Matériaux, surfaces et nanostructures
logo_tutelle 
Matériaux, surfaces et nanostructures

Image par microscopie tunnel d’une surface de cuivre nanostructurée (H. J. Ernst, F. Charra et L. Douillard, SPCSI).

Les propriétés remarquables des nanostructures (morphologique, magnétique, catalytique ...) sont de plus en plus exploitées. Ces nanostructures sont généralement obtenues à la surface d'un substrat, où sous l'effet des forces interatomiques, la matière s'organise spontanément à l'échelle nanométrique. En étudiant la structure de la surface et ses comportements dynamiques (mise à l'équilibre, fluctuations, abrasion ou croissance ...), on met en évidence les lois régissant la matière à cette échelle. Cette connaissance, permet de savoir comment de nouveaux édifices atomiques peuvent être contruits et organisés pour obtenir les propriétés désirées ou découvrir de nouvelles possibilités d'applications qui pourront être utilisées.

Ces recherches de physique et physico-chimie des solides à l'échelle du nanomètre s'appuient sur de fortes compétences en : synthèse de matériaux, sciences des surfaces et des interfaces, magnétisme et supraconductivité, propriétés optiques et optoélectroniques des matériaux, théorie et simulation, …

 
#125 - Màj : 06/12/2015

Faits marquants scientifiques

Andrew M. Jimenez, Dan Zhao, Kyle Misquitta, Jacques Jestin and Sanat K. Kumar

Understanding the structure and dynamics of the bound polymer layer (BL) that forms on favorably interacting nanoparticles (NPs) is critical to revealing the mechanisms responsible for material property enhancements in polymer nanocomposites (PNCs). Here we use small angle neutron scattering to probe the temporal persistence of this BL in the canonical case of poly(2-vinylpyridine) (P2VP) mixed with silica NPs at two representative temperatures. We have observed almost no long-term reorganization at 150 °C (∼Tg,P2VP + 50 °C), but a notable reduction in the BL thickness at 175 °C. We believe that this apparently strong temperature dependence arises from the polyvalency of the binding of a single P2VP chain to a NP. Thus, while the adsorption–desorption process of a single segment is an activated process that occurs over a broad temperature range, the cooperative nature of requiring multiple segments to desorb converts this into a process that occurs over a seemingly narrow temperature range.

https://doi.org/10.1021/acsmacrolett.8b00877

 

Les méthodes de nanostructuration de surface sont à la source de nombreux progrès en nanotechnologies. Une collaboration rassemblant des équipes française, italienne et une société franco-américaine [1] ont mis en évidence l’ouverture de nanotunnels sous la surface d’un semi-conducteur, le carbure de silicium (SiC). Ce phénomène, induit par l'interaction d'atomes d'hydrogène/deutérium (H/D) à la surface du SiC est particulièrement intéressant, du fait des propriétés intrinsèques de ce semi-conducteur. Il est aussi remarquable qu'en fonction de l'exposition à l’H/D, les nanotunnels suivent une séquence de transitions semi-conducteur/métal/semi-conducteur. Ces résultats ont été obtenus par des expériences de pointe (étude par rayonnement synchrotron, techniques de spectroscopies vibrationnelles) conjointement  à des simulations théoriques. 

Ce type de nanostructure à la surface du SiC, ainsi mis en évidence, peut ouvrir la voie à de nombreuses applications en électronique, chimie, stockage, ou pour des capteurs et en biotechnologie.

Le "graphène", qui est un plan élémentaire de graphite, apparaît comme un matériau de choix pour de nombreuses applications technologiques compte tenu de ses propriétés remarquables. Une voie d’élaboration prometteuse de ce matériau pour une micro/nanoélectronique ultra rapide passe par la croissance de graphène épitaxié sur SiC(0001). Cependant, la morphologie et les propriétés électroniques du graphène ainsi obtenues restent mal connues malgré de nombreuses études expérimentales par différentes techniques et des calculs théoriques. Nos derniers résultats obtenus à l'aide d'un microscope STM-AFM couplés, développé au laboratoire, que les maximas de l'image STM (maximum de densité électronique au niveau de Fermi) sont distincts  des maximas topographiques de l'image AFM.

 

(french version English version)

La corrosion sous contrainte - action combinée de contraintes mécaniques et de corrosion par l'eau de l'atmosphère environnante - est souvent à l'origine de la propagation des fissures dans les verres. Une étude par réflectivité de neutrons au Laboratoire Léon Brillouin (IRAMIS/LLB) d'échantillons de verre de silice fracturés sous atmosphère d'eau lourde (D2O) montre une forte pénétration de l'eau dans le verre. La concentration sous la surface de rupture est si importante qu'elle suggère la présence d'un fort endommagement autour de la pointe de fissure. Ces observations montrent la nécessité d’élaborer de nouveaux modèles de la corrosion sous contrainte.

 

Retour en haut