Nanomagnétisme et oxydes : spintronique, matériaux multiferroïques et nouveaux capteurs magnétiques
logo_tutelle logo_tutelle 
Nanomagnétisme et oxydes : spintronique, matériaux multiferroïques et nouveaux capteurs magnétiques

Domaines magnétiques au sein d'une couche mince de CoPt.

 Ce thème de recherche du SPEC porte sur l’élaboration et l’étude de :

  • matériaux oxydes magnétiques ou multiferroïques* (ferroélectricité associée au magnétisme)
  • la dynamique de l’aimantation dans les nanostructures hybrides et son couplage aux courants de spin (spintronique)
  • le développement de capteurs de champ magnétique ultra-sensible
  • et la modélisation associée.

Ces études utilisent de nombreuses techniques maitrisées au SPEC :

  • croissance de film minces (oxydes en particulier),
  • mesures de transport et magnétiques,
  • diffusion de neutrons (polarisés),...
 

La caractérisation des capteurs magnétiques est réalisée dans une installation "ultra-bas bruit magnétique" spécialement dédiée, indispensable au développement de multiples applications : contrôle non destructif, sécurité, capteurs de vitesse, capteurs de courant… .

Le groupe "Nanomagnétisme et Oxydes (LNO)" du SPEC a son activité entièrement centrée sur cette thématique.

Le groupe "Modélisation et théorie (GMT)" explore par simulation atomistique l'ensemble de ces systèmes et leurs propriétés.

 


*Les matériaux multiferroïques sont des matériaux multifonctionnels, car ils possèdent simultanément plusieurs propriétés "ferroïques" : ferromagnétisme, ferroélectricité et/ou ferroélasticité. Leurs élaboration en couches minces permet de réaliser des objets fonctionnels, où plusieurs propriétés couplées peuvent être exploitées.

 
#150 - Màj : 12/02/2023

Domaines Techniques
Les nanotechnologies requièrent de réaliser des édifices complexes à l'échelle atomique. Ceux-ci sont généralement réalisées par dépôts sur un substrat (métal ou oxyde).
Dépôts, croissance, films minces
Faits marquants scientifiques
Parmi les propriétés extraordinaires du graphène, il existe une anomalie magnétique géante prédite depuis les années 1950's et encore jamais mesurée directement. En contrôlant un feuillet de graphène presque sans défaut avec une tension électrostatique, et en utilisant des capteurs à magnétorésistance géante (GMR) ultrasensibles concus par l'équipe LNO du SPEC, des physiciennes et des physiciens ont pour la première fois mis en évidence expérimentalement cette singularité magnétique.

 

Les progrès continus dans l'exploration du magnétisme permettent de proposer de nouveaux dispositifs pour le traitement, le transfert ou le stockage de l'information.

Les matériaux antiferromagnétiques et multiferroïques présentent une structure en domaines ferroélectriques. La présente étude montre que la perte locale de symétrie au niveau des parois séparant ces domaines permet l'émergence d'embryons de skyrmions antiferromagnétiques, vortex local de spin chiral (avec un enroulement droite ou gauche des spins) de très petite taille.

L’étude montre ainsi toute la richesse des parois multiferroïques, pour un nouveau pas vers une spintronique topologique et antiferromagnétique, pouvant permettre de réaliser des dispositifs de traitement de l'information originaux et performants : la mémorisation de la valeur d'un bit sur un skyrmion permettrait le stockage magnétique de l'information avec une très haute densité.

 

Le couplage magnéto-électrique suscite un vif intérêt dans le domaine des applications liées à la spintronique et à la conversion d’énergie. Des couplages forts rendent possibles  le pilotage des propriétés magnétiques par un potentiel électrique, l’effet inverse est aussi envisageable bien que technologiquement moins pertinent. Des couplages plus modestes quant à eux permettent d’envisager des mémoires magnéto-électriques multi-états. Au-delà du gain en densité d’information, des logiques multi-états permettraient d’augmenter considérablement les puissances de calcul. Malheureusement, les principes physiques de la ferroélectricité et du ferromagnétisme sont antagonistes [1] et les composés magnéto-électriques à température ambiante sont rares (si on veut bien inclure les matériaux antiferromagnétiques non compensés, inexistants sinon).

L’utilisation de couches minces épitaxiées permet d’apporter le degré de liberté manquant indispensable à la coexistence des 2 ordres à grande distance et ouvre la porte à l’élaboration de matériaux multiferroïques artificiels. Des matériaux très stables en conditions atmosphériques, tels que les oxydes, avec des températures d’ordre élevées (au-dessus de l’ambiante) sont des candidats idéaux. Dans ces systèmes il y a une forte interdépendance/interaction des paramètres magnétiques, ferroélectriques et structuraux. Une étude pertinente doit donc aborder l’ensemble de ces aspects.

Ce défi a été relevé dans le cadre du consortium du projet ANR-IOBTO (partenaires CEA/SPEC, Synchrotron-SOLEIL, INSP). Nous avons élaboré, par épitaxie par jets moléculaires, des hétérostructures à base de couches minces ferroélectriques de titanate de Ba, BaTiO3, et de ferrite de cobalt ferrimagnétique: CoFe2O4. Une matrice d’échantillons d’épaisseurs réciproquement variables a été élaborée [2]. Chaque échantillon a été analysé pour ses états de contraintes, ses propriétés magnétiques et électriques [3] en utilisant, en particulier, massivement des techniques de rayonnement synchrotron afin de compenser la faible quantité de matière dans les couches. En effet, la relaxation structurale est quasiment complète lorsque le cumul d’épaisseur des couches est de l’ordre de 30 nm, limitant le potentiel de propriétés magnéto-électrique à des épaisseurs inférieures. Toutes les hétérostructures réalisées sont épitaxiées et d’excellente qualité cristalline (figure 1a). A partir de cartographies de l’espace réciproque réalisées en diffraction de surface des rayons X en incidence rasante on a pu remonter à l’ensemble de paramètres structuraux et mettre en évidence une partie contrainte et relaxée dans la couche de BaTiO3. De façon contre intuitive on trouve que la relaxation structurale de chaque couche dépend étroitement de l’épaisseur totale en passant par des étapes caractéristiques en allant de l’adaptation au substrat pour les couches les plus fines jusqu’à la relaxation totale de chaque couche (figure 1b).

Pure spin conductors could behave as nonlinear component in the high power regime, hereby opening up considerably the realm of functions realizable with magnetic materials. An additional feature is that these are continuously tunable by an external magnetic field.

 

Currents circulating in excitable cells like neurons or nerve fibers may be measured by the radiated magnetic field.  At the organ level, these magnetic fields can be detected by non-invasive experiments using highly sensitive magnetometers such as SQUIDS, atomic magnetometers or mixed sensors, the latter using spin electronics. This technique, called Magneto-Encephalography, allows measuring neuronal activity at a millisecond resolution and for collective response of population of typically 10 000 neurons and more. To understand the genesis of the signals obtained in brain areas, it is relevant to investigate the fields generated at the level of one or few cells. This requires small and sensitive field sensors, operating at physiological temperatures, which has long been out of reach from existing technologies.

Spin electronics allow now developing small sized and very sensitive magnetometers, reaching the sub-nanotesla field range on micron-size sensors. These devices operate from low temperature to hundreds of °C, so they can be used at physiological temperature. Furthermore, spin electronics sensors, based on thin film technology, can be deposited on silicon or glass substrates which can be shaped in needle-type devices to allow penetration in tissues with reduced damages.

In the frame of the European FET-project “Magnetrodes”, the Nanomagnetism and Oxydes laboratory (LNO) at CEA-Saclay has designed and fabricated magnetic sensors called magnetrodes, as a magnetic equivalent of electrodes, to probe locally the information transmission of excitable cells. These sharp probes contain GMR elements in embodiment compatible with recordings within tissues.

In collaboration with Pascal Fries’team at the Ernst Strüngmann Institute in Frankfurt, Germany, the LNO laboratory has realised the first in vivo experimental measure of the magnetic signature of local field potentials in the cat’s visual cortex. It has paved a new way to a local description of electrical activity, without direct contact to the cell and which allows accessing not only the amplitude of the activity but also its direction of propagation, at any depth within the tissues.

En utilisant un atome artificiel dans le diamant comme détecteur de champ magnétique ultrasensible, des physiciens ont imagé pour la première fois le champ de fuite rayonné par un composé de la vaste famille des antiferromagnétiques. Cette observation leur a permis d’étudier l’effet d’un champ électrique sur la modulation sinusoïdale de l’ordre antiferromagnétique dans un matériau multiferroïque.

 

La réalisation de dispositifs basés sur l’électronique de spin (spintronique) où une molécule magnétique est le composant actif est un objectif de premier plan dans le domaine du magnétisme moléculaire. La collaboration entre des groupes de physiciens et de chimistes, théoriciens et expérimentateurs avec le soutien du Laboratoire d’excellence NanoSaclay a permis de mettre en évidence la présence d’une bistabilité magnétique à l’échelle de la molécule individuelle. Pour ceci, les chercheurs ont greffé de manière covalente différentes molécules magnétiques (phosphonates à base de cobalt ou nickel) sur une surface ferrimagnétique d’oxyde de fer (Fe3O4). Ils ont mis en évidence, grâce à la combinaison de plusieurs techniques de caractérisation de surface, un greffage covalent d’une monocouche de molécules sur le film magnétique.

Des études de dichroïsme magnétique des rayons X sur la ligne DEIMOS du Synchrotron SOLEIL ont ensuite révélé la présence d’un couplage magnétique à l’interface molécule/film magnétique et la modification de l’anisotropie magnétique des molécules (selon le métal de transition considéré) conduisant à la présence d’un cycle d’hystérèse des molécules individuelles. Les calculs théoriques permettent de rationaliser les données expérimentales. Ces études ouvrent des perspectives de réalisation de dispositifs de spintronique moléculaire.

Pour améliorer le traitement efficace et rapide de l'information au cœur des dispositifs hyperfréquences, la recherche fondamentale fournit de nouvelles pistes à explorer : spintronique, plasmonique, magnonique… autant de termes qui aujourd'hui désignent des méthodes avec lesquelles il peut être possible de stocker, traiter et relire l'information codée dans des états de spin, les oscillations de charges dans un cristal (plasmons) ou encore celles de l'aimantation d'un matériau magnétique (ondes de spin ou "magnons").

Au sein d'une collaboration de chercheurs européens, l'équipe du LNO du SPEC vient de montrer qu'il est possible de moduler le temps de relaxation des ondes de spin dans un matériau ferromagnétique isolant, par un courant continu d'électrons dans un métal adjacent [1]. Pour obtenir ce résultat l'équipe a utilisé un dispositif en couches minces et de dimensions latérales réduites. Ce processus est l'inverse, de celui mis en évidence par des chercheurs japonais en 2010 (production d'une tension électrique continue, induite par la relaxation de magnons à l'interface isolant ferromagnétique / métal) [2].

En 2010, des chercheurs japonais ont prouvé que du moment magnétique de spin pouvait être échangé entre l'aimantation d'un matériau ferromagnétique isolant et les électrons de conduction d'un métal normal adjacent [1]. En théorie, ce transfert de spin permet de contrôler électroniquement la relaxation de la couche magnétique, mais aucune expérience concluante n'a été réalisée depuis.

En mesurant précisément la largeur de raie dans le système hybride YIG | platine, il a pu être montré que le temps de relaxation du grenat d'Yttrium Fer (YIG) peut être réduit ou augmenté en fonction de la polarité du courant injecté dans le platine, couvrant une variation d'un facteur cinq [2].

 

La découverte qu'un courant pur de spin peut  être transféré d'une couche magnétique isolante à une couche métallique adjacente, et vice versa, ouvre de nouvelles perspectives [1]. En particulier, cela permet d'incorporer des matériaux tels que le YIG, connu pour ses propriétés hyperfréquences inégalées, dans les dispositifs innovants de la spintronique. Même si ce matériau magnétique est isolant, il est en effet possible de détecter électriquement sa dynamique. En précessant à la fréquence de résonance, son aimantation perd du moment angulaire à l'interface avec le métal adjacent, qui offre un canal de relaxation pour l'aimantation dynamique : c'est le pompage de spin. S'il existe un couplage spin-orbite dans ce métal, comme dans le platine, ce courant de spin est converti en courant de charge par effet Hall de spin inverse, ce qui permet sa détection. Ce mécanisme est maintenant bien établi [3, 4, 5]. L'effet réciproque, à savoir le transfert d'un courant de spin – généré par effet Hall de spin dans le platine – dans la couche de YIG, n'a pas été reproduit depuis les premiers signes expérimentaux de compensation de la relaxation dans le YIG [1]. Un des problèmes récurrents des études expérimentales jusqu'ici est l'utilisation de couches épaisses de YIG (> 1 µm), alors que l'effet recherché est de nature interfaciale, donc prépondérant dans les couches ultra-minces. Un autre problème est l'utilisation d'échantillons de grande taille latérale (~ mm), où plusieurs ondes de spin quasi-dégénérées entrent en compétition vis-à-vis de la même source de moment angulaire, ce qui pourrait auto-limiter le phénomène et empêcher le démarrage d'auto-oscillations dans le YIG [6].

 

Il est possible d'isoler un seul mode dynamique susceptible d'absorber le courant de spin injecté, en réduisant fortement les dimensions latérales du YIG, afin de séparer en énergie les différentes ondes de spin [7]. Pour cela, il a pu être tiré parti des récents progrès dans la croissance de couche ultra-minces de YIG épitaxiales par ablation laser pulsé, obtenus par nos collègues de l'Unité Mixte de Physique CNRS/Thales [3]. Grâce à une technique de microscopie en champ proche développée au Laboratoire Nanomagnétisme et Oxydes du SPEC [8], les variations spectrales, induites par le courant injecté dans le platine d'un disque de YIG(20 nm)|Pt(7nm) de 5 microns de diamètre (figure 1), ont pu être étudiées.

L'un des objectifs les plus importants des technologies de l'information est le développement de mémoires non-volatiles rapides à haute densité, qui sont économes en énergie, et qui peuvent être produites par les technologies modernes de nanofabrication. De ce point de vue, les nano-objets magnétiques offrent un moyen commode pour stocker l'information binaire à travers leurs propriétés de bi-stabilité. Mais le développement pratique de mémoires magnétiques exige aussi de trouver un mécanisme performant pour inverser l'aimantation à l'intérieur de chaque cellule.

Actuellement,  l'état vortex d'un nano-disque magnétique fait l'objet de nombreuses études pour la richesse des effets physiques qui sont attachés à sa topologie singulière. Un vortex magnétique correspond à un état d'équilibre où l'aimantation statique tourne dans le plan de manière à minimiser son champ de fuite.  Une telle configuration laisse une anomalie dans la région centrale, appelée cœur,  où l'aimantation ne peut que  pointer hors du plan, soit vers le haut ou soit vers le bas, ces deux états possibles, appelés polarité, étant stables.  Des études expérimentales récentes ont montré qu'une inversion dynamique de la polarité d'un vortex était possible en induisant des mouvements de grande amplitude du coeur de vortex.

B. Kundys, M. Viret, D. Colson (IRAMIS/SPEC) et D. O. Kundys

 

Les chercheurs de l'IRAMIS/SPEC viennent de montrer qu'en plus du couplage entre polarisation électrique, magnétisme et distorsion du réseau cristallin, l'oxyde BiFeO3 présente un couplage entre éclairement et déformation. Du fait de ces couplages, ce type de matériaux "multifonctionnels" offre la possibilité de commuter, sous l'action d'un signal externe d'une nature donnée (éclairement, contrainte, champ magnétique ou électrique externe), une propriété du matériau de nature différente (aimantation, polarisation électrique, déformation…). La possibilité d'observer l'ensemble de ces couplages (photostriction, électromagnétisme, électrostriction …) dans un même matériau, ouvre la voie à la conception d'une très grande variété de capteurs avec un extraordinaire potentiel applicatif.

Benjamin Pigeau, Grégoire de Loubens, and Olivier Klein: Groupe Nanomagnétisme

In a vortex-state magnetic nanodisk, the static magnetization is curling in the plane, except in the disk center where it is pointing out-of-plane, either up (polarity p=+1) or down (p=-1). The lowest energy excitation mode of this ground state is the so-called gyrotropic mode [1], corresponding to a gyration of the vortex core around its equilibrium position at the center of the disk. In zero magnetic field, the resonant frequency of this mode is insensitive to the magnetization direction in the core, but the sense of the core rotation is determined by a right-hand rule to its polarity. Recent experiments performed at zero field demonstrated reversal of vortex core polarity through large amplitude excitation of the gyrotropic mode [2]. This dynamical reversal mechanism is of fundamental interest but also has potential application in information technology, with the vortex core polarity coding the binary information.

In order to investigate magnetization dynamics in individual vortex-state nanodisks, we have used the exquisitely sensitive technique of magnetic resonance force microscopy (MRFM), developed in the Nanomagnetism Group of SPEC [3] (see Fig. 1). The studied nanodisks with thickness 44 nm and diameter 1 µm are made of NiMnSb alloy, an ultra-low damping epitaxial material grown in Laurens Molenkamp's group (Würzburg Universität).

Figure 1: Schematic of the MRFM technique. A magnetic spherical probe attached at the end of a soft cantilever is used to detect magnetization dynamics in the vortex-state nanodisk underneath.
Figure 2: (a) Frequency splitting induced by the perpendicular magnetic field between the gyrotropic modes corresponding to the opposite vortex core polarities p=-1 and p=+1. (b) Corresponding MRFM absorption signals measured at µ0H=65 mT.

We have first demonstrated that the frequency degeneracy corresponding to the gyrotropic modes with opposite polarities in zero field can be lifted by applying a magnetic field perpendicular to the disk plane [4] (see Fig. 2). This Zeeman-like splitting can be used for a simple reading of the polarity state in an individual nanodisk. In order to discriminate the resonant frequencies f- and f+ associated respectively to the core polarities p=-1 and p=+1, it is necessary to choose the static magnetic field in such a way that the field-induced gyrotropic frequency splitting exceeds the linewidth of the gyrotropic mode. In our experiment, a bias field as small as µ0H=13 mT is sufficient to fulfill this condition. Obviously, the microwave magnetic field employed to read the polarity state must be weak enough, so that the core polarity is not reversed during the reading sequence. 

We can also take advantage of this frequency discrimination in order to reverse deterministically the vortex core polarity, as shown in [5]. Starting with the vortex core polarity in, say, the p=+1 state, a single microwave field pulse whose carrier frequency is tuned at f+ and with sufficient amplitude (that we shall call a Π+ inversion pulse) will resonantly excite the gyrotropic motion of the core until it reaches the critical threshold for reversal. Once it has been reversed, the final state p=-1 is out of resonance with the writing pulse, so that it cannot be switched back to p=+1. Similarly, it is possible to write the state p=+1 starting from the p=-1 state using the appropriate Π- pulse (see Fig. 3). This writing process has been shown to be very robust, as no mistake could be recorded out of several hundred attempts with our experimental parameters.

Figure 3: Frequency control of the vortex core polarity demonstrated at µ0H=65 mT. (a) The writing is performed every second by applying a short, high amplitude microwave pulse whose carrier frequency is tuned at either f+ or f-. (b) The reading is performed continuously between the writing pulses by MRFM using a low power cyclic absorption sequence at the cantilever frequency..

In sum, our frequency-controlled magnetic vortex memory prototype has two main advantages. Owing to the frequency discrimination allowed by a small perpendicular bias field, there is no need to control the circular polarization of the microwave field and to precisely time the writing pulse as it has to be in zero field. Also, deterministic and local addressing in a large array of memory cells is easily obtained by using the stray-field of the MRFM probe, that can be scanned laterally. Finally, a series of improvements can be imagined in order to make our memory prototype more practical. In particular, it would be useful to replace the MRFM detection by electrical detectors, and to use a local combination of the static and microwave fields at the intersection of a word and a bit lines to address the binary information in individual cells.

 

Retour en haut