 
Electronique quantique et technologies quantiques

Micrographie du quantronium, premier circuit électronique constituant un bit quantique. Le dessin ajouté au centre symbolise les superpositions d’états 0 et 1 dans lesquelles ce bit peut être préparé.(Groupe Quantronique)

En microélectronique, si la mécanique quantique permet d’expliquer les propriétés des matériaux (conducteur, isolant...) l’électrodynamique des circuits reste classique. En revanche, lorsque la taille des dispositifs électroniques devient comparable à celle des atomes, ou que l’on explore les propriétés de systèmes à très basse température, une nouvelle situation apparaît : la cohérence quantique électronique s’étend à l’échelle du dispositif entier et peut influencer son comportement collectif. Les concepts macroscopiques de courant, tension, résistance ou capacitance doivent alors être redéfinis.

Les recherches développées par 3 équipes du SPEC (NanoElectronique, Quantronique et Groupe Modélisation et Théorie) portent principalement sur l'étude des :

 

 

 

 
#187 - Màj : 23/01/2023
Faits marquants scientifiques

Une collaboration de chercheurs autour du groupe Nanoélectronique du SPEC franchit une étape importante en contrôlant pour la première fois une superposition quantique de qubits volants électroniques. Un qubit volant est un bit quantique (ou qubit) non localisé, pouvant être manipulé pendant sa propagation. Si le développement de qubits volants porté par des photons a déjà été réalisé, le contrôle complet d'un qubit volant porté par une onde électronique dans un solide restait à démontrer.

Dans ce travail novateur, il est montré qu'il est possible de contrôler la superposition quantique d'impulsions électroniques individuelles (ou lévitons), se propageant dans un interféromètre formé par une jonction p-n en graphène. Cette réalisation marque une avancée importante vers la génération à la demande de paires quantiques intriquées, exigence requise pour connecter des ordinateurs quantiques distants.

Neutral modes of the fractional quantum Hall effect have been shown to exchange energy with their fractionally charged counterparts, but it remains unknown whether they do so with the nearby integer quantum Hall edge channels. Researchers of the Nanolectronics group of SPEC, in collaboration with teams of the C2N (Palaiseau, France) and NIMS (Tsukuba, Japan) have performed a heat transport experiment in graphene answering this question. By controlling the electrostatics of the edges, they observed a maximal suppression of the thermal conductance in the fractional quantum Hall regime, a clear signature of energy exchanges between integer edge channels and the neutral modes. This work identifies a crucial issue for future quantum circuits in the quantum Hall regime.

Des chercheurs du SPEC démontrent un régime de fort couplage électrodynamique entre les photons microondes stockés dans un résonateur micro-fabriqué, et les paires de Cooper traversant une jonction Josephson polarisée en tension. Grâce à des mesures de corrélations temporelles sur les microondes émises, ils ont pu démontrer qu’un seul transfert de charge peut émettre spontanément jusqu’à 4 photons simultanément témoignant de ce fort régime d’interaction.
Des chercheurs des équipes Nanoélectronique et Modélisation et Théorie du SPEC, en collaboration avec des expérimentateurs du NTT-BRL et du NIMS (Japon) et des théoriciens du KAIST (Corée), ont mis au point de nouveaux séparateurs accordables d'ondes électroniques au sein du graphène, dont le principe utilise ses symétries cristallines. En utilisant ces séparateurs de faisceau, les chercheurs montrent qu'il est possible de réaliser l'analogue électronique d'un interféromètre optique de type Mach-Zehnder, dont la transmission des séparateurs peut être ajustée. L'analyse des interférences quantiques électroniques observées montre que le graphène pourrait être utilisé pour réaliser des circuits quantiques complexes avec l'avantage d'un très haut degré de robustesse à la décohérence.

 

Des chercheurs du SPEC, en collaboration avec des équipes du C2N et de l'université de Gênes, ont observé la dissolution et la réapparition partielle d'un électron injecté à énergie finie dans les canaux électroniques chiraux unidimensionnels, créés par l'application d'un champ magnétique intense le long des bords d'un système électronique bidimensionnel (en régime d'effet Hall quantique).

Ces résultats contribueront à élucider dans quelle mesure les électrons placés dans ces états de bord, peuvent être utilisés pour mettre en œuvre les analogues électroniques des expériences d'information quantique réalisées avec des photons.

L'électron est une particule élémentaire portant la charge élémentaire "e", une constante fondamentale de la physique. Cependant, dans un conducteur confiné en 2 dimensions soumis à un champ magnétique intense (10 T), les électrons peuvent s’organiser en un nouvel état quantique topologiquement corrélé où le courant électrique peut être transporté par des charges fractionnaires : e/3, e/5… . Ni fermions (comme les électrons), ni bosons (comme les photons), ces particules élémentaires artificielles sont dénommées anyons, car on pense qu’elles obéissent à une "statistique quantique fractionnaire". Certaines variétés d’anyons pourraient être exploitées pour le "calcul quantique topologique", où l'information quantique est portée par des états bien définis (qubit), car topologiquement protégés.

Une équipe du SPEC CEA, en collaboration avec le Cavendish Laboratory de Cambridge (UK) pour l'élaboration du matériau, a montré que l’on pouvait observer et manipuler des anyons de charge fractionnaire e* = e/3 ou e/5, avec des photons microondes de fréquence f. Ceci est mis en évidence par l'observation, en présence d'une polarisation V et d'un champ microonde de fréquence f, d'un bruit photo-assisté excédentaire, mesuré au-delà d'une tension seuil VJ donnée par la relation de Josephson : e*VJ=hf. Ces résultats sont publiés dans la revue "Science".

La mesure de ce seuil apporte une nouvelle détermination originale de la charge fractionnaire des anyons. Elle donne aussi la preuve que les anyons peuvent absorber ou émettre des photons, ce qui ouvre une voie pour leur manipulation résolue en temps et tenter de mettre en évidence leur statistique fractionnaire.

Les photons intriqués jouent un rôle fondamental pour la compréhension et la vérification expérimentale des aspects les plus spectaculaires de la physique quantique, notamment dans les expériences de violation des inégalités de Bell. En outre, ils constituent des ressources potentielles pour des protocoles de télécommunication et de transmission de l’informatique quantique. Nous avons récemment montré qu’une jonction Josephson polarisée en tension offre une source particulièrement simple et brillante de paires de photons intriqués.

Groupe Nanoélectronique

 

Lorsqu’un conducteur quantique est exposé à du rayonnement électromagnétique, ses propriétés de transport sont modifiées par l'interaction entre la lumière et les électrons se propageant dans le conducteur quantique. Une des signatures de cette interaction est l’augmentation du bruit électronique généré par le conducteur alors même qu’aucun courant continu ne passe dans le conducteur. Ce phénomène, appelé bruit photo-assisté, a été prédit et largement exploré dans le domaine micro-ondes, où divers types de conducteurs quantiques ont été exposés à des signaux à des fréquences allant jusqu’à plusieurs dizaines de gigahertz. Le groupe Nanoélectronique du SPEC a mis en œuvre une expérience inédite visant à observer le bruit photo-assisté dans un conducteur en graphène exposé à des radiations dans le domaine terahertz, plusieurs ordres de grandeurs au-delà des observations précédentes. Leurs travaux sont publiés dans Physical Review Letters.

 

Il est fascinant de pouvoir aujourd'hui construire des dispositifs (capteurs, dispositifs opto-électroniques, réalisation de qubits, …) dont le comportement quantique se manifeste à notre échelle. Pour aller au-delà, il faut réaliser chacune des fonctions nécessaires à la manipulation des objets quantiques, puis savoir les interconnecter, pour observer leur comportement et permettre le traitement de l'information quantique. Dans ce domaine, un enjeu fort aujourd’hui : identifier de nouveaux matériaux, où l’information quantique pourrait être traitée sur des dimensions macroscopiques. Pour ceci, le graphène est un bon candidat, au sein duquel il doit être possible de préserver la cohérence quantique à travers un système étendu.

Ainsi, une collaboration, entre des chercheurs du groupe de Nanoélectronique du SPEC et des chercheurs de NTT-BRL au Japon, montre qu'il est possible de réaliser une lame semi-réfléchissante, permettant de séparer et transmettre selon deux directions distinctes une même fonction d'onde électronique. Par l’application d’un fort champ magnétique perpendiculaire et l’utilisation de grilles électrostatiques, il est en effet possible de contrôler les trajectoires électroniques dans un plan de graphène nanostructuré, de manière à partitionner les électrons au niveau d’une jonction p-n.

Les chercheurs de la collaboration vont maintenant implémenter ces jonctions p-n, équivalent électronique d’une lame semi-réfléchissante, dans des expériences d’optique quantique électronique, où les électrons sont manipulés de manière analogues aux photons dans les fibres optiques, ceci afin de mieux comprendre les propriétés quantiques du transport électronique dans le graphène.

 

En information quantique, il est essentiel de connaître complètement l’état quantique de l’objet (photon, électron ou spin) qui porte l’information. Ceci est possible par une procédure, appelée tomographie, qui consiste à mesurer la fonction d’onde par tranches successives. La tomographie est une procédure aujourd'hui bien connue pour un photon. Elle consiste à mélanger celui-ci avec le faisceau intense d'un laser (i.e. un champ intense de photons) et à observer les interférences qui en résultent. Cette méthode ne peut s'appliquer à un fermion, car il n'existe pas l'équivalent du champ intense de photons (l’amplitude d’un champ quantique de fermion est limitée, chaque état accessible étant occupé au plus par un seul fermion). La tomographie d’un électron unique itinérant dans un conducteur demande ainsi le développement d'une méthode originale.

Les chercheurs du SPEC au CEA Saclay, en collaboration avec le LPN CNRS pour les échantillons fournis, ont réussi à atteindre la sensibilité de mesure ultime permettant la première tomographie d’un électron [1]. Pour tester cette mesure, les électrons à tomographier ont été générés sous forme de "lévitons" [2] dont la fonction d’onde bien comprise a pu être comparée aux mesures de bruit en courant révélant l’interférence de lévitons avec un champ de fermion obtenu par un petit courant électronique alternatif appliqué au conducteur. Ces résultats ouvrent la voie à la caractérisation d’états quantiques plus complexes et sont une avancée importante pour des "qubits volants", support d'information quantique, portés par des électrons dans des conducteurs quantiques.

 

Si le transport électrique usuel nous est familier (tension, courant, résistance électrique, …), les phénomènes de transport de charge dans un conducteur quantique suivent des lois probabilistes bien différentes. A très basse température, cet aspect probabiliste et le caractère individuel des charges conduit à l'apparition d'un bruit spécifique, appelé "bruit de grenaille". Le passage  des charges "une par une" peut conduire à des excitations électroniques, mais aussi, par effet d'antenne, à des excitations du champ électromagnétique externe au conducteur. Cette excitation du champ agit à son tour par rétroaction sur le transport électronique. D’un point de vue formel, cette rétroaction apparaît comme la conséquence des fluctuations quantiques de la  tension aux bornes de la jonction.

La compréhension de ce couplage matière-rayonnement dans les circuits électriques est une étape cruciale pour l’élaboration de dispositifs exploitant le caractère quantique du transport électronique. Les groupes "Nanoélectronique" et "Quantronique" du SPEC, en collaboration avec le Laboratoire de Physique du Solide de l'Univ. Paris-Sud, ont franchi une étape importante dans cette direction en établissant de façon théorique et expérimentale l’effet de l’environnement électromagnétique sur la dynamique du transfert de charge dans une jonction tunnel.

Les progrès en nano-électronique quantique permettent d'observer dans un conducteur les interférences entre électrons, comme le font des photons en optique, ou encore de mesurer leur bruit quantique (ou bruit Schottky, l’analogue pour des électrons du bruit de photon , lié à la nature discrète des particules).

Pour compléter cette optique quantique électronique, il manquait une source d’électrons à la demande, simple et fiable. La difficulté résidait dans le fait que, contrairement aux photons qui se meuvent dans le vide, un conducteur contient déjà des charges qui ne demandent qu’à s’agiter lors de l’injection d’un électron.

Suivant une proposition datant de presque vingt ans de L. Levitov, théoricien au MIT, les chercheurs du SPEC ont réussi à injecter un nombre entier d’électron dans le conducteur sans le perturber en appliquant des impulsions de tension de forme Lorentzienne. Celles-ci génèrent une excitation fondamentale présentant une parenté avec les solitons, qu’ils ont appelé "Léviton". Cette première, à paraître dans la revue Nature, ouvre des perspectives en physique quantique dépassant le champ de la nano-électronique : en effet, des Lévitons atomiques pourraient être pareillement réalisés avec des atomes froids (gaz de fermions).  

 

Tout objet dans un état de superstition d'états quantiques mais non isolé, perd sa cohérence (décohérence quantique) et seuls les états observables macroscopiquement sont finalement observables.

Des chercheurs du SPEC ont réussi pour la première fois à contrôler la cohérence quantique des électrons d'un conducteur (quasi-particules) en présence d'un champ magnétique intense (8 Teslas, i.e. en régime d'effet Hall quantique entier). Les longueurs de cohérence quantique ont pu être augmentées d'un facteur deux en modifiant le couplage du conducteur quantique avec son environnement, grâce à des grilles de polarisation judicieusement placées.

Le contraste des franges d'interférences en sortie d'un interféromètre électronique est un bon reflet de cette cohérence. Cette expérience a ainsi permis de comprendre la dépendance de la visibilité des interférences quantiques en fonction de l'énergie des électrons injectés.


Une des questions au coeur de la physique fondamentale des conducteurs quantiques est de déterminer à quel point les quasi-particules d'un conducteur se comportent comme des particules libres sans interaction. Un outil très utile à la compréhension de l'interaction d'une quasi-particule avec son environnement est de déterminer sa longueur de cohérence, c'est à dire la distance sur laquelle une quasi-particule perd sa cohérence quantique, reflet de ses propriétés ondulatoires.

Eva Zakka-Bajjani, J. Dufouleur, N. Coulombel, P. Roche, D. C. Glattli, and F. Portier

(french version French version)

Contact: Dr. Fabien PORTIER

A conductor in equilibrium under a bias voltage shows current fluctuations proportional to its resistance and temperature. This type of noise is known as the Johnson-Nyquist noise, or equivalently, the thermal noise. In a quantum conductor, current fluctuations generate microwave photons which obey chaotic statistics (cf., blackbody radiation) if the conductor is at equilibrium. When the conductor is out-of-equilibrium; however, the stochastic aspect of the electron transport gives rise to different kinds of current fluctuations (quantum shot noise) that muddle the photon statistics. Understanding the link between the statistics of electrons and that of emitted photons is very intriguing as it will reveal the connection between quantum conductors and quantum optics. This problem has recently attracted theoretical interest, and a full spectrum of photon statistics, ranging from chaotic to non-classical, has been predicted [1]. 

Recently, the Nanoelectronics group at SPEC has performed the first experiments to put theories on test by measuring the statistics of microwave photons radiated by a simplest quantum conductor; a tunnel junction, in the shot-noise regime.

Yuri Mukharsky, Andrei Penzev et Eric Varoquaux, Groupe de Nanoélectronique

(french version English version)

Si l'existence en était avérée, un "super-solide" serait un état de la matière combinant la rigidité d'un solide et les propriétés d'un superfluide. Ce serait un état inédit de la matière. Toutefois, des incertitudes subsistent sur la mise en évidence d'un tel état et sur la manière dont il pourrait se former. Dans un article à Physical Review B, 80 (2009) 140504(R) ) des chercheurs du SPEC ont mesuré les propriétés élastiques de l'hélium-4 solide par des techniques acoustiques basse fréquence ultra-sensibles. Leurs résultats permettent de franchir une étape dans la compréhension de l'apparition de la supersolidité. Leur travail a été distingué par les éditeurs de Physical Review B de l'American Physical Society avec l'attribution du label "Editor's Suggestions".

Du point de vue expérimental, la << supersolidité >> se manifeste quand partie d'un échantillon d'hélium-4 solide contenu dans la masselote d'un oscillateur de torsion se découple mécaniquement des parois de l'appareil. Ce phénomène, supposé quantique mais pour le moment inexpliqué, apparaît au-dessous de 0.2 Kelvin et semble lié à la présence de défauts cristallins, très probablement des lignes de dislocation. << Quel genre de lignes de dislocation >> est la question abordée ici par la mesure de la relation contrainte-déformation d'échantillons d'hélium solide fortement déformés.

Comme les cristaux d'hélium sont fragiles et endommagés même par de très faibles contraintes, les chercheurs du SPEC ont utilisé un capteur acoustique extrêmement sensible utilisant une jauge de déplacement supraconductrice pour mesurer les déformations sans introduire de défauts supplémentaires. La résolution en déplacement se trouve dans la zone des femtomètres.  Moyennant ces précautions ils ont pu contourner les effets rhéologiques non associés à la formation de la phase supersolide.

La plupart des échantillons ont montré une augmentation très notable de rigidité à basse température, au-dessus de 0.15 Kelvin, tendance déjà notée par d'autres (J. Day et al. cond-mat:0903.1269), mais avec une ampleur encore plus importante. La figure illustre le déplacement en fréquence de la résonance fondamentale de l'hélium solide dans la cavité acoustique en fonction de la température. Cette variation de fréquence traduit le mouvement interne des lignes de dislocation dans la matrice cristalline. Elle montre que la constante de Poisson* varie de manière considérable entre le zéro absolu et 1 Kelvin. Au fur et à mesure que la température s'élève, les lignes de dislocation se << dégèlent >> et se mettre à suivre les déformations associées au champ acoustique. Cette réponse des dislocations a une influence profonde sur l'élasticité de l'hélium-4 solide entre 0,2 et 1 K. L'ampleur du phénomène révèle un réseau de lignes de dislocation anormalement dense et tortueux. Ces observations impliquent également que les mouvements des dislocations ne sont pas bloqués dans les vallées de Peierls, suggérant des dislocations rugueuses à l'échelle atomique. Ces résultats ont tout lieu d'intriguer, mais leur lien avec un hypothétique état supersolide doit encore être élucidé.


* un des paramètres qui caractérisent les propriétés élastiques de la substance.

Référence :

Low-frequency acoustics in solid 4He at low temperature
Yu. Mukharsky, A. Penzev, and E. Varoquaux
Phys. Rev. B, 80 (2009), 140504(R)

(french version English version)

On pensait bien connaitre la physique des transistors, et en particulier celle de ceux qui peuplent par millions le cœur de nos ordinateurs, les MOSFETs au Silicium (Metal Oxyde Semi-conducteur Field Effect Transistor). Or, dès 1994 une nouvelle génération de MOSFETs à très haute mobilité a permis de réaliser des expériences où la densité électronique était extrêmement basse (Kravchenko et al 1994). Les expériences menées dans ces « transistors extrêmes » ont montré un comportement tout à fait spectaculaire : à basse température ils se comportent comme des métaux au lieu de l’isolant attendu. (Au lieu de diverger, la résistivité décroit d’un ordre de grandeur dans une fenêtre de température assez étroite).

Pas de métaux  à 2 dimensions.

Pour comprendre l’émoi que ces résultats expérimentaux ont suscité dans la communauté, il faut remonter au célèbre article sur la localisation  pour lequel P.W. Anderson a obtenu son prix Nobel en 1977 (voir article : Anderson 1958). Anderson y étudie l’effet d’un faible désordre dans les métaux et conclut qu’à très basse température (i.e. pour un système  quantiquement cohérent) les interférences multiples générées par ce désordre provoquaient une localisation des fonctions d’onde du métal, le rendant ainsi isolant. L’effet est particulièrement fort à une et deux dimensions (comme dans nos MOSFETs) où il était prédit qu’un petit désordre, même arbitrairement faible, suffisait à rendre le système isolant. Pendant deux décennies, la communauté a vérifié à la fois expérimentalement et théoriquement ce paradigme : pas de métaux à deux dimensions. En particulier le SPEC, à travers notamment les travaux de M. Sanquer et de J-L Pichard, a fortement contribué à l’étude de la localisation.

Le suspect idéal, les corrélations électroniques.  Les expériences de Kravchenko, reproduites ensuite dans divers groupes expérimentaux (au SPEC également, dans le groupe de D. L’Hôte) ont ainsi été à l’origine d’une petite révolution dans la communauté du transport quantique. Les modèles et mécanismes affluèrent de toutes parts pour tenter de résoudre le fâcheux différent entre la théorie et les mesures expérimentales qui persistaient à montrer un comportement métallique. Les uns cherchaient des artefacts expérimentaux tandis que les autres proposaient des modèles plus ou moins farfelus ou ad hoc. Sur un seul point un consensus émergeait : à très basse densité, les corrélations électron-électron introduites par la répulsion Coulombienne prennent une importance considérable. Or ces corrélations résistent à la plupart des approches théoriques.

Localisation et Corrélations.

Dans le cadre de la thèse de Geneviève Fleury, nous avons développé une approche numérique, alliant Monte-Carlo quantique pour traiter le problème quantique à N corps et théorie d’échelle pour extraire la limite thermodynamique. Cette approche nous a permis, pour la première fois, d’étudier le problème couplé de la localisation d’Anderson en présence de corrélations fortes. Le diagramme de phase obtenu  (voir figure) montre bien la « phase »métallique dans la région expérimentale où elle a été observée, et ce, ab initio (i.e. sans paramètre ajustable). Le scénario qui se dégage de nos calculs est en demi-teinte : d’un coté les corrélations sont bien à l’origine des observations expérimentales – une physique nouvelle émerge des corrélations. De l’autre le système reste un isolant au sens thermodynamique du terme. Autrement dit,  nous prédisons qu’à plus basse température la résistivité doit diverger en accord avec le paradigme d’Anderson.

 

Retour en haut